diff options
author | joshua <joshua@joshuayun.com> | 2023-12-30 23:54:31 -0500 |
---|---|---|
committer | joshua <joshua@joshuayun.com> | 2023-12-30 23:54:31 -0500 |
commit | 86608c6770cf08c138a2bdab5855072f64be09ef (patch) | |
tree | 494a61b3ef37e76f9235a0d10f5c93d97290a35f /Drivers/CMSIS/NN/Source | |
download | sdr-software-86608c6770cf08c138a2bdab5855072f64be09ef.tar.gz |
Diffstat (limited to 'Drivers/CMSIS/NN/Source')
32 files changed, 7639 insertions, 0 deletions
diff --git a/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c b/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c new file mode 100644 index 0000000..fd447e5 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c @@ -0,0 +1,101 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nn_activations_q15.c
+ * Description: Q15 neural network activation function using direct table look-up
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_common_tables.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup Acti
+ * @{
+ */
+
+ /**
+ * @brief Q15 neural network activation function using direct table look-up
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
+ * @param[in] type type of activation functions
+ * @return none.
+ *
+ * @details
+ *
+ * This is the direct table look-up approach.
+ *
+ * Assume here the integer part of the fixed-point is <= 3.
+ * More than 3 just not making much sense, makes no difference with
+ * saturation followed by any of these activation functions.
+ */
+
+void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type)
+{
+ uint16_t i = size;
+ q15_t *pIn = data;
+ q15_t *pOut = data;
+ uint16_t shift_size = 8 + 3 - int_width;
+ uint32_t bit_mask = 0x7FF >> int_width;
+ uint32_t full_frac = bit_mask + 1;
+ const q15_t *lookup_table;
+
+ switch (type)
+ {
+ case ARM_SIGMOID:
+ lookup_table = sigmoidTable_q15;
+ break;
+ case ARM_TANH:
+ default:
+ lookup_table = tanhTable_q15;
+ break;
+ }
+
+ while (i)
+ {
+ q15_t out;
+ q15_t in = *pIn++;
+ q15_t frac = (uint32_t) in & bit_mask;
+ q15_t value = lookup_table[__USAT(in >> shift_size, 8)];
+ q15_t value2 = lookup_table[__USAT(1 + (in >> shift_size), 8)];
+
+ /* doing the interpolation here for better accuracy */
+ out = ((q31_t) (full_frac - frac) * value + (q31_t) value2 * frac) >> shift_size;
+
+ *pOut++ = out;
+ i--;
+ }
+
+}
+
+/**
+ * @} end of Acti group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q7.c b/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q7.c new file mode 100644 index 0000000..2953bd5 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q7.c @@ -0,0 +1,91 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nn_activations_q7.c
+ * Description: Q7 neural network activation function using direct table look-up
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_common_tables.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup Acti
+ * @{
+ */
+
+ /**
+ * @brief Q7 neural network activation function using direct table look-up
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
+ * @param[in] type type of activation functions
+ * @return none.
+ *
+ * @details
+ *
+ * This is the direct table look-up approach.
+ *
+ * Assume here the integer part of the fixed-point is <= 3.
+ * More than 3 just not making much sense, makes no difference with
+ * saturation followed by any of these activation functions.
+ */
+
+void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type)
+{
+ uint16_t i = size;
+ q7_t *pIn = data;
+ q7_t *pOut = data;
+ q7_t in;
+ q7_t out;
+ uint16_t shift_size = 3 - int_width;
+ const q7_t *lookup_table;
+ switch (type)
+ {
+ case ARM_SIGMOID:
+ lookup_table = sigmoidTable_q7;
+ break;
+ case ARM_TANH:
+ default:
+ lookup_table = tanhTable_q7;
+ break;
+ }
+ while (i)
+ {
+ in = *pIn++;
+ out = lookup_table[(uint8_t) (in >> shift_size)];
+ *pOut++ = out;
+ i--;
+ }
+}
+
+/**
+ * @} end of Acti group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c b/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c new file mode 100644 index 0000000..6a1b907 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c @@ -0,0 +1,106 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_relu_q15.c
+ * Description: Q15 version of ReLU
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup Acti
+ * @{
+ */
+
+ /**
+ * @brief Q15 RELU function
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @return none.
+ *
+ * @details
+ *
+ * Optimized relu with QSUB instructions.
+ *
+ */
+
+void arm_relu_q15(q15_t * data, uint16_t size)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ uint16_t i = size >> 1;
+ q15_t *pIn = data;
+ q15_t *pOut = data;
+ q31_t in;
+ q31_t buf;
+ q31_t mask;
+
+ while (i)
+ {
+ in = *__SIMD32(pIn)++;
+
+ /* extract the first bit */
+ buf = __ROR(in & 0x80008000, 15);
+
+ /* if MSB=1, mask will be 0xFF, 0x0 otherwise */
+ mask = __QSUB16(0x00000000, buf);
+
+ *__SIMD32(pOut)++ = in & (~mask);
+ i--;
+ }
+
+ if (size & 0x1)
+ {
+ if (*pIn < 0)
+ {
+ *pIn = 0;
+ }
+ pIn++;
+ }
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ uint16_t i;
+
+ for (i = 0; i < size; i++)
+ {
+ if (data[i] < 0)
+ data[i] = 0;
+ }
+
+#endif /* ARM_MATH_DSP */
+
+}
+
+/**
+ * @} end of Acti group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c b/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c new file mode 100644 index 0000000..caa027b --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c @@ -0,0 +1,110 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_relu_q7.c
+ * Description: Q7 version of ReLU
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup Acti
+ * @{
+ */
+
+ /**
+ * @brief Q7 RELU function
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @return none.
+ *
+ * @details
+ *
+ * Optimized relu with QSUB instructions.
+ *
+ */
+
+void arm_relu_q7(q7_t * data, uint16_t size)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ uint16_t i = size >> 2;
+ q7_t *pIn = data;
+ q7_t *pOut = data;
+ q31_t in;
+ q31_t buf;
+ q31_t mask;
+
+ while (i)
+ {
+ in = *__SIMD32(pIn)++;
+
+ /* extract the first bit */
+ buf = __ROR(in & 0x80808080, 7);
+
+ /* if MSB=1, mask will be 0xFF, 0x0 otherwise */
+ mask = __QSUB8(0x00000000, buf);
+
+ *__SIMD32(pOut)++ = in & (~mask);
+ i--;
+ }
+
+ i = size & 0x3;
+ while (i)
+ {
+ if (*pIn < 0)
+ {
+ *pIn = 0;
+ }
+ pIn++;
+ i--;
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+ uint16_t i;
+
+ for (i = 0; i < size; i++)
+ {
+ if (data[i] < 0)
+ data[i] = 0;
+ }
+
+#endif /* ARM_MATH_DSP */
+
+}
+
+/**
+ * @} end of Acti group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c new file mode 100644 index 0000000..4c69e7c --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c @@ -0,0 +1,235 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_convolve_1x1_HWC_q7_fast_nonsquare.c
+ * Description: Fast Q7 version of 1x1 convolution (non-square shape)
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/**
+ * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1
+ * and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise
+ * separable convolution.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ *
+ * [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
+ * https://arxiv.org/abs/1704.04861
+ */
+
+arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ int16_t i_out_y, i_out_x;
+ int16_t i_ch_out;
+
+ /* -----------------------
+ * Here we use bufferA as q15_t internally as computation are done with q15_t level
+ * im2col are done to output in q15_t format from q7_t input
+ */
+
+ q15_t *pBuffer = bufferA;
+ q7_t *pOut = Im_out;
+
+ if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
+ || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
+ {
+ /* check if the input dimension meets the constraints */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer,
+ ch_im_in);
+ pBuffer += ch_im_in;
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+ }
+
+ /* check if there is left-over for compute */
+ if (pBuffer != bufferA)
+ {
+ const q7_t *pA = wt;
+ for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
+ {
+ q31_t sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
+ q15_t *pB = bufferA;
+ /* basically each time it process 4 entries */
+ uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
+
+ while (colCnt)
+ {
+
+ q31_t inA1, inA2;
+ q31_t inB1, inB2;
+
+ pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2);
+
+ inB1 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA1, inB1, sum);
+ inB2 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA2, inB2, sum);
+
+ colCnt--;
+ }
+ colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
+ while (colCnt)
+ {
+ q7_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ sum += inA1 * inB1;
+ colCnt--;
+ }
+ *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
+ pOut++;
+
+ }
+
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+ int i, j, k, l, m, n;
+ int conv_out;
+ int in_row, in_col;
+
+ if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
+ || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
+ {
+ /* check if the input dimension meets the constraints */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ for (j = 0; j < dim_im_out_y; j++)
+ {
+ for (k = 0; k < dim_im_out_x; k++)
+ {
+ conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+ for (m = 0; m < dim_kernel_y; m++)
+ {
+ for (n = 0; n < dim_kernel_x; n++)
+ {
+ // if-for implementation
+ in_row = stride_y * j + m - padding_y;
+ in_col = stride_x * k + n - padding_x;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+ {
+ for (l = 0; l < ch_im_in; l++)
+ {
+ conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
+ wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l];
+ }
+ }
+ }
+ }
+ Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c new file mode 100644 index 0000000..ee08d74 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c @@ -0,0 +1,207 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_convolve_HWC_q15_basic.c
+ * Description: Q15 version of convolution
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+ /**
+ * @brief Basic Q15 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * This basic version is designed to work for any input tensor and weight
+ * dimension.
+ */
+
+arm_status
+arm_convolve_HWC_q15_basic(const q15_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q15_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q15_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+ uint16_t im2col_out_pixel_index = 0;
+ q15_t *pBuffer = bufferA;
+ q15_t *pOut = Im_out;
+ q15_t *im_buffer = bufferA;
+ const q15_t *pA;
+ int i;
+
+ /* This part implements the im2col function */
+ for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+ {
+ for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+ {
+ /* Filling 0 for out-of-bound paddings */
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+ memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ pA = wt;
+ for (i = 0; i < ch_im_out; i++)
+ {
+ q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ q15_t *pB = im_buffer;
+ uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
+ while (colCnt)
+ {
+ q31_t inA1 = *__SIMD32(pA)++;
+ q31_t inB1 = *__SIMD32(pB)++;
+ q31_t inA2 = *__SIMD32(pA)++;
+ q31_t inB2 = *__SIMD32(pB)++;
+
+ sum = __SMLAD(inA1, inB1, sum);
+ sum = __SMLAD(inA2, inB2, sum);
+
+ colCnt--;
+ }
+ colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
+ while (colCnt)
+ {
+ q15_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ sum += inA1 * inB1;
+ colCnt--;
+ }
+ *pOut = (q15_t) __SSAT((sum >> out_shift), 16);
+ pOut++;
+ }
+
+ /* counter reset */
+ pBuffer = im_buffer;
+ im2col_out_pixel_index++;
+ }
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ uint16_t i, j, k, l, m, n;
+ int conv_out;
+ signed char in_row, in_col;
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ for (j = 0; j < dim_im_out; j++)
+ {
+ for (k = 0; k < dim_im_out; k++)
+ {
+ conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ for (m = 0; m < dim_kernel; m++)
+ {
+ for (n = 0; n < dim_kernel; n++)
+ {
+ in_row = stride * j + m - padding;
+ in_col = stride * k + n - padding;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+ {
+ for (l = 0; l < ch_im_in; l++)
+ {
+ conv_out +=
+ Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
+ l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
+ n) * ch_im_in + l];
+ }
+ }
+ }
+ }
+ Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c new file mode 100644 index 0000000..a02aaa0 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c @@ -0,0 +1,255 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_convolve_HWC_q15_fast.c
+ * Description: Fast Q15 version of convolution
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+ /**
+ * @brief Fast Q15 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * <b>Input dimension constraints:</b>
+ *
+ * ch_im_in is multiple of 2
+ *
+ * ch_im_out is multipe of 2
+ *
+ */
+
+arm_status
+arm_convolve_HWC_q15_fast(const q15_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q15_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q15_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+ q15_t *pBuffer = bufferA;
+ q15_t *im_buffer = bufferA;
+ q15_t *pOut = Im_out;
+
+ if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
+ {
+ /* check if the input dimension meets the constraints */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ /* This part implements the im2col function */
+ for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+ {
+ for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+ {
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+ memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ if (i_out_x & 0x1)
+ {
+ int i;
+ /* initialize the matrix pointers for A */
+ const q15_t *pA = wt;
+
+ /* set up the second output pointers */
+ q15_t *pOut2 = pOut + ch_im_out;
+
+ /* this loop over rows in A */
+ for (i = 0; i < ch_im_out; i += 2)
+ {
+ /* setup pointers for B */
+ q15_t *pB = im_buffer;
+ const q15_t *pB2 = pB + ch_im_in * dim_kernel * dim_kernel;
+
+ /* aling the second pointer for A */
+ const q15_t *pA2 = pA + ch_im_in * dim_kernel * dim_kernel;
+
+ /* init the sum with bias */
+ q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 1;
+ /* accumulate over the vector */
+ while (colCnt)
+ {
+ q31_t inA1 = *__SIMD32(pA)++;
+ q31_t inB1 = *__SIMD32(pB)++;
+ q31_t inA2 = *__SIMD32(pA2)++;
+ q31_t inB2 = *__SIMD32(pB2)++;
+
+ sum = __SMLAD(inA1, inB1, sum);
+ sum2 = __SMLAD(inA1, inB2, sum2);
+ sum3 = __SMLAD(inA2, inB1, sum3);
+ sum4 = __SMLAD(inA2, inB2, sum4);
+
+ colCnt--;
+ } /* while over colCnt */
+ colCnt = ch_im_in * dim_kernel * dim_kernel & 0x1;
+ while (colCnt)
+ {
+ q15_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ q15_t inA2 = *pA2++;
+ q15_t inB2 = *pB2++;
+
+ sum += inA1 * inB1;
+ sum2 += inA1 * inB2;
+ sum3 += inA2 * inB1;
+ sum4 += inA2 * inB2;
+ colCnt--;
+ } /* while over colCnt */
+ *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16);
+ *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16);
+ *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16);
+ *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16);
+
+ /* skip the row computed with A2 */
+ pA += ch_im_in * dim_kernel * dim_kernel;
+ } /* for over ch_im_out */
+
+ pOut += ch_im_out;
+ /* counter reset */
+ pBuffer = im_buffer;
+ }
+ }
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ uint16_t i, j, k, l, m, n;
+ int conv_out;
+ signed char in_row, in_col;
+
+ if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
+ {
+ /* check if the input dimension meets the constraints */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ for (j = 0; j < dim_im_out; j++)
+ {
+ for (k = 0; k < dim_im_out; k++)
+ {
+ conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ for (m = 0; m < dim_kernel; m++)
+ {
+ for (n = 0; n < dim_kernel; n++)
+ {
+ in_row = stride * j + m - padding;
+ in_col = stride * k + n - padding;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+ {
+ for (l = 0; l < ch_im_in; l++)
+ {
+ conv_out +=
+ Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
+ l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
+ n) * ch_im_in + l];
+ }
+ }
+ }
+ }
+ Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c new file mode 100644 index 0000000..14d9130 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c @@ -0,0 +1,265 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_convolve_HWC_q15_fast.c
+ * Description: Fast Q15 version of convolution
+ *
+ * $Date: 24. May 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+ /**
+ * @brief Fast Q15 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * <b>Input dimension constraints:</b>
+ *
+ * ch_im_in is multiple of 2
+ *
+ * ch_im_out is multipe of 2
+ *
+ */
+
+arm_status
+arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q15_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q15_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+ q15_t *pBuffer = bufferA;
+ q15_t *im_buffer = bufferA;
+ q15_t *pOut = Im_out;
+
+ if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
+ {
+ /* check if the input dimension meets the constraints */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ /* This part implements the im2col function */
+ for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+ {
+ for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+ {
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+ memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ if (i_out_x & 0x1)
+ {
+ int i;
+ /* initialize the matrix pointers for A */
+ const q15_t *pA = wt;
+
+ /* set up the second output pointers */
+ q15_t *pOut2 = pOut + ch_im_out;
+
+ /* this loop over rows in A */
+ for (i = 0; i < ch_im_out; i += 2)
+ {
+ /* setup pointers for B */
+ q15_t *pB = im_buffer;
+ const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x;
+
+ /* aling the second pointer for A */
+ const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x;
+
+ /* init the sum with bias */
+ q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1;
+ /* accumulate over the vector */
+ while (colCnt)
+ {
+ q31_t inA1 = *__SIMD32(pA)++;
+ q31_t inB1 = *__SIMD32(pB)++;
+ q31_t inA2 = *__SIMD32(pA2)++;
+ q31_t inB2 = *__SIMD32(pB2)++;
+
+ sum = __SMLAD(inA1, inB1, sum);
+ sum2 = __SMLAD(inA1, inB2, sum2);
+ sum3 = __SMLAD(inA2, inB1, sum3);
+ sum4 = __SMLAD(inA2, inB2, sum4);
+
+ colCnt--;
+ } /* while over colCnt */
+ colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1;
+ while (colCnt)
+ {
+ q15_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ q15_t inA2 = *pA2++;
+ q15_t inB2 = *pB2++;
+
+ sum += inA1 * inB1;
+ sum2 += inA1 * inB2;
+ sum3 += inA2 * inB1;
+ sum4 += inA2 * inB2;
+ colCnt--;
+ } /* while over colCnt */
+ *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16);
+ *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16);
+ *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16);
+ *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16);
+
+ /* skip the row computed with A2 */
+ pA += ch_im_in * dim_kernel_y * dim_kernel_x;
+ } /* for over ch_im_out */
+
+ pOut += ch_im_out;
+ /* counter reset */
+ pBuffer = im_buffer;
+ }
+ }
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ uint16_t i, j, k, l, m, n;
+ int conv_out;
+ signed char in_row, in_col;
+
+ if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
+ {
+ /* check if the input dimension meets the constraints */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ for (j = 0; j < dim_im_out_y; j++)
+ {
+ for (k = 0; k < dim_im_out_x; k++)
+ {
+ conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ for (m = 0; m < dim_kernel_y; m++)
+ {
+ for (n = 0; n < dim_kernel_x; n++)
+ {
+ in_row = stride_y * j + m - padding_y;
+ in_col = stride_x * k + n - padding_x;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+ {
+ for (l = 0; l < ch_im_in; l++)
+ {
+ conv_out +=
+ Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in +
+ l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x +
+ n) * ch_im_in + l];
+ }
+ }
+ }
+ }
+ Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c new file mode 100644 index 0000000..e53c6f9 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c @@ -0,0 +1,279 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_convolve_HWC_q7_RGB.c
+ * Description: Q7 version of convolution for RGB image
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+ /**
+ * @brief Q7 convolution function for RGB image
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * <b>Input dimension constraints:</b>
+ *
+ * ch_im_in equals 3
+ *
+ * This kernel is written exclusively for convolution with ch_im_in
+ * equals 3. This applies on the first layer of CNNs which has input
+ * image with RGB format.
