

DDR3 Demo for the ECP5[™] and ECP5-5G[™] Versa Development Boards User Guide

UG97 Version 1.2, October 2016

Introduction

This document provides technical information and instructions for using the ECP5[™] and ECP5-5G[™] DDR3 demo design. This demo design demonstrates the functionality of the Lattice DDR3 IP operating core at a speed of 400 MHz and 800 Mbps using the ECP5 Versa Development Board and the ECP5-5G Versa Development Board. This document provides a circuit description of the demo logic as well as instructions for running the DDR3 demo.

The ECP5/ECP5-5G Versa Development Board has an on-board 16-bit DDR3 SDRAM. The demo design generates 16-bit test data, and writes it to the onboard DDR3 SDRAM. The design reads the DDR3 SDRAM data and compares it with original expected data. When there is a mismatch between the standard and read data, the design will flag an error signal. The demo design also allows the user to run the design with different parameters using onboard DIP switches.

The demo package includes the following:

- DDR3 IP core configuration files (.sbx)
- Verilog source code for the demo logic design
- Lattice Diamond[®] implementation project file (.ldf) and preference file (.lpf) for the demo project
- DDR3 demo bitstream file (.bit)

Demo design hardware requirements:

- ECP5/ECP5-5G Versa Development Board with ECP5/ECP5-5G-45 FPGA, 381-ball package
- 12 V DC power supply for the ECP5 Versa Development Board
- Windows PC machine for implementing the demo project and downloading the bitstream
- USB cable for programming the ECP5 device

Demo design software requirements:

- Lattice Diamond design software, version 3.8 or later
- Programmer software for bitstream download

Figure 1. ECP5 Versa Development Board

DDR3 Demo Design Overview

The DDR3 demo design consists of two major parts: a DDR3 controller IP core and the user logic block. The DDR3 SDRAM Controller IP core interfaces to the on-board external DDR3 SDRAM directly and performs control, read and write operations. The user logic block generates test data to be written to the SDRAM. The DDR3 Controller then writes the data to the on-board DDR3 SDRAM. The DDR3 controller also reads the SDRAM data which it passes to the user logic block. The user logic block compares the read data with the expected data and flags an error if it detects a data mismatch. The demo parameters can be modified using on-board DIP switches. The status of the running demo design is indicated with on-board LEDs.

Further sections describe the sub-modules in the user logic design in detail. Figure 2 illustrates a block diagram of the demo design.

Figure 2. DDR3 Demo Design Block Diagram

DDR3 SDIP Core

This demo is supplied with a fully generated DDR3 SDRAM Controller IP core. The IP core used to generate the DDR3 controller core is the DDR3 SDRAM Controller IP core, version 3.1. The user must install version 3.0 before updating and generating the IP core in the demo project. See IPUG80, Double Data Rate (DDR3) SDRAM Controller IP Core User's Guide for details on generating the IP Core. The controller generated with this IP core interfaces directly with the external, on-board DDR3 SDRAM and performs control operations. The demo has been designed to support a DDR3 data bus width of 16 bits since the DDR3 memory module installed in the ECP5/ECP5-5G Versa Development Board is 16 bits wide.

User Logic

The user logic implemented in the DDR3 demo design provides the following functions:

- Command Generation State machine programs the mode registers and controls DDR3 read and write operations
- · Address generation
- Write data generation
- · Read data validation
- Control and observation

Command Generator State Machine

The state machine controls the demo using the user control input through 5 switch inputs (part of the 8-bit DIP switch on the ECP5/ECP5-5G Versa Development Board). Once the ECP5/ECP5-5G device is programmed or a system reset is applied by pressing the GSR button, the state machine programs all DDR3 mode registers (MR0~MR3) based on the user test configuration (DIP switch setting) – see Table 3 for details on the configuration settings. Then, it generates a write command sequence. The write command may be repeated up to 32 times using either the command burst feature or multiples of single write commands depending on the user setting. After the write command sequence, a read command sequence is initiated. The read command sequence may also be

repeated up to 32 times in the same way as the write command sequence. The read command sequence that follows the write command sequence always includes the same number of commands as the write command sequence. The state machine makes sure that both the write and the following read command sequences are always the same even when the user test configuration is changed at any time during the command sequences. This allows the DDR3 demo to be dynamically reconfigurable.

