From 86608c6770cf08c138a2bdab5855072f64be09ef Mon Sep 17 00:00:00 2001 From: joshua Date: Sat, 30 Dec 2023 23:54:31 -0500 Subject: initial commit --- .../DSP/Source/MatrixFunctions/CMakeLists.txt | 16 + .../DSP/Source/MatrixFunctions/MatrixFunctions.c | 53 + .../DSP/Source/MatrixFunctions/arm_mat_add_f32.c | 232 ++++ .../DSP/Source/MatrixFunctions/arm_mat_add_q15.c | 149 +++ .../DSP/Source/MatrixFunctions/arm_mat_add_q31.c | 139 +++ .../MatrixFunctions/arm_mat_cmplx_mult_f32.c | 631 +++++++++++ .../MatrixFunctions/arm_mat_cmplx_mult_q15.c | 340 ++++++ .../MatrixFunctions/arm_mat_cmplx_mult_q31.c | 283 +++++ .../DSP/Source/MatrixFunctions/arm_mat_init_f32.c | 76 ++ .../DSP/Source/MatrixFunctions/arm_mat_init_q15.c | 67 ++ .../DSP/Source/MatrixFunctions/arm_mat_init_q31.c | 72 ++ .../Source/MatrixFunctions/arm_mat_inverse_f32.c | 1127 ++++++++++++++++++++ .../Source/MatrixFunctions/arm_mat_inverse_f64.c | 673 ++++++++++++ .../DSP/Source/MatrixFunctions/arm_mat_mult_f32.c | 534 ++++++++++ .../Source/MatrixFunctions/arm_mat_mult_fast_q15.c | 483 +++++++++ .../Source/MatrixFunctions/arm_mat_mult_fast_q31.c | 374 +++++++ .../DSP/Source/MatrixFunctions/arm_mat_mult_q15.c | 357 +++++++ .../DSP/Source/MatrixFunctions/arm_mat_mult_q31.c | 196 ++++ .../DSP/Source/MatrixFunctions/arm_mat_scale_f32.c | 221 ++++ .../DSP/Source/MatrixFunctions/arm_mat_scale_q15.c | 170 +++ .../DSP/Source/MatrixFunctions/arm_mat_scale_q31.c | 164 +++ .../DSP/Source/MatrixFunctions/arm_mat_sub_f32.c | 226 ++++ .../DSP/Source/MatrixFunctions/arm_mat_sub_q15.c | 144 +++ .../DSP/Source/MatrixFunctions/arm_mat_sub_q31.c | 139 +++ .../DSP/Source/MatrixFunctions/arm_mat_trans_f32.c | 284 +++++ .../DSP/Source/MatrixFunctions/arm_mat_trans_q15.c | 182 ++++ .../DSP/Source/MatrixFunctions/arm_mat_trans_q31.c | 146 +++ 27 files changed, 7478 insertions(+) create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/CMakeLists.txt create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/MatrixFunctions.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_f32.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q15.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q31.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f32.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_f32.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q15.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q31.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_f32.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q15.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q31.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_f32.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q15.c create mode 100644 Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q31.c (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions') diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/CMakeLists.txt b/Drivers/CMSIS/DSP/Source/MatrixFunctions/CMakeLists.txt new file mode 100644 index 0000000..41be093 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/CMakeLists.txt @@ -0,0 +1,16 @@ +cmake_minimum_required (VERSION 3.6) + +project(CMSISDSPMatrix) + + +file(GLOB SRC "./*_*.c") + +add_library(CMSISDSPMatrix STATIC ${SRC}) + +configdsp(CMSISDSPMatrix ..) + +### Includes +target_include_directories(CMSISDSPMatrix PUBLIC "${DSP}/../../Include") + + + diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/MatrixFunctions.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/MatrixFunctions.c new file mode 100644 index 0000000..79d7be2 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/MatrixFunctions.c @@ -0,0 +1,53 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: MatrixFunctions.c + * Description: Combination of all matrix function source files. + * + * $Date: 18. March 2019 + * $Revision: V1.