+ */
+
+arm_status
+arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out, const uint16_t dim_im_out, q15_t * bufferA, q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+ int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+ /*
+ * Here we use bufferA as q15_t internally as computation are done with q15_t level
+ * im2col are done to output in q15_t format from q7_t input
+ */
+ q15_t *pBuffer = bufferA;
+ q7_t *pOut = Im_out;
+
+ // check if number of input channels is 3
+ if (ch_im_in != 3)
+ {
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+ // This part implements the im2col function
+ for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+ {
+ for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+ {
+ /* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */
+ *__SIMD32(pBuffer) = 0x0;
+ *(pBuffer + 2) = 0;
+ pBuffer += 3;
+ } else
+ {
+ /*
+ * Equivalent to:
+ * arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3);
+ */
+
+ const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3;
+ q31_t buf = *__SIMD32(pPixel);
+
+ union arm_nnword top;
+ union arm_nnword bottom;
+
+ top.word = __SXTB16(buf);
+ bottom.word = __SXTB16(__ROR(buf, 8));
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ /*
+ * little-endian, | omit | 3rd | 2nd | 1st |
+ * MSB LSB
+ * top | 3rd | 1st |; bottom | omit | 2nd |
+ *
+ * version 1, need to swap 2nd and 3rd weight
+ * *__SIMD32(pBuffer) = top.word;
+ * *(pBuffer+2) = bottom.half_words[0];
+ *
+ * version 2, no weight shuffling required
+ */
+ *pBuffer++ = top.half_words[0];
+ *__SIMD32(pBuffer) = __PKHBT(bottom.word, top.word, 0);
+#else
+ /*
+ * big-endian, | 1st | 2nd | 3rd | omit |
+ * MSB LSB
+ * top | 2nd | omit |; bottom | 1st | 3rd |
+ *
+ * version 1, need to swap 2nd and 3rd weight
+ * *__SIMD32(pBuffer) = bottom.word;
+ * *(pBuffer+2) = top.half_words[1];
+ *
+ * version 2, no weight shuffling required
+ */
+ *pBuffer++ = bottom.half_words[0];
+ *__SIMD32(pBuffer) = __PKHTB(top.word, bottom.word, 0);
+#endif
+ pBuffer += 2;
+ }
+ }
+ }
+
+ if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
+ ch_im_out,
+ 3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+ }
+
+ /* left-over because odd number of output pixels */
+ if (pBuffer != bufferA)
+ {
+ const q7_t *pA = wt;
+ int i;
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ q15_t *pB = bufferA;
+ /* basically each time it process 4 entries */
+ uint16_t colCnt = 3 * dim_kernel * dim_kernel >> 2;
+
+ while (colCnt)
+ {
+
+ q31_t inA1, inA2;
+ q31_t inB1, inB2;
+
+ pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
+
+ inB1 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA1, inB1, sum);
+ inB2 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA2, inB2, sum);
+
+ colCnt--;
+ }
+ colCnt = 3 * dim_kernel * dim_kernel & 0x3;
+ while (colCnt)
+ {
+ q7_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ sum += inA1 * inB1;
+ colCnt--;
+ }
+ *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ }
+ }
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+ uint16_t i, j, k, l, m, n;
+ int conv_out;
+ signed char in_row, in_col;
+
+ // check if number of input channels is 3
+ if (ch_im_in != 3)
+ {
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ for (j = 0; j < dim_im_out; j++)
+ {
+ for (k = 0; k < dim_im_out; k++)
+ {
+ conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
+ for (m = 0; m < dim_kernel; m++)
+ {
+ for (n = 0; n < dim_kernel; n++)
+ {
+ /* if-for implementation */
+ in_row = stride * j + m - padding;
+ in_col = stride * k + n - padding;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+ {
+ for (l = 0; l < ch_im_in; l++)
+ {
+ conv_out +=
+ Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
+ l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
+ n) * ch_im_in + l];
+ }
+ }
+ }
+ }
+ Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return (ARM_MATH_SUCCESS);
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c new file mode 100644 index 0000000..7c9ec65 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c @@ -0,0 +1,230 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_convolve_HWC_q7_basic.c
+ * Description: Q7 version of convolution
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+ /**
+ * @brief Basic Q7 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * This basic version is designed to work for any input tensor and weight
+ * dimension.
+ */
+
+arm_status
+arm_convolve_HWC_q7_basic(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+ /*
+ * Here we use bufferA as q15_t internally as computation are done with q15_t level
+ * im2col are done to output in q15_t format from q7_t input
+ */
+ q15_t *pBuffer = bufferA;
+ q7_t *pOut = Im_out;
+
+ /* This part implements the im2col function */
+ for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+ {
+ for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+ {
+ /* Filling 0 for out-of-bound paddings */
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ /* Copying the pixel data to column */
+ arm_q7_to_q15_no_shift((q7_t *)
+ Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ /* Computation is filed for every 2 columns */
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
+ ch_im_out,
+ ch_im_in *
+ dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+ }
+
+ /* left-over because odd number of output pixels */
+ if (pBuffer != bufferA)
+ {
+ const q7_t *pA = wt;
+ int i;
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ /* Load the accumulator with bias first */
+ q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+
+ /* Point to the beging of the im2col buffer */
+ q15_t *pB = bufferA;
+
+ /* Each time it process 4 entries */
+ uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
+
+ while (colCnt)
+ {
+ q31_t inA1, inA2;
+ q31_t inB1, inB2;
+
+ pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
+
+ inB1 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA1, inB1, sum);
+ inB2 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA2, inB2, sum);
+
+ colCnt--;
+ }
+ colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
+ while (colCnt)
+ {
+ q7_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ sum += inA1 * inB1;
+ colCnt--;
+ }
+ *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ }
+ }
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+ uint16_t i, j, k, l, m, n;
+ int conv_out;
+ signed char in_row, in_col;
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ for (j = 0; j < dim_im_out; j++)
+ {
+ for (k = 0; k < dim_im_out; k++)
+ {
+ conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ for (m = 0; m < dim_kernel; m++)
+ {
+ for (n = 0; n < dim_kernel; n++)
+ {
+ // if-for implementation
+ in_row = stride * j + m - padding;
+ in_col = stride * k + n - padding;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+ {
+ for (l = 0; l < ch_im_in; l++)
+ {
+ conv_out +=
+ Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
+ l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
+ n) * ch_im_in + l];
+ }
+ }
+ }
+ }
+ Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c new file mode 100644 index 0000000..24356d9 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c @@ -0,0 +1,228 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_convolve_HWC_q7_basic.c
+ * Description: Q7 version of convolution
+ *
+ * $Date: 13. July 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+ /**
+ * @brief Basic Q7 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ */
+
+arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+ /*
+ * Here we use bufferA as q15_t internally as computation are done with q15_t level
+ * im2col are done to output in q15_t format from q7_t input
+ */
+ q15_t *pBuffer = bufferA;
+ q7_t *pOut = Im_out;
+
+ /* This part implements the im2col function */
+ for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+ {
+ for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+ {
+ /* Filling 0 for out-of-bound paddings */
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ /* Copying the pixel data to column */
+ arm_q7_to_q15_no_shift((q7_t *)
+ Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ /* Computation is filed for every 2 columns */
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_y * dim_kernel_x)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15(wt, bufferA,
+ ch_im_out,
+ ch_im_in *
+ dim_kernel_y * dim_kernel_x, bias_shift, out_shift, bias, pOut);
+
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+ }
+
+ /* left-over because odd number of output pixels */
+ if (pBuffer != bufferA)
+ {
+ const q7_t *pA = wt;
+ int i;
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ /* Load the accumulator with bias first */
+ q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+
+ /* Point to the beging of the im2col buffer */
+ q15_t *pB = bufferA;
+
+ /* Each time it process 4 entries */
+ uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 2;
+
+ while (colCnt)
+ {
+ q31_t inA1, inA2;
+ q31_t inB1, inB2;
+
+ pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2);
+
+ inB1 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA1, inB1, sum);
+ inB2 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA2, inB2, sum);
+
+ colCnt--;
+ }
+ colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
+ while (colCnt)
+ {
+ q7_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ sum += inA1 * inB1;
+ colCnt--;
+ }
+ *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ }
+ }
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+ uint16_t i, j, k, l, m, n;
+ int conv_out;
+ signed char in_row, in_col;
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ for (j = 0; j < dim_im_out_y; j++)
+ {
+ for (k = 0; k < dim_im_out_x; k++)
+ {
+ conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ for (m = 0; m < dim_kernel_y; m++)
+ {
+ for (n = 0; n < dim_kernel_x; n++)
+ {
+ // if-for implementation
+ in_row = stride_y * j + m - padding_y;
+ in_col = stride_x * k + n - padding_x;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+ {
+ for (l = 0; l < ch_im_in; l++)
+ {
+ conv_out +=
+ Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
+ wt[i * ch_im_in * dim_kernel_y * dim_kernel_x +
+ (m * dim_kernel_x + n) * ch_im_in + l];
+ }
+ }
+ }
+ }
+ Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c new file mode 100644 index 0000000..e2d469f --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c @@ -0,0 +1,408 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_convolve_HWC_q7_fast.c
+ * Description: Fast Q7 version of convolution
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+ /**
+ * @brief Fast Q7 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * <b>Input dimension constraints:</b>
+ *
+ * ch_im_in is multiple of 4 ( because of the SIMD32 read and swap )
+ *
+ * ch_im_out is multipe of 2 ( bacause 2x2 mat_mult kernel )
+ *
+ * The im2col converts the Q7 tensor input into Q15 column, which is stored in
+ * bufferA. There is reordering happenning during this im2col process with
+ * arm_q7_to_q15_reordered_no_shift. For every four elements, the second and
+ * third elements are swapped.
+ *
+ * The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the
+ * GEMM computation with the reordered columns.
+ *
+ * To speed-up the determination of the padding condition, we split the
+ * computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}.
+ * This reduces the total number of boundary condition checks and improves
+ * the data copying performance.
+ */
+
+arm_status
+arm_convolve_HWC_q7_fast(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+ /*
+ * Here we use bufferA as q15_t internally as computation are done with q15_t level
+ * im2col are done to output in q15_t format from q7_t input
+ */
+
+ q15_t *pBuffer = bufferA;
+ q7_t *pOut = Im_out;
+
+ if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
+ {
+ /* check if the input dimension meets the constraints */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ /*
+ * Here we split the entire matrix into three regions depending on the padding situation
+ * Top: i_out_y from 0 to padding - 1
+ * Middle: i_out_y from padding to dim_im_out-padding-1
+ * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
+ */
+
+ /* top part */
+ for (i_out_y = 0; i_out_y < padding; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+ {
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ arm_q7_to_q15_reordered_no_shift
+ ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
+ bufferA,
+ ch_im_out,
+ ch_im_in
+ *
+ dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+ }
+
+ /* middle part, here we also divide the x into left, mid and right */
+ for (; i_out_y < dim_im_out - padding; i_out_y++)
+ {
+
+ /* left part */
+ for (i_out_x = 0; i_out_x < padding; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+ {
+ if (i_ker_x < 0 || i_ker_x >= dim_im_in)
+ {
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ arm_q7_to_q15_reordered_no_shift
+ ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
+ bufferA,
+ ch_im_out,
+ ch_im_in
+ *
+ dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+
+ /* mid part */
+ for (; i_out_x < dim_im_out - padding; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+ {
+ arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in
+ +
+ (i_ker_y *
+ dim_im_in +
+ i_out_x *
+ stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel);
+ pBuffer += ch_im_in * dim_kernel;
+ }
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
+ bufferA,
+ ch_im_out,
+ ch_im_in
+ *
+ dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+
+ /* right part */
+ for (; i_out_x < dim_im_out; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+ {
+ if (i_ker_x < 0 || i_ker_x >= dim_im_in)
+ {
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ arm_q7_to_q15_reordered_no_shift
+ ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
+ bufferA,
+ ch_im_out,
+ ch_im_in
+ *
+ dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+ }
+
+ for (; i_out_y < dim_im_out; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+ {
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ arm_q7_to_q15_reordered_no_shift
+ ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
+ bufferA,
+ ch_im_out,
+ ch_im_in
+ *
+ dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+ }
+
+ /* check if there is left-over for compute */
+ if (pBuffer != bufferA)
+ {
+ const q7_t *pA = wt;
+ int i;
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+ q15_t *pB = bufferA;
+ /* each time it process 4 entries */
+ uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
+
+ while (colCnt)
+ {
+
+ q31_t inA1, inA2;
+ q31_t inB1, inB2;
+
+ pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA1, &inA2);
+
+ inB1 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA1, inB1, sum);
+ inB2 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA2, inB2, sum);
+
+ colCnt--;
+ }
+ colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
+ while (colCnt)
+ {
+ q7_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ sum += inA1 * inB1;
+ colCnt--;
+ }
+ *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
+ pOut++;
+
+ }
+
+ }
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+ uint16_t i, j, k, l, m, n;
+ int conv_out;
+ signed char in_row, in_col;
+
+ if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
+ {
+ /* check if the input dimension meets the constraints */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ for (j = 0; j < dim_im_out; j++)
+ {
+ for (k = 0; k < dim_im_out; k++)
+ {
+ conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
+ for (m = 0; m < dim_kernel; m++)
+ {
+ for (n = 0; n < dim_kernel; n++)
+ {
+ // if-for implementation
+ in_row = stride * j + m - padding;
+ in_col = stride * k + n - padding;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+ {
+ for (l = 0; l < ch_im_in; l++)
+ {
+ conv_out +=
+ Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
+ l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
+ n) * ch_im_in + l];
+ }
+ }
+ }
+ }
+ Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c new file mode 100644 index 0000000..6dc6f0b --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c @@ -0,0 +1,379 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_convolve_HWC_q7_fast_nonsquare.c
+ * Description: Fast Q7 version of convolution (non-sqaure shape)
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/**
+ * @brief Fast Q7 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ */
+
+arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+ /* -----------------------
+ * Here we use bufferA as q15_t internally as computation are done with q15_t level
+ * im2col are done to output in q15_t format from q7_t input
+ */
+
+ q15_t *pBuffer = bufferA;
+ q7_t *pOut = Im_out;
+
+ if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
+ {
+ /* check if the input dimension meets the constraints */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ /*
+ * Here we split the entire matrix into three regions depending on the padding situation
+ * Top: i_out_y from 0 to padding - 1
+ * Middle: i_out_y from padding to dim_im_out-padding-1
+ * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
+ */
+
+ /* top part */
+ for (i_out_y = 0; i_out_y < padding_y; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+ i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+ i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+ {
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+ pBuffer, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+ bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+ }
+
+ /* middle part, here we also divide the x into left, mid and right */
+ for (; i_out_y < dim_im_out_y - padding_y; i_out_y++)
+ {
+
+ /* left part */
+ for (i_out_x = 0; i_out_x < padding_x; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+ i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+ i_ker_x++)
+ {
+ if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+ {
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+ pBuffer, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+ bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+
+ /* mid part */
+ for (; i_out_x < dim_im_out_x - padding_x; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+ i_ker_y++)
+ {
+ arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in +
+ (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in,
+ pBuffer, ch_im_in * dim_kernel_x);
+ pBuffer += ch_im_in * dim_kernel_x;
+ }
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+ bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+
+ /* right part */
+ for (; i_out_x < dim_im_out_x; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+ i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+ i_ker_x++)
+ {
+ if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+ {
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+ pBuffer, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+ bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+ }
+
+ for (; i_out_y < dim_im_out_y; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+ {
+ /* This part implements the im2col function */
+ for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+ i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+ i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+ {
+ /* arm_fill_q15(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+ } else
+ {
+ arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+ pBuffer, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+ {
+ pOut =
+ arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+ bias_shift, out_shift, bias, pOut);
+ /* counter reset */
+ pBuffer = bufferA;
+ }
+ }
+ }
+
+ /* check if there is left-over for compute */
+ if (pBuffer != bufferA)
+ {
+ const q7_t *pA = wt;
+ int i;
+ for (i = 0; i < ch_im_out; i++)
+ {
+ q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+ q15_t *pB = bufferA;
+ /* basically each time it process 4 entries */
+ uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
+
+ while (colCnt)
+ {
+
+ q31_t inA1, inA2;
+ q31_t inB1, inB2;
+
+ pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2);
+
+ inB1 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA1, inB1, sum);
+ inB2 = *__SIMD32(pB)++;
+ sum = __SMLAD(inA2, inB2, sum);
+
+ colCnt--;
+ }
+ colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3;
+ while (colCnt)
+ {
+ q7_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ sum += inA1 * inB1;
+ colCnt--;
+ }
+ *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
+ pOut++;
+
+ }
+
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ int i, j, k, l, m, n;
+ int conv_out;
+ int in_row, in_col;
+
+ if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
+ {
+ /* check if the input dimension meets the constraints */
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i = 0; i < ch_im_out; i++)
+ {
+ for (j = 0; j < dim_im_out_y; j++)
+ {
+ for (k = 0; k < dim_im_out_x; k++)
+ {
+ conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+ for (m = 0; m < dim_kernel_y; m++)
+ {
+ for (n = 0; n < dim_kernel_x; n++)
+ {
+ /* if-for implementation */
+ in_row = stride_y * j + m - padding_y;
+ in_col = stride_x * k + n - padding_x;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+ {
+ for (l = 0; l < ch_im_in; l++)
+ {
+ conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
+ wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l];
+ }
+ }
+ }
+ }
+ Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+ }
+ }
+ }
+
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_u8_basic_ver1.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_u8_basic_ver1.c new file mode 100644 index 0000000..c96dc55 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_u8_basic_ver1.c @@ -0,0 +1,239 @@ +/*
+ * Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_depthwise_conv_u8_basic_ver1.c
+ * Description: u8 depthwise convolution function
+ *
+ * $Date: June, 2019
+ * $Revision: V.0.8.0
+ *
+ * Target : Cortex-M cores with DSP extension
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+#include <stdint.h>
+#include <stdio.h>
+
+#define DILATION_X (1)
+#define DILATION_Y (1)
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/**
+ * @brief uint8 depthwise convolution function with asymmetric quantization for even number of channel multiplier
+ * and input channels. Unless specified otherwise, arguments are mandatory. Both square and non-square inputs
+ * are accepted.