Address Generation

The address generation block provides the start address for the current user read/write command which is generated by the state machine. When the burst command mode is enabled, the address generation block automatically calculates the next address according to the demo control input.

Write Data Generation

The demo uses either PRBS or sequential data patterns. When PRBS is selected, a 128-bit PRBS pattern generator is connected to the local write data bus to generate a 16-bit DDR3 data pattern. For 16-bit DDR3 data, the lower 64 bits [63:0] of the 128-bit PRBS are allocated to the local data bus. For the sequential data pattern, the demo design uses only a 32-bit sequential data pattern generator to provide 16-bit DDR3 data. This 32-bit data pattern is allocated to each 32-bit wide local data bus slot. For example, a 16-bit DDR3 bus requires a 64-bit local data bus which has two identically sequenced 32-bit patterns allocated on two 32-bit slots. The write data generation is enabled and driven by the datain_rdy signal assertions.

Read Data Validation

The Read Data Validator checks the read data from the DDR3 memory module. To do this, it generates the expected data patterns using exactly the same data sequences as the Write Data Generator block. The expected data generation is enabled and driven by the read_data_valid signal assertions. The read data captured by read_data_valid is compared with the expected data generated by the Read Data Validator block. When there is a mismatch between both data patterns, the demo design will flag the error detection signal.

Control and Observation

The Control and Observation block includes the demo control input and result display functions. The demo control input uses five out of eight DIP switches available on the ECP5/ECP5-5G Versa Development Board. The demo result is displayed through seven LEDs on the board. See the following section for descriptions of the demo control input switches and the result display LEDs. A 14-segment LED display is also provided for a quick assessment of the operation. When the read and write operation is running and there is no data mismatch, the segments of the display blink in a clockwise pattern. The blink rate is dependent on the amount of data that is read. As soon as an error is detected, all 14 segments blink simultaneously.

ECP5/ECP5-5G Versa Development Board

This section describes the ECP5/ECP5-5G Versa Development Board as it relates to the DDR3 demo.

DDR3 Memory

The ECP5/ECP5-5G Versa Development Board has on-board 16-bit DDR3 memory. The DDR3 memory module on the board that is used for the DDR3 demo is a 96-pin unbuffered DDR3 SDRAM. The demo design uses up to 1GB of memory space with one chip select configuration.

Programming Cable Connections

The ECP5/ECP5-5G device on the ECP5/ECP5-5G Versa Development Board can be programmed over JTAG via the USB port. This path can both program the device and be used with the Reveal[™] logic analyzer to trace internal signal paths. The J50 header needs to be configured to enable the USB-to-JTAG path used by this demo. The instructions to set up the ECP5/ECP5-5G Versa Development Board for use with this demo are discussed later in this document.

Port Assignments and Descriptions

Table 1 lists all the signals used by the DDR3 SDRAM Controller IP core in the demo design to control and interface to the on-board DDR3 SDRAM. For details, refer to IPUG80, Double Data Rate (DDR3) SDRAM Controller IP Core User's Guide.

Table 2 lists all the interfaces which are available to the user to either dynamically configure the parameters of the design (input mode) or observe the running status of the demo (output mode).

Table 1. DDR3 Bus Interface

Port Name	Active	Direction	Description
em_ddr_reset_n	Low	Output	Asynchronous reset signal from the controller to the memory device. Asserted by the controller for the duration of power on reset or GSR_N
em_ddr_clk[CLKO_WIDTH-1:0]	N/A	Output	400 MHz memory clock generated by the controller
em_ ddr_clk_n[CLKO_WIDTH-1:0]	N/A	Output	400 MHz complimentary memory clock generated by the controller
em_ ddr_cke[CKE_WIDTH-1:0]	High	Output	Memory clock enable generated by the controller
em_ ddr_addr[ROW_WIDTH-1:0]	N/A	Output	Memory address bus, multiplexed row and column address for the memory
em_ ddr_ba[2:0]	N/A	Output	Memory bank address
em_ ddr_data[DATA_WIDTH-1:0]	N/A	In/Out	Memory bi-directional data bus
em_ddr_dm[(DATA_WIDTH/8)-1:0]	High	Output	DDR3 memory write data mask
em_ ddr_dqs[DQS_WIDTH-1:0]	N/A	In/Out	Memory bi-directional data strobe
em_ddr_dqs_n[DQS_WIDTH-1:0]	N/A	In/Out	Memory complementary bi-directional data strobe
em_ddr_cs_n[CS_WIDTH-1:0]	Low	Output	Memory chip select
em_ ddr_cas_n	Low	Output	Memory column address strobe
em_ ddr_ras_n	Low	Output	Memory row address strobe
em_ ddr_we_n	Low	Output	Memory write enable
em_ ddr_odt[CS_WIDTH-1:0]	High	Output	Memory on-die termination control