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_mat_add_f32.c" +#include "arm_mat_add_q15.c" +#include "arm_mat_add_q31.c" +#include "arm_mat_cmplx_mult_f32.c" +#include "arm_mat_cmplx_mult_q15.c" +#include "arm_mat_cmplx_mult_q31.c" +#include "arm_mat_init_f32.c" +#include "arm_mat_init_q15.c" +#include "arm_mat_init_q31.c" +#include "arm_mat_inverse_f32.c" +#include "arm_mat_inverse_f64.c" +#include "arm_mat_mult_f32.c" +#include "arm_mat_mult_fast_q15.c" +#include "arm_mat_mult_fast_q31.c" +#include "arm_mat_mult_q15.c" +#include "arm_mat_mult_q31.c" +#include "arm_mat_scale_f32.c" +#include "arm_mat_scale_q15.c" +#include "arm_mat_scale_q31.c" +#include "arm_mat_sub_f32.c" +#include "arm_mat_sub_q15.c" +#include "arm_mat_sub_q31.c" +#include "arm_mat_trans_f32.c" +#include "arm_mat_trans_q15.c" +#include "arm_mat_trans_q31.c" diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c new file mode 100644 index 0000000..7f9ec08 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_f32.c @@ -0,0 +1,232 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_add_f32.c + * Description: Floating-point matrix addition + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @defgroup MatrixAdd Matrix Addition + + Adds two matrices. + \image html MatrixAddition.gif "Addition of two 3 x 3 matrices" + + The functions check to make sure that + pSrcA, pSrcB, and pDst have the same + number of rows and columns. + */ + +/** + @addtogroup MatrixAdd + @{ + */ + + +/** + @brief Floating-point matrix addition. + @param[in] pSrcA points to first input matrix structure + @param[in] pSrcB points to second input matrix structure + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + */ +#if defined(ARM_MATH_NEON) +/* + +Neon version is assuming the matrix is small enough. +So no blocking is used for taking into account cache effects. +For big matrix, there exist better libraries for Neon. + +*/ +arm_status arm_mat_add_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ + float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + + float32_t inA1, inA2, inB1, inB2, out1, out2; /* temporary variables */ + + uint32_t numSamples; /* total number of elements in the matrix */ + uint32_t blkCnt; /* loop counters */ + arm_status status; /* status of matrix addition */ + +#ifdef ARM_MATH_MATRIX_CHECK + /* Check for matrix mismatch condition */ + if ((pSrcA->numRows != pSrcB->numRows) || + (pSrcA->numCols != pSrcB->numCols) || + (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols)) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else +#endif + { + float32x4_t vec1; + float32x4_t vec2; + float32x4_t res; + + /* Total number of samples in the input matrix */ + numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; + + blkCnt = numSamples >> 2U; + + /* Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) + B(m,n) */ + /* Add and then store the results in the destination buffer. */ + vec1 = vld1q_f32(pIn1); + vec2 = vld1q_f32(pIn2); + res = vaddq_f32(vec1, vec2); + vst1q_f32(pOut, res); + + /* update pointers to process next samples */ + pIn1 += 4U; + pIn2 += 4U; + pOut += 4U; + /* Decrement the loop counter */ + blkCnt--; + } + + /* If the numSamples is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = numSamples % 0x4U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) + B(m,n) */ + /* Add and then store the results in the destination buffer. */ + *pOut++ = (*pIn1++) + (*pIn2++); + + /* Decrement the loop counter */ + blkCnt--; + } + + /* set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#else +arm_status arm_mat_add_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + + uint32_t numSamples; /* total number of elements in the matrix */ + uint32_t blkCnt; /* loop counters */ + arm_status status; /* status of matrix addition */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numRows != pSrcB->numRows) || + (pSrcA->numCols != pSrcB->numCols) || + (pSrcA->numRows != pDst->numRows) || + (pSrcA->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Total number of samples in input matrix */ + numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) + B(m,n) */ + + /* Add and store result in destination buffer. */ + *pOut++ = *pInA++ + *pInB++; + + *pOut++ = *pInA++ + *pInB++; + + *pOut++ = *pInA++ + *pInB++; + + *pOut++ = *pInA++ + *pInB++; + + /* Decrement loop counter */ + blkCnt--; + } + + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) + B(m,n) */ + + /* Add and store result in destination