+ *
+ * @param[in] input Pointer to input tensor
+ * @param[in] input_x Width of input tensor
+ * @param[in] input_y Height of input tensor
+ * @param[in] input_ch Channels in input tensor
+ * @param[in] kernel Pointer to kernel weights
+ * @param[in] kernel_x Width of kernel
+ * @param[in] kernel_y Height of kernel
+ * @param[in] ch_mult Number of channel multiplier
+ * @param[in] pad_x Padding sizes x
+ * @param[in] pad_y Padding sizes y
+ * @param[in] stride_x Convolution stride along the width
+ * @param[in] stride_y Convolution stride along the height
+ * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
+ * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
+ * @param[in] bias Pointer to optional bias values. If no bias is
+ * availble, NULL is expected
+ * @param[in] input_offset Input tensor zero offset
+ * @param[in] filter_offset Kernel tensor zero offset
+ * @param[in] output_offset Output tensor zero offset
+ * @param[in,out] output Pointer to output tensor
+ * @param[in] output_x Width of output tensor
+ * @param[in] output_y Height of output tensor
+ * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
+ * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
+ * @param[in] out_shift Amount of right-shift for output
+ * @param[in] out_mult Output multiplier for requantization
+ * @return The function returns one of the following
+ * <code>ARM_MATH_SIZE_MISMATCH</code> - Not supported dimension of tensors
+ * <code>ARM_MATH_SUCCESS</code> - Successful operation
+ * <code>ARM_MATH_ARGUMENT_ERROR</code> - Implementation not available
+ *
+ * <b> Input constraints</b>
+ * ch_mult is multiple of 2
+ * kernel_x is multiple of 2
+ *
+ */
+
+arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
+ const uint16_t input_x,
+ const uint16_t input_y,
+ const uint16_t input_ch,
+ const uint8_t *kernel,
+ const uint16_t kernel_x,
+ const uint16_t kernel_y,
+ const int16_t ch_mult,
+ const int16_t pad_x,
+ const int16_t pad_y,
+ const int16_t stride_x,
+ const int16_t stride_y,
+ const int16_t dilation_x,
+ const int16_t dilation_y,
+ const int32_t *bias,
+ const int32_t input_offset,
+ const int32_t filter_offset,
+ const int32_t output_offset,
+ uint8_t *output,
+ const uint16_t output_x,
+ const uint16_t output_y,
+ const int32_t output_activation_min,
+ const int32_t output_activation_max,
+ const int32_t out_shift,
+ const int32_t out_mult)
+{
+ arm_status status = ARM_MATH_SUCCESS;
+ #if defined (ARM_MATH_DSP)
+ int i_out = 0;
+ (void)dilation_x;
+ (void)dilation_y;
+
+ const int32_t input_offset_pkd = (input_offset & 0xFFFF) | (input_offset & 0xFFFF) << 16;
+ const int32_t kernel_offset_pkd = (filter_offset & 0xFFFF) | (filter_offset & 0xFFFF) << 16;
+
+ if (0 != ch_mult % 2 || 0 != kernel_x % 2)
+ {
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
+ {
+ const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
+ for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
+ {
+ const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
+ for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
+ {
+ for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult += 2)
+ {
+ const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
+
+ int32_t acc_0 = 0;
+ int32_t acc_1 = 0;
+ if (NULL != bias)
+ {
+ acc_0 = bias[idx_out_ch];
+ acc_1 = bias[idx_out_ch + 1];
+ }
+
+ for (int i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
+ {
+ const int32_t idx_y = base_idx_y + DILATION_Y * i_ker_y;
+ const int32_t y_in_range = (idx_y >= 0) && (idx_y < input_y);
+
+ for (int i_ker_x = 0; i_ker_x < kernel_x; i_ker_x += 2)
+ {
+ if (1 == y_in_range)
+ {
+ const int32_t idx_x = base_idx_x + DILATION_X * i_ker_x;
+ const int32_t idx_x1 = base_idx_x + DILATION_X * (i_ker_x + 1);
+ /* Range check for first input */
+ if (idx_x >= 0 && idx_x < input_x)
+ {
+ const int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
+
+ const int32_t ker_idx_0 =
+ (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;
+ const int32_t ker_idx_1 = ker_idx_0 + input_ch * ch_mult;
+
+ int32_t input_pkd = input[idx_0] | (input[idx_0 + input_ch] << 16);
+ int32_t kernel_pkd = kernel[ker_idx_0] | (kernel[ker_idx_1] << 16);
+
+ input_pkd = __SADD16(input_pkd, input_offset_pkd);
+ kernel_pkd = __SADD16(kernel_pkd, kernel_offset_pkd);
+ /* Range check for second input */
+ if (idx_x1 >= input_x)
+ {
+ input_pkd &= 0xFFFF;
+ }
+ acc_0 = __SMLAD(input_pkd, kernel_pkd, acc_0);
+
+ kernel_pkd = kernel[ker_idx_0 + 1] | (kernel[ker_idx_1 + 1] << 16);
+ kernel_pkd = __SADD16(kernel_pkd, kernel_offset_pkd);
+ acc_1 = __SMLAD(input_pkd, kernel_pkd, acc_1);
+ }
+ }
+ }
+ }
+
+ /* Requantize and clamp output to provided range */
+ acc_0 = arm_nn_divide_by_power_of_two(arm_nn_sat_doubling_high_mult(
+ acc_0 * (1 << LEFT_SHIFT(out_shift)), out_mult),
+ RIGHT_SHIFT(out_shift));
+
+ acc_0 += output_offset;
+
+ if (output_activation_min > acc_0)
+ {
+ acc_0 = output_activation_min;
+ }
+
+ if (acc_0 > output_activation_max)
+ {
+ acc_0 = output_activation_max;
+ }
+ output[i_out++] = acc_0;
+
+ /* Requantize and clamp output to provided range */
+ acc_1 = arm_nn_divide_by_power_of_two(arm_nn_sat_doubling_high_mult(
+ acc_1 * (1 << LEFT_SHIFT(out_shift)), out_mult),
+ RIGHT_SHIFT(out_shift));
+ acc_1 += output_offset;
+
+ if (output_activation_min > acc_1)
+ {
+ acc_1 = output_activation_min;
+ }
+
+ if (acc_1 > output_activation_max)
+ {
+ acc_1 = output_activation_max;
+ }
+ output[i_out++] = acc_1;
+ }
+ }
+ }
+ }
+#else
+ /* No available implementation. */
+ status = ARM_MATH_ARGUMENT_ERROR;
+#endif
+ return status;
+}
+
+/**
+ * @} end of NNConv group
+ */
+
+
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c new file mode 100644 index 0000000..705fa6a --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c @@ -0,0 +1,418 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_depthwise_separable_conv_HWC_q7.c
+ * Description: Q7 depthwise separable convolution function
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/**
+ * @brief Q7 depthwise separable convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * <b>Input dimension constraints:</b>
+ *
+ * ch_im_in equals ch_im_out
+ *
+ * Implementation:
+ * There are 3 nested loop here:
+ * Inner loop: calculate each output value with MAC instruction over an accumulator
+ * Mid loop: loop over different output channel
+ * Outer loop: loop over different output (x, y)
+ */
+
+arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ int16_t i_out_y, i_out_x;
+ int16_t i_ker_y, i_ker_x;
+ q7_t *colBuffer = (q7_t *) bufferA;
+ q7_t *pBuffer = colBuffer;
+ const q7_t *pBias = bias;
+ q7_t *pOut = Im_out;
+ uint16_t rowCnt;
+ uint16_t row_shift;
+
+ /* do some checking here, basically ch_im_in == ch_im_out */
+ if (ch_im_in != ch_im_out)
+ {
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+ {
+ /* we first do im2col here */
+ for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
+ {
+ /* arm_fill_q7(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, ch_im_in);
+ } else
+ {
+ /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+ memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ /* we will do the computation here for each channel */
+ rowCnt = ch_im_out >> 2;
+ row_shift = 0;
+ pBias = bias;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = (dim_kernel * dim_kernel) >> 1;
+ q7_t *pB = colBuffer + row_shift;
+ const q7_t *pA = wt + row_shift;
+ row_shift += 4;
+
+#ifdef USE_INTRINSIC
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ while (colCnt)
+ {
+ q31_t inA1, inA2, inB1, inB2, opA, opB;
+
+ inB1 = *__SIMD32(pB);
+ pB += ch_im_in;
+ opB = *__SIMD32(pB);
+ pB += ch_im_in;
+ inB2 = __PKHTB(opB, inB1, 16);
+ inB1 = __PKHBT(inB1, opB, 16);
+ inA1 = *__SIMD32(pA);
+ pA += ch_im_in;
+ opB = *__SIMD32(pA);
+ pA += ch_im_in;
+ inA2 = __PKHTB(opB, inA1, 16);
+ inA1 = __PKHBT(inA1, opB, 16);
+ opA = __SXTB16(inA1);
+ opB = __SXTB16(inB1);
+ sum = __SMLAD(opA, opB, sum);
+ opA = __SXTB16(__ROR(inA1, 8));
+ opB = __SXTB16(__ROR(inB1, 8));
+ sum2 = __SMLAD(opA, opB, sum2);
+ opA = __SXTB16(inA2);
+ opB = __SXTB16(inB2);
+ sum3 = __SMLAD(opA, opB, sum3);
+ opA = __SXTB16(__ROR(inA2, 8));
+ opB = __SXTB16(__ROR(inB2, 8));
+ sum4 = __SMLAD(opA, opB, sum4);
+ colCnt--;
+ }
+#else
+
+ while (colCnt)
+ {
+ q31_t inA1, inA2, inB1, inB2, opA, opB;
+
+ inB1 = *__SIMD32(pB);
+ pB += ch_im_in;
+ opB = *__SIMD32(pB);
+ pB += ch_im_in;
+ inB2 = __PKHBT(opB, inB1, 16);
+ inB1 = __PKHTB(inB1, opB, 16);
+ inA1 = *__SIMD32(pA);
+ pA += ch_im_in;
+ opB = *__SIMD32(pA);
+ pA += ch_im_in;
+ inA2 = __PKHBT(opB, inA1, 16);
+ inA1 = __PKHTB(inA1, opB, 16);
+ opA = __SXTB16(inA1);
+ opB = __SXTB16(inB1);
+ sum2 = __SMLAD(opA, opB, sum2);
+ opA = __SXTB16(__ROR(inA1, 8));
+ opB = __SXTB16(__ROR(inB1, 8));
+ sum = __SMLAD(opA, opB, sum);
+ opA = __SXTB16(inA2);
+ opB = __SXTB16(inB2);
+ sum4 = __SMLAD(opA, opB, sum4);
+ opA = __SXTB16(__ROR(inA2, 8));
+ opB = __SXTB16(__ROR(inB2, 8));
+ sum3 = __SMLAD(opA, opB, sum3);
+ colCnt--;
+ }
+
+#endif /* ARM_MATH_BIG_ENDIAN */
+
+#else
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ /*
+ * r0 r1 r2 r3 r4 r5
+ * inA1, inA2, inB1, inB2, opA, opB
+ */
+
+ asm volatile ("COL_LOOP_%=:\n"
+ "ldr.w r2, [%[pB], #0]\n"
+ "add.w %[pB], %[pB], %[ch_im_in]\n"
+ "ldr.w r5, [%[pB], #0]\n"
+ "add.w %[pB], %[pB], %[ch_im_in]\n"
+ "pkhtb r3, r5, r2, ASR #16\n"
+ "pkhbt r2, r2, r5, LSL #16\n"
+ "ldr.w r0, [%[pA], #0]\n"
+ "add.w %[pA], %[pA], %[ch_im_in]\n"
+ "ldr.w r5, [%[pA], #0]\n"
+ "add.w %[pA], %[pA], %[ch_im_in]\n"
+ "pkhtb r1, r5, r0, ASR #16\n"
+ "pkhbt r0, r0, r5, LSL #16\n"
+ "sxtb16 r4, r0\n"
+ "sxtb16 r5, r2\n"
+ "smlad %[sum], r4, r5, %[sum]\n"
+ "mov.w r4, r0, ror #8\n"
+ "mov.w r5, r2, ror #8\n"
+ "sxtb16 r4, r4\n"
+ "sxtb16 r5, r5\n"
+ "smlad %[sum2], r4, r5, %[sum2]\n"
+ "sxtb16 r4, r1\n"
+ "sxtb16 r5, r3\n"
+ "smlad %[sum3], r4, r5, %[sum3]\n"
+ "mov.w r4, r1, ror #8\n"
+ "mov.w r5, r3, ror #8\n"
+ "sxtb16 r4, r4\n"
+ "sxtb16 r5, r5\n"
+ "smlad %[sum4], r4, r5, %[sum4]\n"
+ "subs %[colCnt], #1\n"
+ "bne COL_LOOP_%=\n":[sum]
+ "+r"(sum),[sum2] "+r"(sum2),
+ [sum3] "+r"(sum3),
+ [sum4] "+r"(sum4),[pB] "+r"(pB),
+ [pA] "+r"(pA):[colCnt]
+ "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
+#else
+ /*
+ * r0 r1 r2 r3 r4 r5
+ * inA1, inA2, inB1, inB2, opA, opB
+ */
+ asm volatile ("COL_LOOP_%=:\n"
+ "ldr.w r2, [%[pB], #0]\n"
+ "add.w %[pB], %[pB], %[ch_im_in]\n"
+ "ldr.w r5, [%[pB], #0]\n"
+ "add.w %[pB], %[pB], %[ch_im_in]\n"
+ "pkhbt r3, r5, r2, LSL #16\n"
+ "pkhtb r2, r2, r5, ASR #16\n"
+ "ldr.w r0, [%[pA], #0]\n"
+ "add.w %[pA], %[pA], %[ch_im_in]\n"
+ "ldr.w r5, [%[pA], #0]\n"
+ "add.w %[pA], %[pA], %[ch_im_in]\n"
+ "pkhbt r1, r5, r0, LSL #16\n"
+ "pkhtb r0, r0, r5, ASR #16\n"
+ "sxtb16 r4, r0\n"
+ "sxtb16 r5, r2\n"
+ "smlad %[sum2], r4, r5, %[sum2]\n"
+ "mov.w r4, r0, ror #8\n"
+ "mov.w r5, r2, ror #8\n"
+ "sxtb16 r4, r4\n"
+ "sxtb16 r5, r5\n"
+ "smlad %[sum], r4, r5, %[sum]\n"
+ "sxtb16 r4, r1\n"
+ "sxtb16 r5, r3\n"
+ "smlad %[sum4], r4, r5, %[sum4]\n"
+ "mov.w r4, r1, ror #8\n"
+ "mov.w r5, r3, ror #8\n"
+ "sxtb16 r4, r4\n"
+ "sxtb16 r5, r5\n"
+ "smlad %[sum3], r4, r5, %[sum3]\n"
+ "subs %[colCnt], #1\n"
+ "bne COL_LOOP_%=\n":[sum]
+ "+r"(sum),[sum2] "+r"(sum2),
+ [sum3] "+r"(sum3),
+ [sum4] "+r"(sum4),[pB] "+r"(pB),
+ [pA] "+r"(pA):[colCnt]
+ "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
+
+#endif /* ARM_MATH_BIG_ENDIAN */
+
+#endif /* USE_INTRINSIC */
+
+ colCnt = (dim_kernel * dim_kernel) & 0x1;
+ while (colCnt)
+ {
+ union arm_nnword inA, inB;
+ inA.word = *__SIMD32(pA);
+ pA += ch_im_in;
+ inB.word = *__SIMD32(pB);
+ pB += ch_im_in;
+ sum += inA.bytes[0] * inB.bytes[0];
+ sum2 += inA.bytes[1] * inB.bytes[1];
+ sum3 += inA.bytes[2] * inB.bytes[2];
+ sum4 += inA.bytes[3] * inB.bytes[3];
+ colCnt--;
+ }
+
+ *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+ *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
+ *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
+
+ rowCnt--;
+ }
+
+ rowCnt = ch_im_out & 0x3;
+ while (rowCnt)
+ {
+ q7_t *pB = colBuffer + row_shift;
+ const q7_t *pA = wt + row_shift;
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ uint16_t colCnt = (dim_kernel * dim_kernel);
+
+ row_shift += 1;
+
+ while (colCnt)
+ {
+ q7_t A1 = *pA;
+ q7_t B1 = *pB;
+ pA += ch_im_in;
+ pB += ch_im_in;
+ sum += A1 * B1;
+
+ colCnt--;
+ }
+ *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ rowCnt--;
+ }
+
+ /* clear counter and pointers */
+ pBuffer = colBuffer;
+ }
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ int i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y;
+ int conv_out;
+
+ /* do some checking here, basically ch_im_in == ch_im_out */
+ if (ch_im_in != ch_im_out)
+ {
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
+ {
+ for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
+ {
+ // for each output
+ conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
+ for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++)
+ {
+ for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++)
+ {
+ int in_row = stride * i_out_y + i_ker_y - padding;
+ int in_col = stride * i_out_x + i_ker_x - padding;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
+ {
+ conv_out +=
+ Im_in[(in_row *
+ dim_im_in +
+ in_col) *
+ ch_im_in +
+ i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out];
+ }
+ }
+ }
+ Im_out[(i_out_y * dim_im_out +
+ i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c new file mode 100644 index 0000000..5989304 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c @@ -0,0 +1,411 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_depthwise_separable_conv_HWC_q7_nonsquare.c
+ * Description: Q7 depthwise separable convolution function (non-square shape)
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/**
+ * @brief Q7 depthwise separable convolution function (non-square shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding sizes x
+ * @param[in] padding_y padding sizes y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 2
+ * ch_im_out is multiple of 2
+ */
+
+arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+/*
+ * Implementation:
+ * There are 3 nested loop here:
+ * Inner loop: calculate each output value with MAC instruction over an accumulator
+ * Mid loop: loop over different output channel
+ * Outer loop: loop over different output (x, y)
+ *
+ */
+
+ int16_t i_out_y, i_out_x;
+ int16_t i_ker_y, i_ker_x;
+ q7_t *colBuffer = (q7_t *) bufferA;
+ q7_t *pBuffer = colBuffer;
+ const q7_t *pBias = bias;
+ q7_t *pOut = Im_out;
+ uint16_t rowCnt;
+ uint16_t row_shift;
+
+ /* do some checking here, basically ch_im_in == ch_im_out */
+ if (ch_im_in != ch_im_out)
+ {
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+ {
+ /* we first do im2col here */
+ for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+ i_ker_y++)
+ {
+ for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+ i_ker_x++)
+ {
+ if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+ {
+ /* arm_fill_q7(0, pBuffer, ch_im_in); */
+ memset(pBuffer, 0, ch_im_in);
+ } else
+ {
+ /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+ memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, ch_im_in);
+ }
+ pBuffer += ch_im_in;
+ }
+ }
+
+ /* we will do the computation here for each channel */
+ rowCnt = ch_im_out >> 2;
+ row_shift = 0;
+ pBias = bias;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = (dim_kernel_x * dim_kernel_y) >> 1;
+ q7_t *pB = colBuffer + row_shift;
+ const q7_t *pA = wt + row_shift;
+ row_shift += 4;
+
+#ifdef USE_INTRINSIC
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ while (colCnt)
+ {
+ q31_t inA1, inA2, inB1, inB2, opA, opB;
+
+ inB1 = *__SIMD32(pB);
+ pB += ch_im_in;
+ opB = *__SIMD32(pB);
+ pB += ch_im_in;
+ inB2 = __PKHTB(opB, inB1, 16);
+ inB1 = __PKHBT(inB1, opB, 16);
+ inA1 = *__SIMD32(pA);
+ pA += ch_im_in;
+ opB = *__SIMD32(pA);
+ pA += ch_im_in;
+ inA2 = __PKHTB(opB, inA1, 16);
+ inA1 = __PKHBT(inA1, opB, 16);
+ opA = __SXTB16(inA1);
+ opB = __SXTB16(inB1);
+ sum = __SMLAD(opA, opB, sum);
+ opA = __SXTB16(__ROR(inA1, 8));
+ opB = __SXTB16(__ROR(inB1, 8));
+ sum2 = __SMLAD(opA, opB, sum2);
+ opA = __SXTB16(inA2);
+ opB = __SXTB16(inB2);
+ sum3 = __SMLAD(opA, opB, sum3);
+ opA = __SXTB16(__ROR(inA2, 8));
+ opB = __SXTB16(__ROR(inB2, 8));
+ sum4 = __SMLAD(opA, opB, sum4);
+ colCnt--;
+ }
+#else
+
+ while (colCnt)
+ {
+ q31_t inA1, inA2, inB1, inB2, opA, opB;