Table 2. Demo User Interface Ports

Port Name	Active	Direction	Description
Clk_in	N/A	Input	Reference clock connected to a dedicated PLL clock input of the ECP5/ECP5-5G FPGA.
Reset_n	Low	Input	Asynchronous reset connected to the GSRN button (SW1). This resets the entire demo system including the DDR3 IP core when asserted.
seg[14:0]	N/A	Output	14-Segment LED Display. The segments of the 14-segment display (D23) blink in a clockwise pattern as long as no data mismatch has occurred. As soon as a data mismatch occurs, all the LED segments blink together in Alarm mode. A system reset must be applied to restart the transactions.
Dip_sw[4:0]	N/A	Input	User test configuration input. See the Control and Observation Port Description sec- tion of this document for further information.
Oled[6:0]	N/A	Output	Demo result LED indicator output. See the Control and Observation Port Description section of this document for further information.

Control and Observation Port Descriptions

The Control and Observation Ports include the user interface ports as described in Table 2. This section describes in detail the two main control (DIP switch) and observation (LED) ports. Table 3 describes the functionality of each DIP switch on SW3 and how design parameters can be changed by changing the position of the switches. The recommended default setting for the DIP switch is for all switches to be in the OFF position. The ON position is when the DIP switch level is towards ON which is printed on the DIP Switch case.

Table 3. SW3 DIP Switch Definitions

Signal Name	DIP Switch Number	Assigned Function Control	DIP Switch Setting	Description
din sw[0]	SW/3-1	Burst Length Selection	OFF	Set Burst Length to BL8
	000-1	Durst Length Selection	ON	Set Burst Length to BC4
dip_sw[1]	SW3-2	On-the-Fly (OTF) Mode	OFF	Fixed burst size mode. The core is set to BL8 or BC4 during initialization depending on the Burst Length Selection setting.
			ON	OTF mode. Dynamic burst length change is controlled by the Burst Length Selection switch.
			OFF	Enable command burst mode.
dip_sw[2] SW3-3		Command Burst Disable	ON	Disable command burst mode. Demo works in the single command mode. Manual single command repetitions are performed instead of using the command burst mode.
dip_sw[3] SW3-4			Use maximum command burst size/repetition	
	SW/2 4	Maximum Command Size	OFF	The DDR3 core performs a 32 command burst (Com- mand Burst Enabled) or the demo logic generates 32 consecutive single commands (Command Burst Dis- abled).
	5003-4			Use user-specified command burst size
		ON	Both the command burst and single command repetition modes use the burst size value (UsrCmdBrstCnt) defined in the ddr3_test_params.v file. The allowed values are 2, 4, 8, 16 or 32 with the default value set to 2.	
din sw[4]	SW3-5	Data Mode	OFF	PRBS data patterns are used for the DDR3 demo. 128- bit pseudo random patterns are generated. In this demo (16-bit DDR3 SDRAM), the lower half [63:0] of the 128- bit PRBS data is used for the 64 bit local data bus.
ah ² 2m[4]	3443-3		ON	Sequential data patterns. 32-bit sequential data pattern generators are used. For example, the 16-bit DDR3 demo has two 32-bit sequential patterns allocated to each 32-bit slot on a local data bus.

Output Status LEDs

Seven LEDs are used to indicate the demo progress and results. In Table 4, the Reference Designator column shows the diode reference designator printed on the ECP5/ECP5-5G Versa Development Board. Each LED indicates a particular status or condition of the DDR3 demo design, DDR3 controller core to be specific.

