
1 Introduction

1.1 Purpose of the Project
The purpose of this project is to explore how floating point numbers are operated on in a
CPU, as well as how different parts of the CPU signal each other to pass information and
commands between different parts. Most FPGAs have their FPU blocks optimized where the
code is no longer readable, and understanding how they are implemented at a fundamental
level in verilog will also allow the group to write and conceptualize better verilog. With
this project, the implementation will also require me to gain practical experience with either
System Verilog or Verilog, allowing me to use those in other projects in the future.

1.2 Features of the Project
The two features of the current version of the project are:

• All RISCV-I ALU operations

• FPU Addition

• FPU Subtraction (Incomplete)

2 Design Overview
The main design of the FPU is a simple ALU which (currently) supports two operations
of the floating point variety, i.e. adding and subtraction. The pipeline of the testing to
building of the FPU is first it is written in Verilog, test benches are executed to verify its
functionality, with a special focus on edge cases. All the verilog is then checked to make sure
that it is synthesizeable, before it is then built onto the FPGA using Yosys and Nextpnr.

3 Implementation Details

3.1 Floating point IEEE-754 Representation
Floating point notation in the IEEE standard is taking advantage of scientific notation to
represent numbers both extremely large and small using the same number of bits in the same
configuration. This is done by using the following representation:

• 1 bit at the beginning to represent sign

• 8 bits after to represent the exponent, which is the 8 bit value minus 127

• 23 bit mantissa at the end, representing the actual value of the number.

An example number would be as follows: 0_01111111_11000000000000000000000 This is the
number 1.75, since we have 0 bit 1, i.e. positive, 127 for the exponent, meaning 2127−127 = 20,
and a mantissa of 110000... when combined with a hidden bit, yields 1.11 ∗ 20 or 1.75

1

3.2 Algorithm for addition and subtraction
Simply put, the algorithim is as follows:

• Pull both numbers’ hidden bits in

• Denormalize number with smaller exponent, i.e. make the two numbers have the same
exponent

• Negate numbers which are negative

• Add or Subtract (Add two’s complement) the numbers

• Renormalize i.e. shift if there is a carry and add to the exp

• Put the sign, new exponent and mantissa into the output

3.3 Implementation in Verilog
The implementation of the RISCV-I ALU was trivial, and only used the unoptimized ver-
ilog arithmetic elements, and so will not be included in this report. (If curious it will be
on git.joshuayun.com along with the FPU). The FPU was implemented using only assign
statements, as it is a combinational logic only circuit in most cases, however this does intro-
duce much more complexity into the design, as only ternary operators can be used in assign
statements which need choice logic.

3.4 Testbench
The testbench was quite naively implemented, with the group simply trying multiple test
cases sequentially without a loop due to the fact that the bench was used mostly as a way
to debug the output, rather than a true test of functionality: the code can be found in the
appendix or on my git repository (soon @ git.joshuayun.com)

3.5 FPGA
The verilog was all synthesized and put onto the Orangecrab using the yosys nextpnr
toolchain, however there was not sufficient time to test the true functionality of the FPU on
an actual FPGA due to an inability for data to be taken out or display from the FPGA, nor
could data be put into the FPGA.

4 Results
The verilog on the FPU in the icarus verilog simulator is passing all of the given tests,
however it does not fully have NaN, infinity, nor zero functionality. However, more tests on
niche cases, i.e. larger + smaller numbers and certain signed operations may be dysfunctional
at the moment.

2

5 Problems and Challenges

5.1 Design Problems
The only major issue with designing and planing out the mechanics of the FPU was the
issue of not having the proper knowledge on how exactly to best implement these algorithms,
especially when it came to try and deal with adding negative numbers or subtracting positive
ones, as it was often not clear how to properly represent negative numbers internally in the
FPU, as well as when then carry is used for determining sign or carrying the exponent higher.

5.2 Debugging
The major problem encountered in this project mostly dealt with understanding the actual
algorithms at the lower levels that the FPUs use, as well as how they would be synthesized
in verilog. Having a small amount of verilog experience meant that the second issue was
mitigated, but still was a problem in that there were often many smaller mistakes that were
difficult to find which significantly changed the output of the FPU. It was also difficult having
consistent debugging information in the FPU at all times, mostly due to the fact that since
the FPUs is a series of combinational logic with assign statements, internal displays could
not be used on the ternary operators to determine whether the branching condition was
correct or not.