+
+ inB1 = *__SIMD32(pB);
+ pB += ch_im_in;
+ opB = *__SIMD32(pB);
+ pB += ch_im_in;
+ inB2 = __PKHBT(opB, inB1, 16);
+ inB1 = __PKHTB(inB1, opB, 16);
+ inA1 = *__SIMD32(pA);
+ pA += ch_im_in;
+ opB = *__SIMD32(pA);
+ pA += ch_im_in;
+ inA2 = __PKHBT(opB, inA1, 16);
+ inA1 = __PKHTB(inA1, opB, 16);
+ opA = __SXTB16(inA1);
+ opB = __SXTB16(inB1);
+ sum2 = __SMLAD(opA, opB, sum2);
+ opA = __SXTB16(__ROR(inA1, 8));
+ opB = __SXTB16(__ROR(inB1, 8));
+ sum = __SMLAD(opA, opB, sum);
+ opA = __SXTB16(inA2);
+ opB = __SXTB16(inB2);
+ sum4 = __SMLAD(opA, opB, sum4);
+ opA = __SXTB16(__ROR(inA2, 8));
+ opB = __SXTB16(__ROR(inB2, 8));
+ sum3 = __SMLAD(opA, opB, sum3);
+ colCnt--;
+ }
+
+#endif /* ARM_MATH_BIG_ENDIAN */
+
+#else
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ // r0 r1 r2 r3 r4 r5
+ // inA1, inA2, inB1, inB2, opA, opB
+ asm volatile ("COL_LOOP:\n"
+ "ldr.w r2, [%[pB], #0]\n"
+ "add.w %[pB], %[pB], %[ch_im_in]\n"
+ "ldr.w r5, [%[pB], #0]\n"
+ "add.w %[pB], %[pB], %[ch_im_in]\n"
+ "pkhtb r3, r5, r2, ASR #16\n"
+ "pkhbt r2, r2, r5, LSL #16\n"
+ "ldr.w r0, [%[pA], #0]\n"
+ "add.w %[pA], %[pA], %[ch_im_in]\n"
+ "ldr.w r5, [%[pA], #0]\n"
+ "add.w %[pA], %[pA], %[ch_im_in]\n"
+ "pkhtb r1, r5, r0, ASR #16\n"
+ "pkhbt r0, r0, r5, LSL #16\n"
+ "sxtb16 r4, r0\n"
+ "sxtb16 r5, r2\n"
+ "smlad %[sum], r4, r5, %[sum]\n"
+ "mov.w r4, r0, ror #8\n"
+ "mov.w r5, r2, ror #8\n"
+ "sxtb16 r4, r4\n"
+ "sxtb16 r5, r5\n"
+ "smlad %[sum2], r4, r5, %[sum2]\n"
+ "sxtb16 r4, r1\n"
+ "sxtb16 r5, r3\n"
+ "smlad %[sum3], r4, r5, %[sum3]\n"
+ "mov.w r4, r1, ror #8\n"
+ "mov.w r5, r3, ror #8\n"
+ "sxtb16 r4, r4\n"
+ "sxtb16 r5, r5\n"
+ "smlad %[sum4], r4, r5, %[sum4]\n"
+ "subs %[colCnt], #1\n"
+ "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3),
+ [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt),
+ [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
+#else
+ // r0 r1 r2 r3 r4 r5
+ // inA1, inA2, inB1, inB2, opA, opB
+ asm volatile ("COL_LOOP:\n"
+ "ldr.w r2, [%[pB], #0]\n"
+ "add.w %[pB], %[pB], %[ch_im_in]\n"
+ "ldr.w r5, [%[pB], #0]\n"
+ "add.w %[pB], %[pB], %[ch_im_in]\n"
+ "pkhbt r3, r5, r2, LSL #16\n"
+ "pkhtb r2, r2, r5, ASR #16\n"
+ "ldr.w r0, [%[pA], #0]\n"
+ "add.w %[pA], %[pA], %[ch_im_in]\n"
+ "ldr.w r5, [%[pA], #0]\n"
+ "add.w %[pA], %[pA], %[ch_im_in]\n"
+ "pkhbt r1, r5, r0, LSL #16\n"
+ "pkhtb r0, r0, r5, ASR #16\n"
+ "sxtb16 r4, r0\n"
+ "sxtb16 r5, r2\n"
+ "smlad %[sum2], r4, r5, %[sum2]\n"
+ "mov.w r4, r0, ror #8\n"
+ "mov.w r5, r2, ror #8\n"
+ "sxtb16 r4, r4\n"
+ "sxtb16 r5, r5\n"
+ "smlad %[sum], r4, r5, %[sum]\n"
+ "sxtb16 r4, r1\n"
+ "sxtb16 r5, r3\n"
+ "smlad %[sum4], r4, r5, %[sum4]\n"
+ "mov.w r4, r1, ror #8\n"
+ "mov.w r5, r3, ror #8\n"
+ "sxtb16 r4, r4\n"
+ "sxtb16 r5, r5\n"
+ "smlad %[sum3], r4, r5, %[sum3]\n"
+ "subs %[colCnt], #1\n"
+ "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3),
+ [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt),
+ [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
+#endif /*ARM_MATH_BIG_ENDIAN */
+
+#endif /* USE_INTRINSIC */
+
+ colCnt = (dim_kernel_x * dim_kernel_y) & 0x1;
+ while (colCnt)
+ {
+ union arm_nnword inA, inB;
+ inA.word = *__SIMD32(pA);
+ pA += ch_im_in;
+ inB.word = *__SIMD32(pB);
+ pB += ch_im_in;
+ sum += inA.bytes[0] * inB.bytes[0];
+ sum2 += inA.bytes[1] * inB.bytes[1];
+ sum3 += inA.bytes[2] * inB.bytes[2];
+ sum4 += inA.bytes[3] * inB.bytes[3];
+ colCnt--;
+ }
+
+ *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+ *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
+ *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
+
+ rowCnt--;
+ }
+
+ rowCnt = ch_im_out & 0x3;
+ while (rowCnt)
+ {
+ q7_t *pB = colBuffer + row_shift;
+ const q7_t *pA = wt + row_shift;
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ uint16_t colCnt = (dim_kernel_x * dim_kernel_y);
+
+ row_shift += 1;
+
+ while (colCnt)
+ {
+ q7_t A1 = *pA;
+ q7_t B1 = *pB;
+ pA += ch_im_in;
+ pB += ch_im_in;
+ sum += A1 * B1;
+
+ colCnt--;
+ }
+ *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ rowCnt--;
+ }
+
+ // clear counter and pointers
+ pBuffer = colBuffer;
+ }
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ int i_out_y, i_out_x, i_ch_out;
+ int i_ker_y, i_ker_x;
+
+ /* do some checking here, basically ch_im_in == ch_im_out */
+ if (ch_im_in != ch_im_out)
+ {
+ return ARM_MATH_SIZE_MISMATCH;
+ }
+
+ for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+ {
+ for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
+ {
+ // for each output
+ int conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
+ for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++)
+ {
+ for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++)
+ {
+ int in_row = stride_y * i_out_y + i_ker_y - padding_y;
+ int in_col = stride_x * i_out_x + i_ker_x - padding_x;
+ if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+ {
+ conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] *
+ wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out];
+ }
+ }
+ }
+ Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] =
+ (q7_t) __SSAT((conv_out >> out_shift), 8);
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+
+}
+
+/**
+ * @} end of NNConv group
+ */
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c new file mode 100644 index 0000000..24ab412 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c @@ -0,0 +1,187 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nn_mat_mult_kernel_q7_q15.c
+ * Description: Matrix-multiplication function for convolution
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+ /**
+ * @brief Matrix-multiplication function for convolution
+ * @param[in] pA pointer to operand A
+ * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
+ * @param[in] ch_im_out numRow of A
+ * @param[in] numCol_A numCol of A
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias the bias
+ * @param[in,out] pOut pointer to output
+ * @return The function returns the incremented output pointer
+ *
+ * @details
+ *
+ * This function does the matrix multiplication with weight matrix
+ * and 2 columns from im2col.
+ */
+
+q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
+ const q15_t * pInBuffer,
+ const uint16_t ch_im_out,
+ const uint16_t numCol_A,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut)
+{
+#if defined (ARM_MATH_DSP)
+ /* set up the second output pointers */
+ q7_t *pOut2 = pOut + ch_im_out;
+ const q7_t *pBias = bias;
+
+ uint16_t rowCnt = ch_im_out >> 1;
+ /* this loop over rows in A */
+ while (rowCnt)
+ {
+ /* setup pointers for B */
+ const q15_t *pB = pInBuffer;
+ const q15_t *pB2 = pB + numCol_A;
+
+ /* align the second pointer for A */
+ const q7_t *pA2 = pA + numCol_A;
+
+ /* init the sum with bias */
+ q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = numCol_A >> 2;
+ /* accumulate over the vector */
+ while (colCnt)
+ {
+ q31_t inA11, inA12, inA21, inA22;
+ q31_t inB1 = *__SIMD32(pB)++;
+ q31_t inB2 = *__SIMD32(pB2)++;
+
+ pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12);
+ pA2 = (q7_t *) read_and_pad((void *)pA2, &inA21, &inA22);
+
+ sum = __SMLAD(inA11, inB1, sum);
+ sum2 = __SMLAD(inA11, inB2, sum2);
+ sum3 = __SMLAD(inA21, inB1, sum3);
+ sum4 = __SMLAD(inA21, inB2, sum4);
+
+ inB1 = *__SIMD32(pB)++;
+ inB2 = *__SIMD32(pB2)++;
+
+ sum = __SMLAD(inA12, inB1, sum);
+ sum2 = __SMLAD(inA12, inB2, sum2);
+ sum3 = __SMLAD(inA22, inB1, sum3);
+ sum4 = __SMLAD(inA22, inB2, sum4);
+
+ colCnt--;
+ } /* while over colCnt */
+ colCnt = numCol_A & 0x3;
+ while (colCnt)
+ {
+ q7_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ q7_t inA2 = *pA2++;
+ q15_t inB2 = *pB2++;
+
+ sum += inA1 * inB1;
+ sum2 += inA1 * inB2;
+ sum3 += inA2 * inB1;
+ sum4 += inA2 * inB2;
+ colCnt--;
+ } /* while over colCnt */
+ *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
+ *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+ *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
+
+ /* skip the row computed with A2 */
+ pA += numCol_A;
+ rowCnt--;
+ } /* for over ch_im_out */
+
+ /* compute left-over row if any */
+ if (ch_im_out & 0x1)
+ {
+ /* setup pointers for B */
+ const q15_t *pB = pInBuffer;
+ const q15_t *pB2 = pB + numCol_A;
+
+ /* load the bias */
+ q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = numCol_A >> 2;
+ while (colCnt)
+ {
+ q31_t inA11, inA12;
+ q31_t inB1 = *__SIMD32(pB)++;
+ q31_t inB2 = *__SIMD32(pB2)++;
+
+ pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12);
+
+ sum = __SMLAD(inA11, inB1, sum);
+ sum2 = __SMLAD(inA11, inB2, sum2);
+
+ inB1 = *__SIMD32(pB)++;
+ inB2 = *__SIMD32(pB2)++;
+ sum = __SMLAD(inA12, inB1, sum);
+ sum2 = __SMLAD(inA12, inB2, sum2);
+
+ colCnt--;
+ }
+ colCnt = numCol_A & 0x3;
+ while (colCnt)
+ {
+ q7_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ q15_t inB2 = *pB2++;
+
+ sum += inA1 * inB1;
+ sum2 += inA1 * inB2;
+ colCnt--;
+ }
+
+ *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+ }
+
+ pOut += ch_im_out;
+
+ /* return the new output pointer with offset */
+ return pOut;
+#else
+ /* To be completed */
+ return NULL;
+#endif /* ARM_MATH_DSP */
+
+}
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c new file mode 100644 index 0000000..36af21a --- /dev/null +++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c @@ -0,0 +1,138 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nn_mat_mult_kernel_q7_q15_reordered.c
+ * Description: Matrix-multiplication function for convolution with reordered columns
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+
+#include "arm_nnfunctions.h"
+#include "arm_math.h"
+
+ /**
+ * @brief Matrix-multiplication function for convolution with reordered columns
+ * @param[in] pA pointer to operand A
+ * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
+ * @param[in] ch_im_out numRow of A
+ * @param[in] numCol_A numCol of A
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias the bias
+ * @param[in,out] pOut pointer to output
+ * @return The function returns the incremented output pointer
+ *
+ * @details
+ *
+ * This function assumes that data in pInBuffer are reordered
+ */
+
+q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
+ const q15_t * pInBuffer,
+ const uint16_t ch_im_out,
+ const uint16_t numCol_A,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* set up the second output pointers */
+ q7_t *pOut2 = pOut + ch_im_out;
+ int i;
+
+ /* this loop over rows in A */
+ for (i = 0; i < ch_im_out; i += 2)
+ {
+ /* setup pointers for B */
+ const q15_t *pB = pInBuffer;
+ const q15_t *pB2 = pB + numCol_A;
+
+ /* align the second pointer for A */
+ const q7_t *pA2 = pA + numCol_A;
+
+ /* init the sum with bias */
+ q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = numCol_A >> 2;
+ /* accumulate over the vector */
+ while (colCnt)
+ {
+ q31_t inA11, inA12, inA21, inA22;
+ q31_t inB1 = *__SIMD32(pB)++;
+ q31_t inB2 = *__SIMD32(pB2)++;
+
+ pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA11, &inA12);
+ pA2 = (q7_t *) read_and_pad_reordered((void *)pA2, &inA21, &inA22);
+
+ sum = __SMLAD(inA11, inB1, sum);
+ sum2 = __SMLAD(inA11, inB2, sum2);
+ sum3 = __SMLAD(inA21, inB1, sum3);
+ sum4 = __SMLAD(inA21, inB2, sum4);
+
+ inB1 = *__SIMD32(pB)++;
+ inB2 = *__SIMD32(pB2)++;
+
+ sum = __SMLAD(inA12, inB1, sum);
+ sum2 = __SMLAD(inA12, inB2, sum2);
+ sum3 = __SMLAD(inA22, inB1, sum3);
+ sum4 = __SMLAD(inA22, inB2, sum4);
+
+ colCnt--;
+ } /* while over colCnt */
+ colCnt = numCol_A & 0x3;
+ while (colCnt)
+ {
+ q7_t inA1 = *pA++;
+ q15_t inB1 = *pB++;
+ q7_t inA2 = *pA2++;
+ q15_t inB2 = *pB2++;
+
+ sum += inA1 * inB1;
+ sum2 += inA1 * inB2;
+ sum3 += inA2 * inB1;
+ sum4 += inA2 * inB2;
+ colCnt--;
+ } /* while over colCnt */
+ *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
+ *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+ *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
+
+ /* skip the row computed with A2 */
+ pA += numCol_A;
+ } /* for over ch_im_out */
+
+ pOut += ch_im_out;
+
+ /* return the new output pointer with offset */
+ return pOut;
+#else
+ /* To be completed */
+ return NULL;
+#endif /* ARM_MATH_DSP */
+}
diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c new file mode 100644 index 0000000..bb9a091 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c @@ -0,0 +1,199 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_fully_connected_mat_q7_vec_q15.c
+ * Description: Mixed Q15-Q7 fully-connected layer function
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup FC
+ * @{
+ */
+
+ /**
+ * @brief Mixed Q15-Q7 fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * vec_buffer size: 0
+ *
+ * Q7_Q15 version of the fully connected layer
+ *
+ * Weights are in q7_t and Activations are in q15_t
+ *
+ */
+
+arm_status
+arm_fully_connected_mat_q7_vec_q15(const q15_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ const q7_t *pB = pM;
+ const q7_t *pB2;
+ q15_t *pO = pOut;
+ const q7_t *pBias = bias;
+ const q15_t *pA = pV;
+
+ uint16_t rowCnt = num_of_rows >> 1;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ uint16_t colCnt = dim_vec >> 2;
+
+ pA = pV;
+ pB2 = pB + dim_vec;
+
+ while (colCnt)
+ {
+ q31_t inV, inM11, inM12, inM21, inM22;
+ pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12);
+ pB2 = (q7_t *) read_and_pad((void *)pB2, &inM21, &inM22);
+
+ inV = *__SIMD32(pA)++;
+
+ sum = __SMLAD(inV, inM11, sum);
+ sum2 = __SMLAD(inV, inM21, sum2);
+
+ inV = *__SIMD32(pA)++;
+
+ sum = __SMLAD(inV, inM12, sum);
+ sum2 = __SMLAD(inV, inM22, sum2);
+
+ colCnt--;
+ }
+ colCnt = dim_vec & 0x3;
+ while (colCnt)
+ {
+ q15_t inV = *pA++;
+ q7_t inM = *pB++;
+ q7_t inM2 = *pB2++;
+
+ sum += inV * inM;
+ sum2 += inV * inM2;
+ colCnt--;
+ } /* while over colCnt */
+ *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
+ *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16));
+
+ /*adjust the pointers and counters */
+ pB += dim_vec;
+ rowCnt--;
+ }
+
+ /* left-over part of the rows */
+ rowCnt = num_of_rows & 0x1;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ uint16_t colCnt = dim_vec >> 2;
+
+ pA = pV;
+
+ while (colCnt)
+ {
+ q31_t inV1, inV2, inM11, inM12;
+
+ pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12);
+
+ inV1 = *__SIMD32(pA)++;
+ sum = __SMLAD(inV1, inM11, sum);
+
+ inV2 = *__SIMD32(pA)++;
+ sum = __SMLAD(inV2, inM12, sum);
+
+ colCnt--;
+ }
+
+ /* left-over of the vector */
+ colCnt = dim_vec & 0x3;
+ while (colCnt)
+ {
+ q15_t inV = *pA++;
+ q7_t inM = *pB++;
+ sum += inV * inM;
+ colCnt--;
+ }
+
+ *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
+
+ rowCnt--;
+ }
+
+#else
+ int i, j;
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ for (i = 0; i < num_of_rows; i++)
+ {
+ int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+ for (j = 0; j < dim_vec; j++)
+ {
+ ip_out += pV[j] * pM[i * dim_vec + j];
+ }
+ pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16);
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to ARM_MATH_SUCCESS */
+ return (ARM_MATH_SUCCESS);
+
+}
+
+/**
+ * @} end of FC group
+ */
diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c new file mode 100644 index 0000000..b0c308b --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c @@ -0,0 +1,403 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_fully_connected_mat_q7_vec_q15_opt.c
+ * Description: Mixed Q15-Q7 opt fully-connected layer function
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup FC
+ * @{
+ */
+
+ /**
+ * @brief Mixed Q15-Q7 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * vec_buffer size: 0
+ *
+ * Q7_Q15 version of the fully connected layer
+ *
+ * Weights are in q7_t and Activations are in q15_t
+ *
+ * Limitation: x4 version requires weight reordering to work
+ *
+ * Here we use only one pointer to read 4 rows in the weight
+ * matrix. So if the original q7_t matrix looks like this:
+ *
+ * | a11 | a12 | a13 | a14 | a15 | a16 | a17 |
+ *
+ * | a21 | a22 | a23 | a24 | a25 | a26 | a27 |
+ *
+ * | a31 | a32 | a33 | a34 | a35 | a36 | a37 |
+ *
+ * | a41 | a42 | a43 | a44 | a45 | a46 | a47 |
+ *
+ * | a51 | a52 | a53 | a54 | a55 | a56 | a57 |
+ *
+ * | a61 | a62 | a63 | a64 | a65 | a66 | a67 |
+ *
+ * We operates on multiple-of-4 rows, so the first four rows becomes
+ *
+ * | a11 | a21 | a12 | a22 | a31 | a41 | a32 | a42 |
+ *
+ * | a13 | a23 | a14 | a24 | a33 | a43 | a34 | a44 |
+ *
+ * | a15 | a25 | a16 | a26 | a35 | a45 | a36 | a46 |
+ *
+ * The column left over will be in-order.