Table 4. Output LED Definitions

Signal Name	Reference Designator	Function	Status	Description
OLED[0]	D25	Heartbeat indicator	Blink	The board is alive, and the core is receiving the clock input
			OFF	The core is unable to receive the clock signal
OLED[1]	D24	DDR3 Transaction Indicator	Blink	DDR3 write-then-read operations are occurring. The more read data that comes in, the faster this LED blinks
			OFF	No valid read data is detected
OLED[2]	D22	Valid data indicator	Blink	Proper DDR3 read/write transactions are being per- formed with actual valid data.
			OFF	Received data is null (all '0' or '1').
	D21	Not used		
OLED[3]	D26	Error Indicator	Blink	The first data mis-match error is detected. A system reset must be applied to clear this indicator.
			OFF	No error detected
OLED[4]	D27	INIT done and core ready indicator	ON	The core and memory initialization are complete, and the core is ready to accept user commands.
			OFF	The core is not ready to accept new command
OLED[5]	D28	Write indicator	ON	The core's write operation is properly working by detecting the datain_rdy signal assertions
			OFF	The core is not ready to receive write data from the user
OLED[6]	D29	Read indicator	ON	The core's read operation is properly working by detecting the read_data_valid signal assertions.
			OFF	Indicates invalid data on read-data bus

Table 5 indicates the status of all LEDs during successful operation of the demo.

Demo Package Directory Structure

The bitstream folder contains the demo bitstream for the ECP5 Versa Development Board as well as for the ECP5-5G Versa Development Board. The DDR3_ project folder contains two subfolders:

- DDR3_ECP5 (Demo design for ECP5 Versa Development Board)
- DDR3_ECP5_5G (Demo design for ECP5-5G Versa Development Board)

The subfolder *ddr3_ecp5_impl* is the implementation folder for ECP5 Versa Development Kit and *ddr3_ecp5_5G_impl* is the implementation folder for ECP5-5G Versa Development Kit. The subfolder *src* contains all the source files other than IP core. The subfolder *ddr3_ip_inst* is the generated IP core using Clarity Designer.

Figure 3. DDR3 Demo Package Directory Structure

Running the Demo

To run the demo:

1. Before the board is powered up:

J50 should have pin #1 jumpered to pin #2, and pin #3 jumpered to pin #5. This puts ECP5/ECP5-5G in the JTAG scan chain as the only device.

DIP switch SW3 should have all positions in OFF position.

2. Power up the board with 12 V power supply. Connect the board to a PC with a USB cable.

3. Launch the Diamond Programmer software.

Figure 4. Getting Started

Search Diamond Programmer - Getting Started	2 X
Select an Action	
Oreate a new project from a scan	
Cable: HW-USBN-2B (FTDI) Port: FTUSB-0 Detect Cable	
Create a new blank project	
Open an existing programmer project	

4. If the device is not detected, scan the JTAG chain by selecting the **Scan** button.

5. Select the LFE5UM-45F device.

Figure 5. Selecting the Device

😔 Diamond Pr	ogrammer - Untitled *							
File Edit Vi	ew Design Help							
1 🖀 📸 🗟 1	8 🖗 🖗 🖉 🐼 🔤							
Enable Sta	tus Device Family	Device	Operation		File Nar	ne		A
1 🗸	ECP5UM	LFE5UM-45F	Fast Program					Cable Settings
2 🗸	ispCLOCK	ispPAC-CLK5406D	Erase, Program, Verify					Detect Cable
								Cable: HW-USBN-2B (FTDI) -
							ttings	Port: FIUSB-0 V
							O Set	custom port:
							/i pue	I/O Settings
							able	Use default I/O settings
							2	Use custom I/O settings
								INITN pin connected
								DONE pin connected
	4					•		TRST pin connected
Output	Dutnut			Info*				A CALTROT Lick
Lattice VM Driver	Lattice VM Drivers detected (HW-DLN-3C (Parallel), HW-USBN-2B (FTDI))				ID			Message
Programmer dev INFO - Scanning	Programmer device database loaded INFO - Scanning USB2 Port FTUSB-0			3	2342002	INFO - Scanning USB2 Port FTUSB-0		
WFO - Scan completed successfully.				INFO - Scan completed st	FO - Scan completed successfully.			
	,	,,		-				
Output Tcl	Console			Erro	r Warning*	Info*		
- auput - to								