6 Future Plans
The main future plan for this project is the first add most of the NaN and zero functionality
to this FPU, as it is lacking even the most basic of operation support other than two non-
zero integers. The next obvious step would then be to implement division and multiplication
using the FPU, and this would most likely along with significant amounts of debugging
be the completion of the FPU. Future plans will also include incoroporating this into a
RISCV-I processor that I plan to design and synthesize onto an FPGA, along with enough
modifications to the control logic and FPU to make it RISCV-IF compliant as well.

7 References
Martin, R., 2021. Computer Organization and Design Unit 7: Floating Point.
[online] Cis.upenn.edu. [Accessed 12 December 2021].

3

8 Appendix

8.1 Verilog FPU
`include "exp_calc.v"
module fpu_2(
input wire add_not,
input wire[31:0] a_in, b_in,
output wire[31:0] out
);

wire[23:0] a_sig, b_sig, b_shft_sig, a_shft_sig, a_sign_sig, b_sign_sig;
wire[24:0] sig_sum, sig_diff, sig_op, sig_final;
wire[7:0] exp;
wire[7:0] diff, neg_diff;
wire same_sign;

assign diff = a_in[30:23] - b_in[30:23];
assign neg_diff = b_in[30:23] - a_in[30:23];
assign exp = diff[7] ? b_in[30:23] : a_in[30:23];

assign same_sign = ~(a_in[31] ^ b_in[31]);

// Pull hidden bit into sig, if exp 0, no hidden bit
assign a_sig = (|a_in[30:23] ? {1'b1, a_in[22:0]} : {1'b0, a_in[22:0]});
assign b_sig = (|b_in[30:23] ? {1'b1, b_in[22:0]} : {1'b0, b_in[22:0]});

assign a_shft_sig = (diff[7] ? a_sig >> neg_diff : a_sig);
assign b_shft_sig = (diff[7] ? b_sig : b_sig >> diff);

//2C Invert if Negative and not same signs
assign a_sign_sig = same_sign ? a_shft_sig :
(a_in[31] ? ~(a_shft_sig) + 24'b1 : a_shft_sig);
assign b_sign_sig = same_sign ? b_shft_sig :
(b_in[31] ? ~(b_shft_sig) + 24'b1 : b_shft_sig);

//Adding
assign sig_sum = a_sign_sig + b_sign_sig;
/* assign sig_sum = a_shft_sig + b_shft_sig; */
//Subtraction
assign sig_diff = a_shft_sig + ~(b_shft_sig) + 25'b1;

assign sig_op = add_not ? sig_diff : sig_sum;
assign sig_final = sig_op[24] | same_sign ? sig_op : ~(sig_op) + 24'b1;

4

// Assign exp and mantissa
assign out[31] = a_shft_sig > b_shft_sig ? a_in[31] : b_in[31];
assign out[30:23] = sig_sum[24] & same_sign ? exp + 8'b1 : (same_sign ? exp : exp);
assign out[22:0] = sig_final[24] & same_sign ? sig_final[23:1] : sig_final[22:0];

//assign out = {sig_sum, 7'b0};
// assign out = {diff, neg_diff, 16'b0};
/* assign out = {sig_op, 7'b0}; */

endmodule

8.2 Verilog Testbench
`timescale 1us/1ns

`include "fpu_2.v"

module fpu_bench;

reg[31:0] input1, input2;
reg add = 1'b1;
wire[31:0] fpu_output;

fpu_2 fpu0 (add,input1, input2, fpu_output);

initial begin
input1=32'b00111111010000000000000000000000; // -.75
input2=32'b10111111110000000000000000000000; // -1.5
#5;
$display("\nSum: %16b + %16b\n = %16b",input1,input2,fpu_output);

input1=32'b00111110100000000000000000000000; //.25
input2=32'b00111111010000000000000000000000; // .75
#5;
$display("\nSum: %16b + %16b = %16b",input1,input2,fpu_output);

input1=32'b01000000000111001100110011001101; // 2.45
input2=32'b00111111001001100110011001100110; //.65
#5;
$display("\nSum: %16b + %16b\n = %16b",input1,input2,fpu_output);

input1=32'b01000000000111001100110011001101; // 2.45
input2=32'b10111111001001100110011001100110; //.65
#5;

5

$display("\nSum: %16b + %16b\n = %16b",input1[22:0],input2[22:0],fpu_output[31:8]);

$finish;
end
endmodule

6