+ * which is:
+ * | a17 | a27 | a37 | a47 |
+ *
+ * For the left-over rows, we do 1x1 computation, so the data remains
+ * as its original order.
+ *
+ * So the stored weight matrix looks like this:
+ *
+ * | a11 | a21 | a12 | a22 | a31 | a41 |
+ *
+ * | a32 | a42 | a13 | a23 | a14 | a24 |
+ *
+ * | a33 | a43 | a34 | a44 | a15 | a25 |
+ *
+ * | a16 | a26 | a35 | a45 | a36 | a46 |
+ *
+ * | a17 | a27 | a37 | a47 | a51 | a52 |
+ *
+ * | a53 | a54 | a55 | a56 | a57 | a61 |
+ *
+ * | a62 | a63 | a64 | a65 | a66 | a67 |
+ *
+ */
+
+arm_status
+arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift, const q7_t * bias, q15_t * pOut, q15_t * vec_buffer)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ const q7_t *pB = pM;
+ q15_t *pO = pOut;
+ const q7_t *pBias = bias;
+ const q15_t *pA = pV;
+
+ uint16_t rowCnt = num_of_rows >> 2;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = dim_vec >> 1;
+
+ pA = pV;
+
+#ifdef USE_INTRINSIC
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ while (colCnt)
+ {
+ q31_t inM11, inM12, inM13, inM14;
+ q31_t inV;
+
+ inV = *__SIMD32(pA)++;
+ inM11 = *__SIMD32(pB)++;
+ inM12 = __SXTB16(__ROR(inM11, 8));
+ inM11 = __SXTB16(inM11);
+ sum = __SMLAD(inM11, inV, sum);
+ sum2 = __SMLAD(inM12, inV, sum2);
+ inM13 = *__SIMD32(pB)++;
+ inM14 = __SXTB16(__ROR(inM13, 8));
+ inM13 = __SXTB16(inM13);
+ sum3 = __SMLAD(inM13, inV, sum3);
+ sum4 = __SMLAD(inM14, inV, sum4);
+ colCnt--;
+ }
+
+#else
+
+ while (colCnt)
+ {
+ q31_t inM11, inM12, inM13, inM14;
+ q31_t inV;
+
+ inV = *__SIMD32(pA)++;
+ inM11 = *__SIMD32(pB)++;
+ inM12 = __SXTB16(__ROR(inM11, 8));
+ inM11 = __SXTB16(inM11);
+ sum = __SMLAD(inM12, inV, sum);
+ sum2 = __SMLAD(inM11, inV, sum2);
+ inM13 = *__SIMD32(pB)++;
+ inM14 = __SXTB16(__ROR(inM13, 8));
+ inM13 = __SXTB16(inM13);
+ sum3 = __SMLAD(inM14, inV, sum3);
+ sum4 = __SMLAD(inM13, inV, sum4);
+ colCnt--;
+ }
+
+#endif /* ARM_MATH_BIG_ENDIAN */
+
+#else
+
+ /*
+ * register needed:
+ * loop counter: colCnt
+ * accumulators: sum, sum2, sum3, sum4
+ * pointers: pB, pA
+ * weight data: inM11, inM12, inM13, inM14
+ * activation data: inV
+ */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ asm volatile ("COL_LOOP_%=:\n"
+ "ldr.w r4, [%[pA]], #4\n"
+ "ldr.w r1, [%[pB]], #8\n"
+ "mov.w r0, r1, ror #8\n"
+ "sxtb16 r0, r0\n"
+ "sxtb16 r1, r1\n"
+ "smlad %[sum], r4, r1, %[sum]\n"
+ "smlad %[sum2], r4, r0, %[sum2]\n"
+ "ldr.w r3, [%[pB], #-4]\n"
+ "mov.w r2, r3, ror #8\n"
+ "sxtb16 r2, r2\n"
+ "sxtb16 r3, r3\n"
+ "smlad %[sum3], r4, r3, %[sum3]\n"
+ "smlad %[sum4], r4, r2, %[sum4]\n"
+ "subs %[colCnt], #1\n"
+ "bne COL_LOOP_%=\n":[sum] "+r"(sum),
+ [sum2] "+r"(sum2),[sum3] "+r"(sum3),
+ [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
+#else
+ asm volatile ("COL_LOOP_%=:\n"
+ "ldr.w r4, [%[pA]], #4\n"
+ "ldr.w r1, [%[pB]], #8\n"
+ "mov.w r0, r1, ror #8\n"
+ "sxtb16 r0, r0\n"
+ "sxtb16 r1, r1\n"
+ "smlad %[sum], r4, r0, %[sum]\n"
+ "smlad %[sum2], r4, r1, %[sum2]\n"
+ "ldr.w r3, [%[pB], #-4]\n"
+ "mov.w r2, r3, ror #8\n"
+ "sxtb16 r2, r2\n"
+ "sxtb16 r3, r3\n"
+ "smlad %[sum3], r4, r2, %[sum3]\n"
+ "smlad %[sum4], r4, r3, %[sum4]\n"
+ "subs %[colCnt], #1\n"
+ "bne COL_LOOP_%=\n":[sum] "+r"(sum),
+ [sum2] "+r"(sum2),[sum3] "+r"(sum3),
+ [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
+#endif /* ARM_MATH_BIG_ENDIAN */
+
+#endif /* USE_INTRINSIC */
+
+ colCnt = dim_vec & 0x1;
+ while (colCnt)
+ {
+ q15_t inV = *pA++;
+ q7_t inM = *pB++;
+ q7_t inM2 = *pB++;
+ q7_t inM3 = *pB++;
+ q7_t inM4 = *pB++;
+
+ sum += inV * inM;
+ sum2 += inV * inM2;
+ sum3 += inV * inM3;
+ sum4 += inV * inM4;
+ colCnt--;
+ } /* while over colCnt */
+ *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
+ *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16));
+ *pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16));
+ *pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16));
+
+ /* adjust the pointers and counters */
+ rowCnt--;
+ }
+
+ /* left-over part of the rows */
+ rowCnt = num_of_rows & 0x3;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = dim_vec >> 2;
+
+ pA = pV;
+
+ while (colCnt)
+ {
+ q31_t inV1, inV2, inM11, inM12;
+
+ pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12);
+
+ inV1 = *__SIMD32(pA)++;
+ sum = __SMLAD(inV1, inM11, sum);
+
+ inV2 = *__SIMD32(pA)++;
+ sum = __SMLAD(inV2, inM12, sum);
+
+ colCnt--;
+ }
+
+ /* left-over of the vector */
+ colCnt = dim_vec & 0x3;
+ while (colCnt)
+ {
+ q15_t inV = *pA++;
+ q7_t inM = *pB++;
+ sum += inV * inM;
+ colCnt--;
+ }
+
+ *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
+
+ rowCnt--;
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ uint16_t rowCnt = num_of_rows >> 2;
+ const q7_t *pB = pM;
+ const q15_t *pA;
+ q15_t *pO = pOut;
+ const q7_t *pBias = bias;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ uint16_t colCnt = dim_vec >> 1;
+
+ pA = pV;
+
+ while (colCnt)
+ {
+ q15_t inA1 = *pA++;
+ q15_t inA2 = *pA++;
+
+ q7_t inB1 = *pB++;
+ q7_t inB3 = *pB++;
+ q7_t inB2 = *pB++;
+ q7_t inB4 = *pB++;
+
+ sum += inA1 * inB1 + inA2 * inB2;
+ sum2 += inA1 * inB3 + inA2 * inB4;
+
+ inB1 = *pB++;
+ inB3 = *pB++;
+ inB2 = *pB++;
+ inB4 = *pB++;
+
+ sum3 += inA1 * inB1 + inA2 * inB2;
+ sum4 += inA1 * inB3 + inA2 * inB4;
+
+ colCnt--;
+ }
+
+ colCnt = dim_vec & 0x1;
+ while (colCnt)
+ {
+ q15_t inA = *pA++;
+ q7_t inB = *pB++;
+ sum += inA * inB;
+ inB = *pB++;
+ sum2 += inA * inB;
+ inB = *pB++;
+ sum3 += inA * inB;
+ inB = *pB++;
+ sum4 += inA * inB;
+
+ colCnt--;
+ }
+ *pO++ = (q15_t) __SSAT((sum >> out_shift), 16);
+ *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16);
+ *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16);
+ *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16);
+
+ rowCnt--;
+ }
+
+ rowCnt = num_of_rows & 0x3;
+
+ while (rowCnt)
+ {
+ int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ int j;
+
+ pA = pV;
+ for (j = 0; j < dim_vec; j++)
+ {
+ q15_t inA = *pA++;
+ q7_t inB = *pB++;
+ ip_out += inA * inB;
+ }
+ *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16);
+
+ rowCnt--;
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to ARM_MATH_SUCCESS */
+ return (ARM_MATH_SUCCESS);
+
+}
+
+/**
+ * @} end of FC group
+ */
diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c new file mode 100644 index 0000000..a4c6bba --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c @@ -0,0 +1,193 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_fully_connected_q15.c
+ * Description: Q15 basic fully-connected layer function
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup FC
+ * @{
+ */
+
+ /**
+ * @brief Q15 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * vec_buffer size: 0
+ *
+ */
+
+arm_status
+arm_fully_connected_q15(const q15_t * pV,
+ const q15_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q15_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ const q15_t *pB = pM;
+ const q15_t *pB2 = pB + dim_vec;
+ q15_t *pO = pOut;
+ const q15_t *pA;
+ const q15_t *pBias = bias;
+ uint16_t rowCnt = num_of_rows >> 1;
+
+ /* this loop loops over different output */
+ while (rowCnt) {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = dim_vec >> 2;
+
+ pA = pV;
+ pB2 = pB + dim_vec;
+
+ while (colCnt)
+ {
+ q31_t inV1, inM1, inM2;
+ inV1 = *__SIMD32(pA)++;
+ inM1 = *__SIMD32(pB)++;
+ sum = __SMLAD(inV1, inM1, sum);
+ inM2 = *__SIMD32(pB2)++;
+ sum2 = __SMLAD(inV1, inM2, sum2);
+
+ inV1 = *__SIMD32(pA)++;
+ inM1 = *__SIMD32(pB)++;
+ sum = __SMLAD(inV1, inM1, sum);
+ inM2 = *__SIMD32(pB2)++;
+ sum2 = __SMLAD(inV1, inM2, sum2);
+
+ colCnt--;
+ }
+ colCnt = dim_vec & 0x3;
+ while (colCnt)
+ {
+ q15_t inV = *pA++;
+ q15_t inM = *pB++;
+ q15_t inM2 = *pB2++;
+
+ sum += inV * inM;
+ sum2 += inV * inM2;
+ colCnt--;
+ } /* while over colCnt */
+ *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
+ *pO++ = (q15_t) (__SSAT((sum2>> out_shift), 16));
+
+ /* adjust the pointers and counters */
+ pB = pB + dim_vec;
+ rowCnt --;
+ }
+
+ rowCnt = num_of_rows & 0x1;
+
+ while (rowCnt) {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = dim_vec >> 2;
+
+ pA = pV;
+
+ while (colCnt) {
+ q31_t inV1, inM1;
+ inV1 = *__SIMD32(pA)++;
+ inM1 = *__SIMD32(pB)++;
+ sum = __SMLAD(inV1, inM1, sum);
+
+ inV1 = *__SIMD32(pA)++;
+ inM1 = *__SIMD32(pB)++;
+ sum = __SMLAD(inV1, inM1, sum);
+
+ colCnt--;
+ }
+
+ /* left-over of the vector */
+ colCnt = dim_vec & 0x3;
+ while(colCnt) {
+ q15_t inV = *pA++;
+ q15_t inM = *pB++;
+
+ sum += inV * inM;
+
+ colCnt--;
+ }
+
+ *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
+
+ rowCnt --;
+ }
+
+#else
+ int i, j;
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ for (i = 0; i < num_of_rows; i++)
+ {
+ int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+ for (j = 0; j < dim_vec; j++)
+ {
+ ip_out += pV[j] * pM[i * dim_vec + j];
+ }
+ pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16);
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to application */
+ return (ARM_MATH_SUCCESS);
+
+}
+
+/**
+ * @} end of FC group
+ */
diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c new file mode 100644 index 0000000..8f3bbea --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c @@ -0,0 +1,332 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_fully_connected_q15_opt.c
+ * Description: Q15 opt fully-connected layer function
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup FC
+ * @{
+ */
+
+ /**
+ * @brief Q15 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * vec_buffer size: 0
+ *
+ * Here we use only one pointer to read 4 rows in the weight
+ * matrix. So if the original matrix looks like this:
+ *
+ * | a11 | a12 | a13 |
+ *
+ * | a21 | a22 | a23 |
+ *
+ * | a31 | a32 | a33 |
+ *
+ * | a41 | a42 | a43 |
+ *
+ * | a51 | a52 | a53 |
+ *
+ * | a61 | a62 | a63 |
+ *
+ * We operates on multiple-of-4 rows, so the first four rows becomes
+ *
+ * | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
+ *
+ * | a13 | a23 | a33 | a43 |
+ *
+ * Remaining rows are kept the same original order.
+ *
+ * So the stored weight matrix looks like this:
+ *
+ *
+ * | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
+ *
+ * | a13 | a23 | a33 | a43 | a51 | a52 | a53 | a61 |
+ *
+ * | a62 | a63 |
+ */
+
+arm_status
+arm_fully_connected_q15_opt(const q15_t * pV,
+ const q15_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q15_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ const q15_t *pB = pM;
+ q15_t *pO = pOut;
+ const q15_t *pBias = bias;
+ const q15_t *pA = pV;
+
+ uint16_t rowCnt = num_of_rows >> 2;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = dim_vec >> 1;
+
+ pA = pV;
+
+#ifdef USE_INTRINSIC
+
+ while (colCnt)
+ {
+ q31_t inM11, inM12, inM13, inM14;
+ q31_t inV;
+
+ inV = *__SIMD32(pA)++;
+ inM11 = *__SIMD32(pB)++;
+ sum = __SMLAD(inV, inM11, sum);
+ inM12 = *__SIMD32(pB)++;
+ sum2 = __SMLAD(inV, inM12, sum2);
+ inM13 = *__SIMD32(pB)++;
+ sum3 = __SMLAD(inV, inM13, sum3);
+ inM14 = *__SIMD32(pB)++;
+ sum4 = __SMLAD(inV, inM14, sum4);
+ colCnt--;
+ }
+
+#else
+
+ /*
+ * register needed:
+ * loop counter: colCnt
+ * accumulators: sum, sum2, sum3, sum4
+ * pointers: pB, pA
+ * weight data: inM11, inM12, inM13, inM14
+ * activation data: inV
+ */
+
+ asm volatile ("COL_LOOP_%=:\n"
+ "ldr.w r4, [%[pA]], #4\n"
+ "ldr.w r0, [%[pB]], #16\n"
+ "smlad %[sum], r4, r0, %[sum]\n"
+ "ldr.w r1, [%[pB] , #-12]\n"
+ "smlad %[sum2], r4, r1, %[sum2]\n"
+ "ldr.w r2, [%[pB] , #-8]\n"
+ "smlad %[sum3], r4, r2, %[sum3]\n"
+ "ldr.w r3, [%[pB] , #-4]\n"
+ "smlad %[sum4], r4, r3, %[sum4]\n"
+ "subs %[colCnt], #1\n"
+ "bne COL_LOOP_%=\n":[sum] "+r"(sum),
+ [sum2] "+r"(sum2),[sum3] "+r"(sum3),
+ [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
+
+#endif /* USE_INTRINSIC */
+
+ colCnt = dim_vec & 0x1;
+ while (colCnt)
+ {
+
+ q15_t inV = *pA++;
+ q15_t inM = *pB++;
+ q15_t inM2 = *pB++;
+ q15_t inM3 = *pB++;
+ q15_t inM4 = *pB++;
+
+ sum += inV * inM;
+ sum2 += inV * inM2;
+ sum3 += inV * inM3;
+ sum4 += inV * inM4;
+ colCnt--;
+ } /* while over colCnt */
+ *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
+ *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16));
+ *pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16));
+ *pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16));
+
+ /* adjust the pointers and counters */
+ rowCnt--;
+ }
+
+ /* left-over part of the rows */
+ rowCnt = num_of_rows & 0x3;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = dim_vec >> 2;
+
+ pA = pV;
+
+ while (colCnt)
+ {
+ q31_t inV1, inV2, inM1, inM2;
+
+ inM1 = *__SIMD32(pB)++;
+ inV1 = *__SIMD32(pA)++;
+ sum = __SMLAD(inV1, inM1, sum);
+
+ inM2 = *__SIMD32(pB)++;
+ inV2 = *__SIMD32(pA)++;
+ sum = __SMLAD(inV2, inM2, sum);
+
+ colCnt--;
+ }
+
+ /* left-over of the vector */
+ colCnt = dim_vec & 0x3;
+ while (colCnt)
+ {
+ q15_t inV = *pA++;
+ q15_t inM = *pB++;
+ sum += inV * inM;
+ colCnt--;
+ }
+
+ *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
+
+ rowCnt--;
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ uint16_t rowCnt = num_of_rows >> 2;
+ const q15_t *pB = pM;
+ const q15_t *pA;
+ q15_t *pO = pOut;
+ const q15_t *pBias = bias;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = dim_vec >> 1;
+
+ pA = pV;
+ while (colCnt)
+ {
+ q15_t inA1 = *pA++;
+ q15_t inA2 = *pA++;
+
+ q15_t inB1 = *pB++;
+ q15_t inB2 = *pB++;
+ sum += inA1 * inB1 + inA2 * inB2;
+
+ inB1 = *pB++;
+ inB2 = *pB++;
+ sum2 += inA1 * inB1 + inA2 * inB2;
+
+ inB1 = *pB++;
+ inB2 = *pB++;
+ sum3 += inA1 * inB1 + inA2 * inB2;
+
+ inB1 = *pB++;
+ inB2 = *pB++;
+ sum4 += inA1 * inB1 + inA2 * inB2;
+
+ colCnt--;
+ }
+ colCnt = dim_vec & 0x1;
+ while (colCnt)
+ {
+ q15_t inA = *pA++;
+ q15_t inB = *pB++;
+ sum += inA * inB;
+ inB = *pB++;
+ sum2 += inA * inB;
+ inB = *pB++;
+ sum3 += inA * inB;
+ inB = *pB++;
+ sum4 += inA * inB;
+ colCnt--;
+ }
+ *pO++ = (q15_t) __SSAT((sum >> out_shift), 16);
+ *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16);
+ *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16);
+ *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16);
+
+ rowCnt--;
+ }
+ rowCnt = num_of_rows & 0x3;
+
+ while (rowCnt)
+ {
+ int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ int j;
+
+ pA = pV;
+ for (j = 0; j < dim_vec; j++)
+ {
+ q15_t inA = *pA++;
+ q15_t inB = *pB++;
+ ip_out += inA * inB;
+ }
+ *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16);
+
+ rowCnt--;
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to ARM_MATH_SUCCESS */
+ return (ARM_MATH_SUCCESS);
+
+}
+
+/**
+ * @} end of FC group
+ */
diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c new file mode 100644 index 0000000..75e924f --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c @@ -0,0 +1,198 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_fully_connected_q7.c
+ * Description: Q7 basic fully-connected layer function
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup FC
+ * @{
+ */
+
+ /**
+ * @brief Q7 basic fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * vec_buffer size: dim_vec
+ *
+ * This basic function is designed to work with regular weight
+ * matrix without interleaving.