- 6. Select **Fast Program** and the bitstream **DDR3_demo\bitstream\ddr3_ecp5.bit** to be programmed then start programming.
- 7. Programming the Device

Figure 6. Device Properties

File Edit View Design Help Image: Status Device Operation File Name Cable Settings Image: Status Device Family Device Operation File Name Image: Status Device Family Device Operation File Name Image: Status Device Family Device Operation File Name Image: Status Device Family Device Operation Port: FUSB-0. Image: Status Device Operation Port: FUSB-0. Port: FUSB-0. Image: Status Device Operation Programming Options Pogramming file: Programming Options Pogramming Options Pogramming Options Pogramming Options Pogramming Options Pogramming file: Pogra	Search 2 Diamond Programmer - Untitled *				_ 0 _ X
Enable Status Device Family Device Operation File Name Cable Status Device Family Device Operation File Name Cable Settings Color Programming Options Programming Settings Output New Sett	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> esign <u>H</u> elp				
Enable Status Device Operation File Name Image: Comparison of the status ECPSUM LFESUM-4SF Fast Program Image: Comparison of the status Image: Comparison of the status Device Comparison of the status Cobie Ecestings Image: Comparison of the status Image: Comparison of the sta	2 📸 😸 😂 😂 😂 🖓 🖓 🖓 🔛				
ECPSUM LFESUM-45F Fast Program Peter Cable Cable: Peter Cable	Enable Status Device Family Dev	ice Operation	File Name		Cable Settings
Output Tcl Console Error Warning* Info*	ECPSUM ECPSUM EFESUM-45F III Output III Output Tcl Console Output Tcl Console	Fast Program	erties	M ing USB2 Port FTUSE completed successfu	Detect Cable = Cable: HW-USBH-28 (FTD) • Port: FTUSB-0 Custom port: • I/O Settings • © Use default I/O settings • © Use custom I/O settings • Ø Use custom I/O settings • Hessage B-O JIJy. -

Status LEDs on the board should be illuminated or blinking once the FPGA programming is completed.

DDR3 Demo for the ECP5 and ECP5-5G Versa Development Boards

8. Refer to Table 5 to verify whether LEDs are blinking as mentioned. If the red LED-D26 (Error) blinks and all segments of 14-segment display blink together, press the **GSRN** button (SW1) to clear the error counter and reset the design.

Table 5. Expected LED Status from Successful Demo

Name	Expected Status	Remark
D23 (Segment LED)	Rotating clockwise and character "0" pulse	Character "0" pulse rate is about 45 beats per second with SW3 all OFF position
D25	Blink	Yellow LED with constant blinking rate
D24	Blink	Yellow LED
D22	Blink	Green LED
D21	OFF	
D26	OFF	
D27	ON	Red LED
D28	ON	Red LED
D29	ON	Red LED

Demo Design Dependencies per Development Board Revision

For the ECP5 Demo, the bitstream included with the demo design has been developed for the ECP5 Versa Development Board Revision B. The key updates to the Revision B development board with respect to the DDR3 demo include the following:

- 1. The ECP5 pinout with respect to the on-board DIP switches and LEDs has been updated for Revision B of the hardware. Specifically the SEG1 assignment in the demo project is location L18 for Revision B. SEG1 is assigned to location L19 for Revision A.
- 2. The demo bitstreams have been built with Diamond 3.8 for use with Revision B of the ECP5 Versa Development Board. The demo project must be rebuilt with Diamond 3.4 for use with Revision A.

References

The following documents provide more information:

- DS1044, ECP5 Family Data Sheet
- IPUG80, Double Data Rate (DDR3) SDRAM Controller IP Core User's Guide
- EB98, ECP5 Versa Development Board User Guide
- EB103, ECP5-5G Versa Development Board User Guide

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Date	Version	Change Summary
October 2016	1.2	Document title changed to DDR3 Demo for the ECP5 [™] and ECP5- 5G [™] Versa Development Boards User Guide.
		Added support for ECP5-5G Versa Development Board.
		Updated the demo package directory structure.
		Updated Diamond version to 3.8.
		Added EB103 to References section.
August 2015	1.1	Added support for ECP5 Versa Development Board Rev B.
		Updated Technical Support Assistance section.
April 2015	1.0	Initial release.

© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.