buffer. */ + *pOut++ = *pInA++ + *pInB++; + + /* Decrement loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#endif /* #if defined(ARM_MATH_NEON) */ + +/** + @} end of MatrixAdd group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c new file mode 100644 index 0000000..1e892fb --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q15.c @@ -0,0 +1,149 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_add_q15.c + * Description: Q15 matrix addition + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixAdd + @{ + */ + +/** + @brief Q15 matrix addition. + @param[in] pSrcA points to first input matrix structure + @param[in] pSrcB points to second input matrix structure + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The function uses saturating arithmetic. + Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated. + */ + +arm_status arm_mat_add_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst) +{ + q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */ + q15_t *pOut = pDst->pData; /* output data matrix pointer */ + + uint32_t numSamples; /* total number of elements in the matrix */ + uint32_t blkCnt; /* loop counters */ + arm_status status; /* status of matrix addition */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numRows != pSrcB->numRows) || + (pSrcA->numCols != pSrcB->numCols) || + (pSrcA->numRows != pDst->numRows) || + (pSrcA->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Total number of samples in input matrix */ + numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) + B(m,n) */ + + /* Add, saturate and store result in destination buffer. */ +#if defined (ARM_MATH_DSP) + write_q15x2_ia (&pOut, __QADD16(read_q15x2_ia (&pInA), read_q15x2_ia (&pInB))); + + write_q15x2_ia (&pOut, __QADD16(read_q15x2_ia (&pInA), read_q15x2_ia (&pInB))); +#else + *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16); + + *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16); + + *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16); + + *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16); +#endif + + /* Decrement loop counter */ + blkCnt--; + } + + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) + B(m,n) */ + + /* Add, saturate and store result in destination buffer. */ +#if defined (ARM_MATH_DSP) + *pOut++ = (q15_t) __QADD16(*pInA++, *pInB++); +#else + *pOut++ = (q15_t) __SSAT(((q31_t) *pInA++ + *pInB++), 16); +#endif + + /* Decrement loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixAdd group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c new file mode 100644 index 0000000..a9616f3 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_add_q31.c @@ -0,0 +1,139 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_add_q31.c + * Description: Q31 matrix addition + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixAdd + @{ + */ + +/** + @brief Q31 matrix addition. + @param[in] pSrcA points to first input matrix structure + @param[in] pSrcB points to second input matrix structure + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The function uses saturating arithmetic. + Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated. + */ + +arm_status arm_mat_add_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst) +{ + q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */ + q31_t *pOut = pDst->pData; /* output data matrix pointer */ + + uint32_t numSamples; /* total number of elements in the matrix */ + uint32_t blkCnt; /* loop counters */ + arm_status status; /* status of matrix addition */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numRows != pSrcB->numRows) || + (pSrcA->numCols != pSrcB->numCols) || + (pSrcA->numRows != pDst->numRows) || + (pSrcA->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Total number of samples in input matrix */ + numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) + B(m,n) */ + + /* Add, saturate and store result in destination buffer. */ + *pOut++ = __QADD(*pInA++, *pInB++); + + *pOut++ = __QADD(*pInA++, *pInB++); + + *pOut++ = __QADD(*pInA++, *pInB++); + + *pOut++ = __QADD(*pInA++, *pInB++); + + /* Decrement loop counter */ + blkCnt--; + } + + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) + B(m,n) */ + + /* Add, saturate and store result in destination buffer. */ + *pOut++ = __QADD(*pInA++, *pInB++); + + /* Decrement loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixAdd group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c new file mode 100644 index 0000000..448122a --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f32.c @@ -0,0 +1,631 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_cmplx_mult_f32.c + * Description: Floating-point matrix multiplication + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @defgroup CmplxMatrixMult Complex Matrix Multiplication + + Complex Matrix multiplication is only defined if the number of columns of the + first matrix equals the number of rows of the second matrix. + Multiplying an M x N matrix with an N x P matrix results + in an M x P matrix. + @par + When matrix size checking is enabled, the functions check: + - that the inner dimensions of pSrcA and pSrcB are equal; + - that the size of the output matrix equals the outer dimensions of pSrcA and pSrcB. + */ + + +/** + @addtogroup CmplxMatrixMult + @{ + */ + +/** + @brief Floating-point Complex matrix multiplication. + @param[in] pSrcA points to first input complex matrix structure + @param[in] pSrcB points to second input complex matrix structure + @param[out] pDst points to output complex matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + */ +#if defined(ARM_MATH_NEON) +arm_status arm_mat_cmplx_mult_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ + float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ + float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + float32_t *px; /* Temporary output data matrix pointer */ + uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ + float32_t sumReal1, sumImag1; /* accumulator */ + float32_t a0, b0, c0, d0; + float32_t a1, a1B,b1, b1B, c1, d1; + float32_t sumReal2, sumImag2; /* accumulator */ + + + float32x4x2_t a0V, a1V; + float32x4_t accR0,accI0, accR1,accI1,tempR, tempI; + float32x2_t accum = vdup_n_f32(0); + float32_t *pIn1B = pSrcA->pData; + + uint16_t col, i = 0U, j, rowCnt, row = numRowsA, colCnt; /* loop counters */ + arm_status status; /* status of matrix multiplication */ + float32_t sumReal1B, sumImag1B; + float32_t sumReal2B, sumImag2B; + float32_t *pxB; + +#ifdef ARM_MATH_MATRIX_CHECK + + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) + { + + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + + rowCnt = row >> 1; + + /* Row loop */ + while (rowCnt > 0U) + { + /* Output pointer is set to starting address of the row being processed */ + px = pOut + 2 * i; + pxB = px + 2 * numColsB; + + /* For every row wise process, the column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, the pIn2 pointer is set + ** to the starting address of the pSrcB data */ + pIn2 = pSrcB->pData; + + j = 0U; + + /* Column loop */ + while (col > 0U) + { + /* Set the variable sum, that acts as accumulator, to zero */ + sumReal1 = 0.0f; + sumImag1 = 0.0f; + sumReal1B = 0.0f; + sumImag1B = 0.0f; + + sumReal2 = 0.0f; + sumImag2 = 0.0f; + sumReal2B = 0.0f; + sumImag2B = 0.0f; + + /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ + pIn1 = pInA; + pIn1B = pIn1 + 2*numColsA; + + accR0 = vdupq_n_f32(0.0); + accI0 = vdupq_n_f32(0.0); + accR1 = vdupq_n_f32(0.0); + accI1 = vdupq_n_f32(0.0); + + /* Compute 4 MACs simultaneously. */ + colCnt = numColsA >> 2; + + /* Matrix multiplication */ + while (colCnt > 0U) + { + /* Reading real part of complex matrix A */ + a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2) + a1V = vld2q_f32(pIn1B); // load & separate real/imag pSrcA (de-interleave 2) + + pIn1 += 8; + pIn1B += 8; + + tempR[0] = *pIn2; + tempI[0] = *(pIn2 + 1U); + pIn2 += 2 * numColsB; + + tempR[1] = *pIn2; + tempI[1] = *(pIn2 + 1U); + pIn2 += 2 * numColsB; + + tempR[2] = *pIn2; + tempI[2] = *(pIn2 + 1U); + pIn2 += 2 * numColsB; + + tempR[3] = *pIn2; + tempI[3] = *(pIn2 + 1U); + pIn2 += 2 * numColsB; + + accR0 = vmlaq_f32(accR0,a0V.val[0],tempR); + accR0 = vmlsq_f32(accR0,a0V.val[1],tempI); + + accI0 = vmlaq_f32(accI0,a0V.val[1],tempR); + accI0 = vmlaq_f32(accI0,a0V.val[0],tempI); + + accR1 = vmlaq_f32(accR1,a1V.val[0],tempR); + accR1 = vmlsq_f32(accR1,a1V.val[1],tempI); + + accI1 = vmlaq_f32(accI1,a1V.val[1],tempR); + accI1 = vmlaq_f32(accI1,a1V.val[0],tempI); + + /* Decrement the loop count */ + colCnt--; + } + + accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0)); + sumReal1 += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0)); + sumImag1 += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(accR1), vget_high_f32(accR1)); + sumReal1B += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(accI1), vget_high_f32(accI1)); + sumImag1B += accum[0] + accum[1]; + + /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + colCnt = numColsA & 3; + + while (colCnt > 0U) + { + /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */ + a1 = *pIn1; + a1B = *pIn1B; + + c1 = *pIn2; + + b1 = *(pIn1 + 1U); + b1B = *(pIn1B + 1U); + + d1 = *(pIn2 + 1U); + + sumReal1 += a1 * c1; + sumImag1 += b1 * c1; + + sumReal1B += a1B * c1; + sumImag1B += b1B * c1; + + pIn1 += 2U; + pIn1B += 2U; + pIn2 += 2 * numColsB; + + sumReal2 -= b1 * d1; + sumImag2 += a1 * d1; + + sumReal2B -= b1B * d1; + sumImag2B += a1B * d1; + + /* Decrement the loop counter */ + colCnt--; + } + + sumReal1 += sumReal2; + sumImag1 += sumImag2; + + sumReal1B += sumReal2B; + sumImag1B += sumImag2B; + + /* Store the result in the destination buffer */ + *px++ = sumReal1; + *px++ = sumImag1; + *pxB++ = sumReal1B; + *pxB++ = sumImag1B; + + /* Update the pointer pIn2 to point to the starting address of the next column */ + j++; + pIn2 = pSrcB->pData + 2U * j; + + /* Decrement the column loop counter */ + col--; + } + + /* Update the pointer pInA to point to the starting address of the next 2 row */ + i = i + 2*numColsB; + pInA = pInA + 4 * numColsA; + + /* Decrement the row loop counter */ + rowCnt--; + } + + rowCnt = row & 1; + while (rowCnt > 0U) + { + /* Output pointer is set to starting address of the row being processed */ + px = pOut + 2 * i; + + /* For every row wise process, the column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, the pIn2 pointer is set + ** to the starting address of the pSrcB data */ + pIn2 = pSrcB->pData; + + j = 0U; + + /* Column loop */ + while (col > 0U) + { + /* Set the variable sum, that acts as accumulator, to zero */ + sumReal1 = 0.0f; + sumImag1 = 0.0f; + + sumReal2 = 0.0f; + sumImag2 = 0.0f; + + /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ + pIn1 = pInA; + + accR0 = vdupq_n_f32(0.0); + accI0 = vdupq_n_f32(0.0); + + /* Compute 4 MACs simultaneously. */ + colCnt = numColsA >> 2; + + /* Matrix multiplication */ + while (colCnt > 0U) + { + /* Reading real part of complex matrix A */ + a0V = vld2q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2) + pIn1 += 8; + + tempR[0] = *pIn2; + tempI[0] = *(pIn2 + 1U); + pIn2 += 2 * numColsB; + + tempR[1] = *pIn2; + tempI[1] = *(pIn2 + 1U); + pIn2 += 2 * numColsB; + + tempR[2] = *pIn2; + tempI[2] = *(pIn2 + 1U); + pIn2 += 2 * numColsB; + + tempR[3] = *pIn2; + tempI[3] = *(pIn2 + 1U); + pIn2 += 2 * numColsB; + + accR0 = vmlaq_f32(accR0,a0V.val[0],tempR); + accR0 = vmlsq_f32(accR0,a0V.val[1],tempI); + + accI0 = vmlaq_f32(accI0,a0V.val[1],tempR); + accI0 = vmlaq_f32(accI0,a0V.val[0],tempI); + + /* Decrement the loop count */ + colCnt--; + } + + accum = vpadd_f32(vget_low_f32(accR0), vget_high_f32(accR0)); + sumReal1 += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(accI0), vget_high_f32(accI0)); + sumImag1 += accum[0] + accum[1]; + + /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + colCnt = numColsA & 3; + + while (colCnt > 0U) + { + /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */ + a1 = *pIn1; + c1 = *pIn2; + + b1 = *(pIn1 + 1U); + d1 = *(pIn2 + 1U); + + sumReal1 += a1 * c1; + sumImag1 += b1 * c1; + + pIn1 += 2U; + pIn2 += 2 * numColsB; + + sumReal2 -= b1 * d1; + sumImag2 += a1 * d1; + + /* Decrement the loop counter */ + colCnt--; + } + + sumReal1 += sumReal2; + sumImag1 += sumImag2; + + /* Store the result in the destination buffer */ + *px++ = sumReal1; + *px++ = sumImag1; + + /* Update the pointer pIn2 to point to the