+ *
+ */
+
+arm_status
+arm_fully_connected_q7(const q7_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift, const q7_t * bias, q7_t * pOut, q15_t * vec_buffer)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ const q7_t *pB = pM;
+ const q7_t *pB2;
+ q7_t *pO = pOut;
+ const q7_t *pBias = bias;
+ q15_t *pA;
+ uint16_t rowCnt = num_of_rows >> 1;
+
+ /* expand the vector into the buffer */
+ arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec);
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ uint16_t colCnt = dim_vec >> 2;
+
+ pA = vec_buffer;
+ pB2 = pB + dim_vec;
+
+ while (colCnt)
+ {
+ q31_t inV, inM11, inM12, inM21, inM22;
+ pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12);
+ pB2 = (q7_t *) read_and_pad_reordered((void *)pB2, &inM21, &inM22);
+
+ inV = *__SIMD32(pA)++;
+
+ sum = __SMLAD(inV, inM11, sum);
+ sum2 = __SMLAD(inV, inM21, sum2);
+
+ inV = *__SIMD32(pA)++;
+
+ sum = __SMLAD(inV, inM12, sum);
+ sum2 = __SMLAD(inV, inM22, sum2);
+
+ colCnt--;
+ }
+ colCnt = dim_vec & 0x3;
+ while (colCnt)
+ {
+ q7_t inV = *pA++;
+ q15_t inM = *pB++;
+ q15_t inM2 = *pB2++;
+
+ sum += inV * inM;
+ sum2 += inV * inM2;
+ colCnt--;
+ } /* while over colCnt */
+ *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
+ *pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8));
+
+ /* adjust the pointers and counters */
+ pB += dim_vec;
+ rowCnt--;
+ }
+
+ /* left-over part of the rows */
+ rowCnt = num_of_rows & 0x1;
+
+ while (rowCnt)
+ {
+ uint16_t colCnt = dim_vec >> 2;
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ pA = vec_buffer;
+
+ while (colCnt)
+ {
+ q31_t inV1, inV2, inM11, inM12;
+
+ pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12);
+
+ inV1 = *__SIMD32(pA)++;
+ sum = __SMLAD(inV1, inM11, sum);
+
+ inV2 = *__SIMD32(pA)++;
+ sum = __SMLAD(inV2, inM12, sum);
+
+ colCnt--;
+ }
+
+ /* left-over of the vector */
+ colCnt = dim_vec & 0x3;
+ while (colCnt)
+ {
+ q7_t inV = *pA++;
+ q15_t inM = *pB++;
+ sum += inV * inM;
+ colCnt--;
+ }
+
+ *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
+
+ rowCnt--;
+ }
+
+#else
+ int i, j;
+
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ for (i = 0; i < num_of_rows; i++)
+ {
+ int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+ for (j = 0; j < dim_vec; j++)
+ {
+ ip_out += pV[j] * pM[i * dim_vec + j];
+ }
+ pOut[i] = (q7_t) __SSAT((ip_out >> out_shift), 8);
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to ARM_MATH_SUCCESS */
+ return (ARM_MATH_SUCCESS);
+
+}
+
+/**
+ * @} end of FC group
+ */
diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c new file mode 100644 index 0000000..d197adc --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c @@ -0,0 +1,484 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_fully_connected_q7_opt.c
+ * Description: Q7 basic fully-connected layer function
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup FC
+ * @{
+ */
+
+ /**
+ * @brief Q7 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * vec_buffer size: dim_vec
+ *
+ * This opt function is designed to work with interleaved weight
+ * matrix. The vector input is assumed in q7_t format, we call
+ * arm_q7_to_q15_no_shift_shuffle function to expand into
+ * q15_t format with certain weight re-ordering, refer to the function
+ * comments for more details.
+ * Here we use only one pointer to read 4 rows in the weight
+ * matrix. So if the original q7_t matrix looks like this:
+ *
+ * | a11 | a12 | a13 | a14 | a15 | a16 | a17 |
+ *
+ * | a21 | a22 | a23 | a24 | a25 | a26 | a27 |
+ *
+ * | a31 | a32 | a33 | a34 | a35 | a36 | a37 |
+ *
+ * | a41 | a42 | a43 | a44 | a45 | a46 | a47 |
+ *
+ * | a51 | a52 | a53 | a54 | a55 | a56 | a57 |
+ *
+ * | a61 | a62 | a63 | a64 | a65 | a66 | a67 |
+ *
+ *
+ * We operates on multiple-of-4 rows, so the first four rows becomes
+ *
+ * | a11 | a21 | a13 | a23 | a31 | a41 | a33 | a43 |
+ *
+ * | a12 | a22 | a14 | a24 | a32 | a42 | a34 | a44 |
+ *
+ * | a15 | a25 | a35 | a45 | a16 | a26 | a36 | a46 |
+ *
+ * So within the kernel, we first read the re-ordered vector in as:
+ *
+ * | b1 | b3 | and | b2 | b4 |
+ *
+ * the four q31_t weights will look like
+ *
+ * | a11 | a13 |, | a21 | a23 |, | a31 | a33 |, | a41 | a43 |
+ *
+ * | a12 | a14 |, | a22 | a24 |, | a32 | a34 |, | a42 | a44 |
+ *
+ * The column left over will be in-order.
+ * which is:
+ *
+ * | a17 | a27 | a37 | a47 |
+ *
+ * For the left-over rows, we do 1x1 computation, so the data remains
+ * as its original order.
+ *
+ * So the stored weight matrix looks like this:
+ *
+ * | a11 | a21 | a13 | a23 | a31 | a41 |
+ *
+ * | a33 | a43 | a12 | a22 | a14 | a24 |
+ *
+ * | a32 | a42 | a34 | a44 | a15 | a25 |
+ *
+ * | a35 | a45 | a16 | a26 | a36 | a46 |
+ *
+ * | a17 | a27 | a37 | a47 | a51 | a52 |
+ *
+ * | a53 | a54 | a55 | a56 | a57 | a61 |
+ *
+ * | a62 | a63 | a64 | a65 | a66 | a67 |
+ *
+ *
+ */
+
+arm_status
+arm_fully_connected_q7_opt(const q7_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut,
+ q15_t * vec_buffer)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ const q7_t *pB = pM;
+ q7_t *pO = pOut;
+ const q7_t *pBias = bias;
+ q15_t *pA;
+ uint16_t rowCnt = num_of_rows >> 2;
+
+ arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec);
+
+ while (rowCnt)
+ {
+
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = dim_vec >> 2;
+
+ pA = vec_buffer;
+
+#ifdef USE_INTRINSIC
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ while (colCnt)
+ {
+ q31_t inM11, inM12, inM13, inM14;
+ q31_t inV;
+
+ inV = *__SIMD32(pA)++;
+ inM11 = *__SIMD32(pB)++;
+ inM12 = __SXTB16(__ROR(inM11, 8));
+ inM11 = __SXTB16(inM11);
+ sum = __SMLAD(inM11, inV, sum);
+ sum2 = __SMLAD(inM12, inV, sum2);
+ inM13 = *__SIMD32(pB)++;
+ inM14 = __SXTB16(__ROR(inM13, 8));
+ inM13 = __SXTB16(inM13);
+ sum3 = __SMLAD(inM13, inV, sum3);
+ sum4 = __SMLAD(inM14, inV, sum4);
+
+ inV = *__SIMD32(pA)++;
+ inM11 = *__SIMD32(pB)++;
+ inM12 = __SXTB16(__ROR(inM11, 8));
+ inM11 = __SXTB16(inM11);
+ sum = __SMLAD(inM11, inV, sum);
+ sum2 = __SMLAD(inM12, inV, sum2);
+ inM13 = *__SIMD32(pB)++;
+ inM14 = __SXTB16(__ROR(inM13, 8));
+ inM13 = __SXTB16(inM13);
+ sum3 = __SMLAD(inM13, inV, sum3);
+ sum4 = __SMLAD(inM14, inV, sum4);
+ colCnt--;
+ }
+#else
+ while (colCnt)
+ {
+ q31_t inM11, inM12, inM13, inM14;
+ q31_t inV;
+
+ inV = *__SIMD32(pA)++;
+ inM11 = *__SIMD32(pB)++;
+ inM12 = __SXTB16(__ROR(inM11, 8));
+ inM11 = __SXTB16(inM11);
+ sum = __SMLAD(inM12, inV, sum);
+ sum2 = __SMLAD(inM11, inV, sum2);
+ inM13 = *__SIMD32(pB)++;
+ inM14 = __SXTB16(__ROR(inM13, 8));
+ inM13 = __SXTB16(inM13);
+ sum3 = __SMLAD(inM14, inV, sum3);
+ sum4 = __SMLAD(inM13, inV, sum4);
+
+ inV = *__SIMD32(pA)++;
+ inM11 = *__SIMD32(pB)++;
+ inM12 = __SXTB16(__ROR(inM11, 8));
+ inM11 = __SXTB16(inM11);
+ sum = __SMLAD(inM12, inV, sum);
+ sum2 = __SMLAD(inM11, inV, sum2);
+ inM13 = *__SIMD32(pB)++;
+ inM14 = __SXTB16(__ROR(inM13, 8));
+ inM13 = __SXTB16(inM13);
+ sum3 = __SMLAD(inM14, inV, sum3);
+ sum4 = __SMLAD(inM13, inV, sum4);
+ colCnt--;
+ }
+#endif /* ARM_MATH_BIG_ENDIAN */
+
+#else
+
+ /*
+ * register needed:
+ * loop counter: colCnt
+ * accumulators: sum, sum2, sum3, sum4
+ * pointers: pB, pA
+ * weight data: inM11, inM12, inM13, inM14
+ * activation data: inV
+ */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ asm volatile ("COL_LOOP_%=:\n"
+ "ldr.w r4, [%[pA]], #8\n"
+ "ldr.w r1, [%[pB]], #16\n"
+ "mov.w r0, r1, ror #8\n"
+ "sxtb16 r0, r0\n"
+ "sxtb16 r1, r1\n"
+ "smlad %[sum], r4, r1, %[sum]\n"
+ "smlad %[sum2], r4, r0, %[sum2]\n"
+ "ldr.w r3, [%[pB], #-12]\n"
+ "mov.w r2, r3, ror #8\n"
+ "sxtb16 r2, r2\n"
+ "sxtb16 r3, r3\n"
+ "smlad %[sum3], r4, r3, %[sum3]\n"
+ "smlad %[sum4], r4, r2, %[sum4]\n"
+ "ldr.w r4, [%[pA], #-4]\n"
+ "ldr.w r1, [%[pB], #-8]\n"
+ "mov.w r0, r1, ror #8\n"
+ "sxtb16 r0, r0\n"
+ "sxtb16 r1, r1\n"
+ "smlad %[sum], r4, r1, %[sum]\n"
+ "smlad %[sum2], r4, r0, %[sum2]\n"
+ "ldr.w r3, [%[pB], #-4]\n"
+ "mov.w r2, r3, ror #8\n"
+ "sxtb16 r2, r2\n"
+ "sxtb16 r3, r3\n"
+ "smlad %[sum3], r4, r3, %[sum3]\n"
+ "smlad %[sum4], r4, r2, %[sum4]\n"
+ "subs %[colCnt], #1\n"
+ "bne COL_LOOP_%=\n":[sum] "+r"(sum),
+ [sum2] "+r"(sum2),[sum3] "+r"(sum3),
+ [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
+#else
+ asm volatile ("COL_LOOP_%=:\n"
+ "ldr.w r4, [%[pA]], #8\n"
+ "ldr.w r1, [%[pB]], #16\n"
+ "mov.w r0, r1, ror #8\n"
+ "sxtb16 r0, r0\n"
+ "sxtb16 r1, r1\n"
+ "smlad %[sum], r4, r0, %[sum]\n"
+ "smlad %[sum2], r4, r1, %[sum2]\n"
+ "ldr.w r3, [%[pB], #-12]\n"
+ "mov.w r2, r3, ror #8\n"
+ "sxtb16 r2, r2\n"
+ "sxtb16 r3, r3\n"
+ "smlad %[sum3], r4, r2, %[sum3]\n"
+ "smlad %[sum4], r4, r3, %[sum4]\n"
+ "ldr.w r4, [%[pA], #-4]\n"
+ "ldr.w r1, [%[pB], #-8]\n"
+ "mov.w r0, r1, ror #8\n"
+ "sxtb16 r0, r0\n"
+ "sxtb16 r1, r1\n"
+ "smlad %[sum], r4, r0, %[sum]\n"
+ "smlad %[sum2], r4, r1, %[sum2]\n"
+ "ldr.w r3, [%[pB], #-4]\n"
+ "mov.w r2, r3, ror #8\n"
+ "sxtb16 r2, r2\n"
+ "sxtb16 r3, r3\n"
+ "smlad %[sum3], r4, r2, %[sum3]\n"
+ "smlad %[sum4], r4, r3, %[sum4]\n"
+ "subs %[colCnt], #1\n"
+ "bne COL_LOOP_%=\n":[sum] "+r"(sum),
+ [sum2] "+r"(sum2),[sum3] "+r"(sum3),
+ [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
+#endif /* ARM_MATH_BIG_ENDIAN */
+
+#endif /* USE_INTRINSIC */
+
+ colCnt = dim_vec & 0x3;
+ while (colCnt)
+ {
+ q15_t inV = *pA++;
+ q7_t inM = *pB++;
+ q7_t inM2 = *pB++;
+ q7_t inM3 = *pB++;
+ q7_t inM4 = *pB++;
+
+ sum += inV * inM;
+ sum2 += inV * inM2;
+ sum3 += inV * inM3;
+ sum4 += inV * inM4;
+ colCnt--;
+ } /* while over colCnt */
+ *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
+ *pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8));
+ *pO++ = (q7_t) (__SSAT((sum3 >> out_shift), 8));
+ *pO++ = (q7_t) (__SSAT((sum4 >> out_shift), 8));
+
+ /* adjust the pointers and counters */
+ rowCnt--;
+ }
+
+ /* left-over part of the rows */
+ rowCnt = num_of_rows & 0x3;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ uint16_t colCnt = dim_vec >> 2;
+
+ pA = vec_buffer;
+
+ while (colCnt)
+ {
+ q31_t inV1, inV2, inM11, inM12;
+
+ pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12);
+
+ inV1 = *__SIMD32(pA)++;
+ sum = __SMLAD(inV1, inM11, sum);
+
+ inV2 = *__SIMD32(pA)++;
+ sum = __SMLAD(inV2, inM12, sum);
+
+ colCnt--;
+ }
+
+ /* left-over of the vector */
+ colCnt = dim_vec & 0x3;
+ while (colCnt)
+ {
+ q15_t inV = *pA++;
+ q7_t inM = *pB++;
+ sum += inV * inM;
+ colCnt--;
+ }
+
+ *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8));
+
+ rowCnt--;
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+ uint16_t rowCnt = num_of_rows >> 2;
+ const q7_t *pB = pM;
+ const q7_t *pA;
+ q7_t *pO = pOut;
+ const q7_t *pBias = bias;
+
+ while (rowCnt)
+ {
+ q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+ q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ uint16_t colCnt = dim_vec >> 2;
+
+ pA = pV;
+
+ while (colCnt)
+ {
+ q7_t inA1 = *pA++;
+ q7_t inA3 = *pA++;
+ q7_t inA2 = *pA++;
+ q7_t inA4 = *pA++;
+
+ q7_t inB1 = *pB++;
+ q7_t inB3 = *pB++;
+ q7_t inB2 = *pB++;
+ q7_t inB4 = *pB++;
+
+ sum += inA1 * inB1 + inA2 * inB2;
+ sum2 += inA1 * inB3 + inA2 * inB4;
+
+ inB1 = *pB++;
+ inB3 = *pB++;
+ inB2 = *pB++;
+ inB4 = *pB++;
+
+ sum3 += inA1 * inB1 + inA2 * inB2;
+ sum4 += inA1 * inB3 + inA2 * inB4;
+
+ inB1 = *pB++;
+ inB3 = *pB++;
+ inB2 = *pB++;
+ inB4 = *pB++;
+
+ sum += inA3 * inB1 + inA4 * inB2;
+ sum2 += inA3 * inB3 + inA4 * inB4;
+
+ inB1 = *pB++;
+ inB3 = *pB++;
+ inB2 = *pB++;
+ inB4 = *pB++;
+
+ sum3 += inA3 * inB1 + inA4 * inB2;
+ sum4 += inA3 * inB3 + inA4 * inB4;
+
+ colCnt--;
+ }
+ colCnt = dim_vec & 0x3;
+ while (colCnt)
+ {
+ q7_t inA = *pA++;
+ q7_t inB = *pB++;
+ sum += inA * inB;
+ inB = *pB++;
+ sum2 += inA * inB;
+ inB = *pB++;
+ sum3 += inA * inB;
+ inB = *pB++;
+ sum4 += inA * inB;
+
+ colCnt--;
+ }
+ *pO++ = (q7_t) __SSAT((sum >> out_shift), 8);
+ *pO++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
+ *pO++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
+ *pO++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
+
+ rowCnt--;
+ }
+
+ rowCnt = num_of_rows & 0x3;
+
+ while (rowCnt)
+ {
+ int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
+
+ int j;
+
+ pA = pV;
+ for (j = 0; j < dim_vec; j++)
+ {
+ q7_t inA = *pA++;
+ q7_t inB = *pB++;
+ ip_out += inA * inB;
+ }
+ *pO++ = (q7_t) __SSAT((ip_out >> out_shift), 8);
+
+ rowCnt--;
+ }
+
+#endif /* ARM_MATH_DSP */
+
+ /* Return to ARM_MATH_SUCCESS */
+ return (ARM_MATH_SUCCESS);
+
+}
+
+/**
+ * @} end of FC group
+ */
diff --git a/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c b/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c new file mode 100644 index 0000000..de7668b --- /dev/null +++ b/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c @@ -0,0 +1,147 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nn_mult_q15.c
+ * Description: Q15 vector multiplication with variable output shifts
+ *
+ * $Date: 13. July 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupSupport
+ */
+
+/**
+ * @addtogroup NNBasicMath
+ * @{
+ */
+
+
+/**
+ * @brief Q7 vector multiplication with variable output shifts
+ * @param[in] *pSrcA pointer to the first input vector
+ * @param[in] *pSrcB pointer to the second input vector
+ * @param[out] *pDst pointer to the output vector
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function uses saturating arithmetic.
+ * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
+ */
+
+void arm_nn_mult_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ const uint16_t out_shift,
+ uint32_t blockSize)
+{
+ uint32_t blkCnt; /* loop counters */
+
+#if defined (ARM_MATH_DSP)
+
+/* Run the below code for Cortex-M4 and Cortex-M3 */
+ q31_t inA1, inA2, inB1, inB2; /* temporary input variables */
+ q15_t out1, out2, out3, out4; /* temporary output variables */
+ q31_t mul1, mul2, mul3, mul4; /* temporary variables */
+
+ /* loop Unrolling */
+ blkCnt = blockSize >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* read two samples at a time from sourceA */
+ inA1 = *__SIMD32(pSrcA)++;
+ /* read two samples at a time from sourceB */
+ inB1 = *__SIMD32(pSrcB)++;
+ /* read two samples at a time from sourceA */
+ inA2 = *__SIMD32(pSrcA)++;
+ /* read two samples at a time from sourceB */
+ inB2 = *__SIMD32(pSrcB)++;
+
+ /* multiply mul = sourceA * sourceB */
+ mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16));
+ mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1);
+ mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16));
+ mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2);
+
+ /* saturate result to 16 bit */
+ out1 = (q15_t) __SSAT((mul1 + NN_ROUND(out_shift)) >> out_shift, 16);
+ out2 = (q15_t) __SSAT((mul2 + NN_ROUND(out_shift)) >> out_shift, 16);
+ out3 = (q15_t) __SSAT((mul3 + NN_ROUND(out_shift)) >> out_shift, 16);
+ out4 = (q15_t) __SSAT((mul4 + NN_ROUND(out_shift)) >> out_shift, 16);
+
+ /* store the result */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
+ *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
+
+#else
+
+ *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16);
+ *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16);
+
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ /* Decrement the blockSize loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x4U;
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = blockSize;
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+
+ while (blkCnt > 0U)
+ {
+ /* C = A * B */
+ /* Multiply the inputs and store the result in the destination buffer */
+ *pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 16);
+
+ /* Decrement the blockSize loop counter */
+ blkCnt--;
+ }
+}
+
+/**
+ * @} end of NNBasicMath group
+ */
+
diff --git a/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c b/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c new file mode 100644 index 0000000..1b4e02c --- /dev/null +++ b/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c @@ -0,0 +1,119 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nn_mult_q7.c
+ * Description: Q7 vector multiplication with variable output shifts
+ *
+ * $Date: 13. July 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupSupport
+ */
+
+/**
+ * @addtogroup NNBasicMath
+ * @{
+ */
+
+/**
+ * @brief Q7 vector multiplication with variable output shifts
+ * @param[in] *pSrcA pointer to the first input vector
+ * @param[in] *pSrcB pointer to the second input vector
+ * @param[out] *pDst pointer to the output vector
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function uses saturating arithmetic.
+ * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
+ */
+
+void arm_nn_mult_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ const uint16_t out_shift,
+ uint32_t blockSize)
+{
+ uint32_t blkCnt; /* loop counters */
+
+#if defined (ARM_MATH_DSP)
+
+/* Run the below code for Cortex-M4 and Cortex-M3 */
+ q7_t out1, out2, out3, out4; /* Temporary variables to store the product */
+
+ /* loop Unrolling */
+ blkCnt = blockSize >> 2U;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0U)
+ {
+ /* C = A * B */
+ /* Multiply the inputs and store the results in temporary variables */
+ out1 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
+ out2 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
+ out3 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
+ out4 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
+
+ /* Store the results of 4 inputs in the destination buffer in single cycle by packing */
+ *__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4);
+
+ /* Decrement the blockSize loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x4U;
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = blockSize;
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+
+ while (blkCnt > 0U)
+ {
+ /* C = A * B */
+ /* Multiply the inputs and store the result in the destination buffer */
+ *pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8);
+
+ /* Decrement the blockSize loop counter */
+ blkCnt--;
+ }
+}
+
+/**
+ * @} end of NNBasicMath group
+ */
diff --git a/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c b/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c new file mode 100644 index 0000000..cabd9b1 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c @@ -0,0 +1,297 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nntables.c
+ * Description: Converts the elements of the Q7 vector to Q15 vector without left-shift
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_nnsupportfunctions.h"
+
+/**
+ * @brief tables for various activation functions
+ *
+ * This file include the declaration of common tables.
+ * Most of them are used for activation functions
+ *
+ * Assumption:
+ * Unified table: input is 3.x format, i.e, range of [-8, 8)
+ * sigmoid(8) = 0.9996646498695336
+ * tanh(8) = 0.9999997749296758
+ * The accuracy here should be good enough
+ *
+ * 2-stage HL table:
+ *
+ * The entire input range is divided into two parts:
+ *
+ * Low range table: 0x000x xxxx or 0x111x xxxx
+ * table entry will be the binary number excluding the first
+ * two digits, i.e., 0x0x xxxx or 0x1x xxxx
+ *
+ *
+ *
+ * High range table 0x0010 0000 -- 0x0111 1111
+ * 0x1000 0000 -- 0x1101 1111
+ *
+ * For positive numbers, table entry will be
+ * 0x0010 0000 -- 0x0111 1111 minus 0x0010 0000
+ * i.e., 0x0000 0000 - 0x0101 11111
+ *
+ * same thing for the negative numbers, table entry will be
+ * 0x1000 0000 -- 0x1101 1111 minux 0x0010 0000
+ * i.e., 0x0110 0000 - 0x1011 1111
+ */
+
+const q7_t sigmoidTable_q7[256] = {
+ 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e,
+ 0x50, 0x52, 0x53, 0x55, 0x57, 0x59, 0x5a, 0x5c,
+ 0x5e, 0x5f, 0x61, 0x62, 0x63, 0x65, 0x66, 0x67,
+ 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70,
+ 0x71, 0x72, 0x72, 0x73, 0x74, 0x74, 0x75, 0x76,
+ 0x76, 0x77, 0x77, 0x78, 0x78, 0x79, 0x79, 0x7a,
+ 0x7a, 0x7a, 0x7b, 0x7b, 0x7b, 0x7c, 0x7c, 0x7c,
+ 0x7c, 0x7c, 0x7d, 0x7d, 0x7d, 0x7d, 0x7d, 0x7e,
+ 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
+ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
+ 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
+ 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x04,
+ 0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06,
+ 0x06, 0x06, 0x07, 0x07, 0x08, 0x08, 0x09, 0x09,
+ 0x0a, 0x0a, 0x0b, 0x0c, 0x0c, 0x0d, 0x0e, 0x0e,
+ 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16,
+ 0x17, 0x19, 0x1a, 0x1b, 0x1d, 0x1e, 0x1f, 0x21,
+ 0x22, 0x24, 0x26, 0x27, 0x29, 0x2b, 0x2d, 0x2e,
+ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
+};
+
+const q15_t sigmoidTable_q15[256] = {
+ 0x4000, 0x4200, 0x43ff, 0x45fc, 0x47f5, 0x49eb, 0x4bdc, 0x4dc8,
+ 0x4fad, 0x518a, 0x5360, 0x552c, 0x56ef, 0x58a8, 0x5a57, 0x5bfb,
+ 0x5d93, 0x5f20, 0x60a1, 0x6216, 0x637f, 0x64db, 0x662b, 0x676f,
+ 0x68a6, 0x69d2, 0x6af1, 0x6c05, 0x6d0d, 0x6e09, 0x6efb, 0x6fe2,
+ 0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7,
+ 0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f,
+ 0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03,
+ 0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d,
+ 0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81,
+ 0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17,
+ 0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72,
+ 0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa,
+ 0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc,
+ 0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0,
+ 0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed,
+ 0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4,
+ 0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011,
+ 0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c,
+ 0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e,
+ 0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c,
+ 0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d,
+ 0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce,
+ 0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152,
+ 0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a,
+ 0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388,
+ 0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8,
+ 0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a,
+ 0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70,
+ 0x0f42, 0x101e, 0x1105, 0x11f7, 0x12f3, 0x13fb, 0x150f, 0x162e,
+ 0x175a, 0x1891, 0x19d5, 0x1b25, 0x1c81, 0x1dea, 0x1f5f, 0x20e0,
+ 0x226d, 0x2405, 0x25a9, 0x2758, 0x2911, 0x2ad4, 0x2ca0, 0x2e76,
+ 0x3053, 0x3238, 0x3424, 0x3615, 0x380b, 0x3a04, 0x3c01, 0x3e00,
+};
+
+const q15_t sigmoidLTable_q15[128] = {
+ 0x4000, 0x4100, 0x4200, 0x42ff, 0x43ff, 0x44fd, 0x45fc, 0x46f9,
+ 0x47f5, 0x48f1, 0x49eb, 0x4ae5, 0x4bdc, 0x4cd3, 0x4dc8, 0x4ebb,
+ 0x4fad, 0x509c, 0x518a, 0x5276, 0x5360, 0x5447, 0x552c, 0x560f,
+ 0x56ef, 0x57cd, 0x58a8, 0x5981, 0x5a57, 0x5b2a, 0x5bfb, 0x5cc9,
+ 0x5d93, 0x5e5b, 0x5f20, 0x5fe2, 0x60a1, 0x615d, 0x6216, 0x62cc,
+ 0x637f, 0x642e, 0x64db, 0x6584, 0x662b, 0x66ce, 0x676f, 0x680c,
+ 0x68a6, 0x693d, 0x69d2, 0x6a63, 0x6af1, 0x6b7c, 0x6c05, 0x6c8a,
+ 0x6d0d, 0x6d8d, 0x6e09, 0x6e84, 0x6efb, 0x6f70, 0x6fe2, 0x7051,
+ 0x0f42, 0x0faf, 0x101e, 0x1090, 0x1105, 0x117c, 0x11f7, 0x1273,
+ 0x12f3, 0x1376, 0x13fb, 0x1484, 0x150f, 0x159d, 0x162e, 0x16c3,
+ 0x175a, 0x17f4, 0x1891, 0x1932, 0x19d5, 0x1a7c, 0x1b25, 0x1bd2,
+ 0x1c81, 0x1d34, 0x1dea, 0x1ea3, 0x1f5f, 0x201e, 0x20e0, 0x21a5,
+ 0x226d, 0x2337, 0x2405, 0x24d6, 0x25a9, 0x267f, 0x2758, 0x2833,
+ 0x2911, 0x29f1, 0x2ad4, 0x2bb9, 0x2ca0, 0x2d8a, 0x2e76, 0x2f64,
+ 0x3053, 0x3145, 0x3238, 0x332d, 0x3424, 0x351b, 0x3615, 0x370f,
+ 0x380b, 0x3907, 0x3a04, 0x3b03, 0x3c01, 0x3d01, 0x3e00, 0x3f00,
+};
+
+const q15_t sigmoidHTable_q15[192] = {
+ 0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7,
+ 0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f,
+ 0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03,
+ 0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d,
+ 0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81,
+ 0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17,
+ 0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72,
+ 0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa,
+ 0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc,
+ 0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0,
+ 0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed,
+ 0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4,
+ 0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011,
+ 0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c,
+ 0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e,
+ 0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c,
+ 0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d,
+ 0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce,
+ 0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152,
+ 0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a,
+ 0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388,
+ 0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8,
+ 0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a,
+ 0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70,
+};
+
+const q7_t tanhTable_q7[256] = {
+ 0x00, 0x08, 0x10, 0x18, 0x1f, 0x27, 0x2e, 0x35,
+ 0x3b, 0x41, 0x47, 0x4c, 0x51, 0x56, 0x5a, 0x5e,
+ 0x61, 0x65, 0x68, 0x6a, 0x6d, 0x6f, 0x71, 0x72,
+ 0x74, 0x75, 0x76, 0x78, 0x78, 0x79, 0x7a, 0x7b,
+ 0x7b, 0x7c, 0x7c, 0x7d, 0x7d, 0x7e, 0x7e, 0x7e,
+ 0x7e, 0x7e, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x81,
+ 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x82,
+ 0x82, 0x82, 0x82, 0x82, 0x83, 0x83, 0x84, 0x84,
+ 0x85, 0x85, 0x86, 0x87, 0x88, 0x88, 0x8a, 0x8b,
+ 0x8c, 0x8e, 0x8f, 0x91, 0x93, 0x96, 0x98, 0x9b,
+ 0x9f, 0xa2, 0xa6, 0xaa, 0xaf, 0xb4, 0xb9, 0xbf,
+ 0xc5, 0xcb, 0xd2, 0xd9, 0xe1, 0xe8, 0xf0, 0xf8,
+};
+
+const q15_t tanhTable_q15[256] = {
+ 0x0000, 0x07fd, 0x0feb, 0x17b9, 0x1f59, 0x26bf, 0x2ddf, 0x34ae,
+ 0x3b27, 0x4142, 0x46fd, 0x4c56, 0x514d, 0x55e2, 0x5a1a, 0x5df6,
+ 0x617c, 0x64b0, 0x6797, 0x6a37, 0x6c95, 0x6eb5, 0x709e, 0x7254,
+ 0x73dc, 0x753a, 0x7672, 0x7788, 0x787f, 0x795b, 0x7a1e, 0x7acb,
+ 0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f,
+ 0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48,
+ 0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc,
+ 0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7,
+ 0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7,
+ 0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd,
+ 0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff,
+ 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
+ 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
+ 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
+ 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
+ 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001,
+ 0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003,
+ 0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007,
+ 0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013,
+ 0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035,
+ 0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f,
+ 0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183,
+ 0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412,
+ 0x849b, 0x8535, 0x85e2, 0x86a5, 0x8781, 0x8878, 0x898e, 0x8ac6,
+ 0x8c24, 0x8dac, 0x8f62, 0x914b, 0x936b, 0x95c9, 0x9869, 0x9b50,
+ 0x9e84, 0xa20a, 0xa5e6, 0xaa1e, 0xaeb3, 0xb3aa, 0xb903, 0xbebe,
+ 0xc4d9, 0xcb52, 0xd221, 0xd941, 0xe0a7, 0xe847, 0xf015, 0xf803,
+};
+
+const q15_t tanhLTable_q15[128] = {
+ 0x0000, 0x0400, 0x07fd, 0x0bf7, 0x0feb, 0x13d7, 0x17b9, 0x1b90,
+ 0x1f59, 0x2314, 0x26bf, 0x2a58, 0x2ddf, 0x3151, 0x34ae, 0x37f6,
+ 0x3b27, 0x3e40, 0x4142, 0x442c, 0x46fd, 0x49b6, 0x4c56, 0x4edd,
+ 0x514d, 0x53a3, 0x55e2, 0x580a, 0x5a1a, 0x5c13, 0x5df6, 0x5fc4,
+ 0x617c, 0x6320, 0x64b0, 0x662d, 0x6797, 0x68f0, 0x6a37, 0x6b6e,
+ 0x6c95, 0x6dac, 0x6eb5, 0x6fb0, 0x709e, 0x717f, 0x7254, 0x731e,
+ 0x73dc, 0x7490, 0x753a, 0x75da, 0x7672, 0x7701, 0x7788, 0x7807,
+ 0x787f, 0x78f0, 0x795b, 0x79bf, 0x7a1e, 0x7a77, 0x7acb, 0x7b1b,
+ 0x849b, 0x84e5, 0x8535, 0x8589, 0x85e2, 0x8641, 0x86a5, 0x8710,
+ 0x8781, 0x87f9, 0x8878, 0x88ff, 0x898e, 0x8a26, 0x8ac6, 0x8b70,
+ 0x8c24, 0x8ce2, 0x8dac, 0x8e81, 0x8f62, 0x9050, 0x914b, 0x9254,
+ 0x936b, 0x9492, 0x95c9, 0x9710, 0x9869, 0x99d3, 0x9b50, 0x9ce0,
+ 0x9e84, 0xa03c, 0xa20a, 0xa3ed, 0xa5e6, 0xa7f6, 0xaa1e, 0xac5d,
+ 0xaeb3, 0xb123, 0xb3aa, 0xb64a, 0xb903, 0xbbd4, 0xbebe, 0xc1c0,
+ 0xc4d9, 0xc80a, 0xcb52, 0xceaf, 0xd221, 0xd5a8, 0xd941, 0xdcec,
+ 0xe0a7, 0xe470, 0xe847, 0xec29, 0xf015, 0xf409, 0xf803, 0xfc00,
+};
+
+const q15_t tanhHTable_q15[192] = {
+ 0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f,
+ 0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48,
+ 0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc,
+ 0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7,
+ 0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7,
+ 0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd,
+ 0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff,
+ 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
+ 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
+ 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
+ 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
+ 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+ 0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001,
+ 0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003,
+ 0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007,
+ 0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013,
+ 0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035,
+ 0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f,
+ 0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183,
+ 0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412,
+};
diff --git a/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_no_shift.c b/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_no_shift.c new file mode 100644 index 0000000..e043b38 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_no_shift.c @@ -0,0 +1,134 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_q7_to_q15_no_shift.c
+ * Description: Converts the elements of the Q7 vector to Q15 vector without left-shift
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_nnsupportfunctions.h"
+
+/**
+ * @ingroup groupSupport
+ */
+
+/**
+ * @addtogroup nndata_convert
+ * @{
+ */
+
+/**
+ * @brief Converts the elements of the Q7 vector to Q15 vector without left-shift
+ * @param[in] *pSrc points to the Q7 input vector
+ * @param[out] *pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none.
+ *
+ * \par Description:
+ *
+ * The equation used for the conversion process is:
+ *
+ * <pre>
+ * pDst[n] = (q15_t) pSrc[n]; 0 <= n < blockSize.
+ * </pre>
+ *
+ */
+
+void arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize)
+{
+ const q7_t *pIn = pSrc; /* Src pointer */
+ uint32_t blkCnt; /* loop counter */
+
+#ifndef ARM_MATH_CM0_FAMILY
+ q31_t in;
+ q31_t in1, in2;
+ q31_t out1, out2;
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ /*loop Unrolling */
+ blkCnt = blockSize >> 2u;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0u)
+ {
+ /* C = (q15_t) A << 8 */
+ /* convert from q7 to q15 and then store the results in the destination buffer */
+ in = *__SIMD32(pIn)++;
+
+ /* rotatate in by 8 and extend two q7_t values to q15_t values */
+ in1 = __SXTB16(__ROR(in, 8));
+
+ /* extend remainig two q7_t values to q15_t values */
+ in2 = __SXTB16(in);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ out2 = __PKHTB(in1, in2, 16);
+ out1 = __PKHBT(in2, in1, 16);
+
+#else
+
+ out1 = __PKHTB(in1, in2, 16);
+ out2 = __PKHBT(in2, in1, 16);
+
+#endif
+
+ *__SIMD32(pDst)++ = out1;
+ *__SIMD32(pDst)++ = out2;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x4u;
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ /* Loop over blockSize number of values */
+ blkCnt = blockSize;
+
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+
+ while (blkCnt > 0u)
+ {
+ /* C = (q15_t) A << 8 */
+ /* convert from q7 to q15 and then store the results in the destination buffer */
+ *pDst++ = (q15_t) * pIn++;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+}
+
+/**
+ * @} end of nndata_convert group
+ */
diff --git a/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_no_shift.c b/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_no_shift.c new file mode 100644 index 0000000..52f5f8e --- /dev/null +++ b/Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_no_shift.c @@ -0,0 +1,145 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_q7_to_q15_reordered_no_shift.c
+ * Description: Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_nnsupportfunctions.h"
+
+/**
+ * @ingroup groupSupport
+ */
+
+/**
+ * @addtogroup nndata_convert
+ * @{
+ */
+
+/**
+ * @brief Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
+ * @param[in] *pSrc points to the Q7 input vector
+ * @param[out] *pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none.
+ *
+ * @details
+ *
+ * This function does the q7 to q15 expansion with re-ordering
+ *
+ * <pre>
+ * | A1 | A2 | A3 | A4 |
+ *
+ * 0 7 8 15 16 23 24 31
+ * </pre>
+ *
+ * is converted into:
+ *
+ * <pre>
+ * | A1 | A3 | and | A2 | A4 |
+ *
+ * 0 15 16 31 0 15 16 31
+ * </pre>
+ *
+ *
+ * This looks strange but is natural considering how sign-extension is done at
+ * assembly level.
+ *
+ * The expansion of other other oprand will follow the same rule so that the end
+ * results are the same.
+ *
+ * The tail (i.e., last (N % 4) elements) will still be in original order.
+ *
+ */
+
+void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize)
+{
+ const q7_t *pIn = pSrc; /* Src pointer */
+ uint32_t blkCnt; /* loop counter */
+
+#ifndef ARM_MATH_CM0_FAMILY
+ q31_t in;
+ q31_t in1, in2;
+
+ /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+ /*loop Unrolling */
+ blkCnt = blockSize >> 2u;
+
+ /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
+ ** a second loop below computes the remaining 1 to 3 samples. */
+ while (blkCnt > 0u)
+ {
+ /* C = (q15_t) A << 8 */
+ /* convert from q7 to q15 and then store the results in the destination buffer */
+ in = *__SIMD32(pIn)++;
+
+ /* rotatate in by 8 and extend two q7_t values to q15_t values */
+ in1 = __SXTB16(__ROR(in, 8));
+
+ /* extend remainig two q7_t values to q15_t values */
+ in2 = __SXTB16(in);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ *__SIMD32(pDst)++ = in2;
+ *__SIMD32(pDst)++ = in1;
+#else
+ *__SIMD32(pDst)++ = in1;
+ *__SIMD32(pDst)++ = in2;
+#endif
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x4u;
+
+#else
+
+ /* Run the below code for Cortex-M0 */
+
+ /* Loop over blockSize number of values */
+ blkCnt = blockSize;
+
+#endif /* #ifndef ARM_MATH_CM0_FAMILY */
+
+ while (blkCnt > 0u)
+ {
+ /* C = (q15_t) A << 8 */
+ /* convert from q7 to q15 and then store the results in the destination buffer */
+ *pDst++ = (q15_t) * pIn++;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+}
+
+/**
+ * @} end of q7_to_x group
+ */
diff --git a/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c b/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c new file mode 100644 index 0000000..71fb771 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c @@ -0,0 +1,460 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_pool_q7_HWC.c
+ * Description: Pooling function implementations
+ *
+ * $Date: 17. January 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+#if defined (ARM_MATH_DSP)
+
+/**
+ * @brief A few utility functions used by pooling functions
+ *
+ *
+ */
+
+static void buffer_scale_back_q15_to_q7(q15_t * buffer, q7_t * target, uint16_t length, uint16_t scale)
+{
+ int i;
+
+ for (i = 0; i < length; i++)
+ {
+ target[i] = (q7_t) (buffer[i] / scale);
+ }
+}
+
+static void compare_and_replace_if_larger_q7(q7_t * base, // base data
+ const q7_t * target, // compare target
+ const uint16_t length // data length
+ )
+{
+ q7_t *pIn = base;
+ const q7_t *pCom = target;
+ union arm_nnword in;
+ union arm_nnword com;
+ uint16_t cnt = length >> 2;
+
+ while (cnt > 0u)
+ {
+ in.word = *__SIMD32(pIn);
+ com.word = *__SIMD32(pCom)++;
+
+ // if version
+ if (com.bytes[0] > in.bytes[0])
+ in.bytes[0] = com.bytes[0];
+ if (com.bytes[1] > in.bytes[1])
+ in.bytes[1] = com.bytes[1];
+ if (com.bytes[2] > in.bytes[2])
+ in.bytes[2] = com.bytes[2];
+ if (com.bytes[3] > in.bytes[3])
+ in.bytes[3] = com.bytes[3];
+
+ *__SIMD32(pIn)++ = in.word;
+
+ cnt--;
+ }
+
+ cnt = length & 0x3;
+ while (cnt > 0u)
+ {
+ if (*pCom > *pIn)
+ {
+ *pIn = *pCom;
+ }
+ pIn++;
+ pCom++;
+ cnt--;
+ }
+}
+
+static void accumulate_q7_to_q15(q15_t * base, q7_t * target, const uint16_t length)
+{
+ q15_t *pCnt = base;
+ q7_t *pV = target;
+ q31_t v1, v2, vo1, vo2;
+ uint16_t cnt = length >> 2;
+ q31_t in;
+
+ while (cnt > 0u)
+ {
+ q31_t value = *__SIMD32(pV)++;
+ v1 = __SXTB16(__ROR(value, 8));
+ v2 = __SXTB16(value);
+#ifndef ARM_MATH_BIG_ENDIAN
+
+ vo2 = __PKHTB(v1, v2, 16);
+ vo1 = __PKHBT(v2, v1, 16);
+
+#else
+
+ vo1 = __PKHTB(v1, v2, 16);
+ vo2 = __PKHBT(v2, v1, 16);
+
+#endif
+
+ in = *__SIMD32(pCnt);
+ *__SIMD32(pCnt)++ = __QADD16(vo1, in);
+
+ in = *__SIMD32(pCnt);
+ *__SIMD32(pCnt)++ = __QADD16(vo2, in);
+
+ cnt--;
+ }
+ cnt = length & 0x3;
+ while (cnt > 0u)
+ {
+ *pCnt++ += *pV++;
+ cnt--;
+ }
+}
+
+#endif // ARM_MATH_DSP
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup Pooling
+ * @{
+ */
+
+ /**
+ * @brief Q7 max pooling function
+ * @param[in, out] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] Im_out pointer to output tensor
+ * @return none.
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 0
+ *
+ * The pooling function is implemented as split x-pooling then
+ * y-pooling.
+ *
+ * This pooling function is input-destructive. Input data is undefined
+ * after calling this function.
+ *
+ */
+
+void
+arm_maxpool_q7_HWC(q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride, const uint16_t dim_im_out, q7_t * bufferA, q7_t * Im_out)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ int16_t i_x, i_y;
+
+ /* first does the pooling along x axis */
+ for (i_y = 0; i_y < dim_im_in; i_y++)
+ {
+
+ for (i_x = 0; i_x < dim_im_out; i_x++)
+ {
+ /* for each output pixel */
+ q7_t *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in;
+ q7_t *win_start;
+ q7_t *win_stop;
+ if (i_x * stride - padding < 0)
+ {
+ win_start = target;
+ } else
+ {
+ win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in;
+ }
+
+ if (i_x * stride - padding + dim_kernel >= dim_im_in)
+ {
+ win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in;
+ } else
+ {
+ win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in;
+ }
+
+ /* first step is to copy over initial data */
+ /* arm_copy_q7(win_start, target, ch_im_in); */
+ memmove(target, win_start, ch_im_in);
+
+ /* start the max operation from the second part */
+ win_start += ch_im_in;
+ for (; win_start < win_stop; win_start += ch_im_in)
+ {
+ compare_and_replace_if_larger_q7(target, win_start, ch_im_in);
+ }
+ }
+ }
+
+ /* then does the pooling along y axis */
+ for (i_y = 0; i_y < dim_im_out; i_y++)
+ {
+
+ /* for each output row */
+ q7_t *target = Im_out + i_y * dim_im_out * ch_im_in;
+ q7_t *row_start;
+ q7_t *row_end;
+ /* setting the starting row */
+ if (i_y * stride - padding < 0)
+ {
+ row_start = Im_in;
+ } else
+ {
+ row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in;
+ }
+ /* setting the stopping row */
+ if (i_y * stride - padding + dim_kernel >= dim_im_in)
+ {
+ row_end = Im_in + dim_im_in * dim_im_in * ch_im_in;
+ } else
+ {
+ row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in;
+ }
+
+ /* copy over the first row */
+ /* arm_copy_q7(row_start, target, dim_im_out * ch_im_in); */
+ memmove(target, row_start, dim_im_out * ch_im_in);
+
+ /* move over to next row */
+ row_start += ch_im_in * dim_im_in;
+
+ for (; row_start < row_end; row_start += dim_im_in * ch_im_in)
+ {
+ compare_and_replace_if_larger_q7(target, row_start, dim_im_out * ch_im_in);
+ }
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+ int16_t i_ch_in, i_x, i_y;
+ int16_t k_x, k_y;
+
+ for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++)
+ {
+ for (i_y = 0; i_y < dim_im_out; i_y++)
+ {
+ for (i_x = 0; i_x < dim_im_out; i_x++)
+ {
+ int max = -129;
+ for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++)
+ {
+ for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++)
+ {
+ if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in)
+ {
+ if (Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)] > max)
+ {
+ max = Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)];
+ }
+ }
+ }
+ }
+ Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = max;
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+}
+
+ /**
+ * @brief Q7 average pooling function
+ * @param[in,out] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] Im_out pointer to output tensor
+ * @return none.
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 2*dim_im_out*ch_im_in
+ *
+ * The pooling function is implemented as split x-pooling then
+ * y-pooling.
+ *
+ * This pooling function is input-destructive. Input data is undefined
+ * after calling this function.
+ *
+ */
+
+void
+arm_avepool_q7_HWC(q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride, const uint16_t dim_im_out, q7_t * bufferA, q7_t * Im_out)
+{
+
+#if defined (ARM_MATH_DSP)
+ /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+ q15_t *buffer = (q15_t *) bufferA;
+ int16_t i_x, i_y;
+ int16_t count = 0;
+
+ /* first does the pooling along x axis */
+ for (i_y = 0; i_y < dim_im_in; i_y++)
+ {
+
+ for (i_x = 0; i_x < dim_im_out; i_x++)
+ {
+ /* for each output pixel */
+ q7_t *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in;
+ q7_t *win_start;
+ q7_t *win_stop;
+ if (i_x * stride - padding < 0)
+ {
+ win_start = target;
+ } else
+ {
+ win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in;
+ }
+
+ if (i_x * stride - padding + dim_kernel >= dim_im_in)
+ {
+ win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in;
+ } else
+ {
+ win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in;
+ }
+
+ /* first step is to copy over initial data */
+ arm_q7_to_q15_no_shift(win_start, buffer, ch_im_in);
+ count = 1;
+
+ /* start the max operation from the second part */
+ win_start += ch_im_in;
+ for (; win_start < win_stop; win_start += ch_im_in)
+ {
+ accumulate_q7_to_q15(buffer, win_start, ch_im_in);
+ count++;
+ }
+ buffer_scale_back_q15_to_q7(buffer, target, ch_im_in, count);
+ }
+ }
+
+ /* then does the pooling along y axis */
+ for (i_y = 0; i_y < dim_im_out; i_y++)
+ {
+ /* for each output row */
+ q7_t *target = Im_out + i_y * dim_im_out * ch_im_in;
+ q7_t *row_start;
+ q7_t *row_end;
+ /* setting the starting row */
+ if (i_y * stride - padding < 0)
+ {
+ row_start = Im_in;
+ } else
+ {
+ row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in;
+ }
+ /* setting the stopping row */
+ if (i_y * stride - padding + dim_kernel >= dim_im_in)
+ {
+ row_end = Im_in + dim_im_in * dim_im_in * ch_im_in;
+ } else
+ {
+ row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in;
+ }
+
+ /* copy over the first row */
+ arm_q7_to_q15_no_shift(row_start, buffer, dim_im_out * ch_im_in);
+ count = 1;
+
+ /* move over to next row */
+ row_start += ch_im_in * dim_im_in;
+
+ for (; row_start < row_end; row_start += dim_im_in * ch_im_in)
+ {
+ accumulate_q7_to_q15(buffer, row_start, dim_im_out * ch_im_in);
+ count++;
+ }
+ buffer_scale_back_q15_to_q7(buffer, target, dim_im_out * ch_im_in, count);
+ }
+
+#else
+ /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+
+ int16_t i_ch_in, i_x, i_y;
+ int16_t k_x, k_y;
+
+ for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++)
+ {
+ for (i_y = 0; i_y < dim_im_out; i_y++)
+ {
+ for (i_x = 0; i_x < dim_im_out; i_x++)
+ {
+ int sum = 0;
+ int count = 0;
+ for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++)
+ {
+ for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++)
+ {
+ if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in)
+ {
+ sum += Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)];
+ count++;
+ }
+ }
+ }
+ Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = sum / count;
+ }
+ }
+ }
+
+#endif /* ARM_MATH_DSP */
+
+}
+
+/**
+ * @} end of Pooling group
+ */
diff --git a/Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c b/Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c new file mode 100644 index 0000000..22fa62b --- /dev/null +++ b/Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c @@ -0,0 +1,120 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_softmax_q15.c
+ * Description: Q15 softmax function
+ *
+ * $Date: 20. February 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup Softmax
+ * @{
+ */
+
+ /**
+ * @brief Q15 softmax function
+ * @param[in] vec_in pointer to input vector
+ * @param[in] dim_vec input vector dimention
+ * @param[out] p_out pointer to output vector
+ * @return none.
+ *
+ * @details
+ *
+ * Here, instead of typical e based softmax, we use
+ * 2-based softmax, i.e.,:
+ *
+ * y_i = 2^(x_i) / sum(2^x_j)
+ *
+ * The relative output will be different here.
+ * But mathematically, the gradient will be the same
+ * with a log(2) scaling factor.
+ *
+ */
+
+void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out)
+{
+ q31_t sum;
+ int16_t i;
+ uint8_t shift;
+ q31_t base;
+ base = -1 * 0x100000;
+ for (i = 0; i < dim_vec; i++)
+ {
+ if (vec_in[i] > base)
+ {
+ base = vec_in[i];
+ }
+ }
+
+ /* we ignore really small values
+ * anyway, they will be 0 after shrinking
+ * to q15_t
+ */
+ base = base - 16;
+
+ sum = 0;
+
+ for (i = 0; i < dim_vec; i++)
+ {
+ if (vec_in[i] > base)
+ {
+ shift = (uint8_t)__USAT(vec_in[i] - base, 5);
+ sum += 0x1 << shift;
+ }
+ }
+
+ /* This is effectively (0x1 << 32) / sum */
+ int64_t div_base = 0x100000000LL;
+ int output_base = (int32_t)(div_base / sum);
+
+ /* Final confidence will be output_base >> ( 17 - (vec_in[i] - base) )
+ * so 32768 (0x1<<15) -> 100% confidence when sum = 0x1 << 16, output_base = 0x1 << 16
+ * and vec_in[i]-base = 16
+ */
+ for (i = 0; i < dim_vec; i++)
+ {
+ if (vec_in[i] > base)
+ {
+ /* Here minimum value of 17+base-vec[i] will be 1 */
+ shift = (uint8_t)__USAT(17+base-vec_in[i], 5);
+ p_out[i] = (q15_t) __SSAT((output_base >> shift), 16);
+ } else
+ {
+ p_out[i] = 0;
+ }
+ }
+
+}
+
+/**
+ * @} end of Softmax group
+ */
diff --git a/Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c b/Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c new file mode 100644 index 0000000..06a69e1 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c @@ -0,0 +1,121 @@ +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_softmax_q7.c
+ * Description: Q7 softmax function
+ *
+ * $Date: 20. February 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup Softmax
+ * @{
+ */
+
+ /**
+ * @brief Q7 softmax function
+ * @param[in] vec_in pointer to input vector
+ * @param[in] dim_vec input vector dimention
+ * @param[out] p_out pointer to output vector
+ * @return none.
+ *
+ * @details
+ *
+ * Here, instead of typical natural logarithm e based softmax, we use
+ * 2-based softmax here, i.e.,:
+ *
+ * y_i = 2^(x_i) / sum(2^x_j)
+ *
+ * The relative output will be different here.
+ * But mathematically, the gradient will be the same
+ * with a log(2) scaling factor.
+ *
+ */
+
+void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out)
+{
+ q31_t sum;
+ int16_t i;
+ uint8_t shift;
+ q15_t base;
+ base = -257;
+
+ /* We first search for the maximum */
+ for (i = 0; i < dim_vec; i++)
+ {
+ if (vec_in[i] > base)
+ {
+ base = vec_in[i];
+ }
+ }
+
+ /*
+ * So the base is set to max-8, meaning
+ * that we ignore really small values.
+ * anyway, they will be 0 after shrinking to q7_t.
+ */
+ base = base - 8;
+
+ sum = 0;
+
+ for (i = 0; i < dim_vec; i++)
+ {
+ if (vec_in[i] > base)
+ {
+ shift = (uint8_t)__USAT(vec_in[i] - base, 5);
+ sum += 0x1 << shift;
+ }
+ }
+
+ /* This is effectively (0x1 << 20) / sum */
+ int output_base = 0x100000 / sum;
+
+ /*
+ * Final confidence will be output_base >> ( 13 - (vec_in[i] - base) )
+ * so 128 (0x1<<7) -> 100% confidence when sum = 0x1 << 8, output_base = 0x1 << 12
+ * and vec_in[i]-base = 8
+ */
+ for (i = 0; i < dim_vec; i++)
+ {
+ if (vec_in[i] > base)
+ {
+ /* Here minimum value of 13+base-vec_in[i] will be 5 */
+ shift = (uint8_t)__USAT(13+base-vec_in[i], 5);
+ p_out[i] = (q7_t) __SSAT((output_base >> shift), 8);
+ } else {
+ p_out[i] = 0;
+ }
+ }
+}
+
+/**
+ * @} end of Softmax group
+ */
|