starting address of the next column */ + j++; + pIn2 = pSrcB->pData + 2U * j; + + /* Decrement the column loop counter */ + col--; + + } + + /* Update the pointer pInA to point to the starting address of the next row */ + i = i + numColsB; + pInA = pInA + 2 * numColsA; + + /* Decrement the row loop counter */ + rowCnt--; + + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#else +arm_status arm_mat_cmplx_mult_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */ + float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */ + float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */ + float32_t *pOut = pDst->pData; /* Output data matrix pointer */ + float32_t *px; /* Temporary output data matrix pointer */ + uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */ + float32_t sumReal, sumImag; /* Accumulator */ + float32_t a1, b1, c1, d1; + uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */ + arm_status status; /* status of matrix multiplication */ + +#if defined (ARM_MATH_LOOPUNROLL) + float32_t a0, b0, c0, d0; +#endif + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + do + { + /* Output pointer is set to starting address of the row being processed */ + px = pOut + 2 * i; + + /* For every row wise process, the column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, the pIn2 pointer is set + ** to the starting address of the pSrcB data */ + pIn2 = pSrcB->pData; + + j = 0U; + + /* column loop */ + do + { + /* Set the variable sum, that acts as accumulator, to zero */ + sumReal = 0.0f; + sumImag = 0.0f; + + /* Initiate pointer pIn1 to point to starting address of column being processed */ + pIn1 = pInA; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + colCnt = numColsA >> 2U; + + /* matrix multiplication */ + while (colCnt > 0U) + { + + /* Reading real part of complex matrix A */ + a0 = *pIn1; + + /* Reading real part of complex matrix B */ + c0 = *pIn2; + + /* Reading imaginary part of complex matrix A */ + b0 = *(pIn1 + 1U); + + /* Reading imaginary part of complex matrix B */ + d0 = *(pIn2 + 1U); + + /* Multiply and Accumlates */ + sumReal += a0 * c0; + sumImag += b0 * c0; + + /* update pointers */ + pIn1 += 2U; + pIn2 += 2 * numColsB; + + /* Multiply and Accumlates */ + sumReal -= b0 * d0; + sumImag += a0 * d0; + + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + /* read real and imag values from pSrcA and pSrcB buffer */ + a1 = *(pIn1 ); + c1 = *(pIn2 ); + b1 = *(pIn1 + 1U); + d1 = *(pIn2 + 1U); + + /* Multiply and Accumlates */ + sumReal += a1 * c1; + sumImag += b1 * c1; + + /* update pointers */ + pIn1 += 2U; + pIn2 += 2 * numColsB; + + /* Multiply and Accumlates */ + sumReal -= b1 * d1; + sumImag += a1 * d1; + + a0 = *(pIn1 ); + c0 = *(pIn2 ); + b0 = *(pIn1 + 1U); + d0 = *(pIn2 + 1U); + + /* Multiply and Accumlates */ + sumReal += a0 * c0; + sumImag += b0 * c0; + + /* update pointers */ + pIn1 += 2U; + pIn2 += 2 * numColsB; + + /* Multiply and Accumlates */ + sumReal -= b0 * d0; + sumImag += a0 * d0; + + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + a1 = *(pIn1 ); + c1 = *(pIn2 ); + b1 = *(pIn1 + 1U); + d1 = *(pIn2 + 1U); + + /* Multiply and Accumlates */ + sumReal += a1 * c1; + sumImag += b1 * c1; + + /* update pointers */ + pIn1 += 2U; + pIn2 += 2 * numColsB; + + /* Multiply and Accumlates */ + sumReal -= b1 * d1; + sumImag += a1 * d1; + + /* Decrement loop count */ + colCnt--; + } + + /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + colCnt = numColsA % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + colCnt = numColsA; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + a1 = *(pIn1 ); + c1 = *(pIn2 ); + b1 = *(pIn1 + 1U); + d1 = *(pIn2 + 1U); + + /* Multiply and Accumlates */ + sumReal += a1 * c1; + sumImag += b1 * c1; + + /* update pointers */ + pIn1 += 2U; + pIn2 += 2 * numColsB; + + /* Multiply and Accumlates */ + sumReal -= b1 * d1; + sumImag += a1 * d1; + + /* Decrement loop counter */ + colCnt--; + } + + /* Store result in destination buffer */ + *px++ = sumReal; + *px++ = sumImag; + + /* Update pointer pIn2 to point to starting address of next column */ + j++; + pIn2 = pSrcB->pData + 2U * j; + + /* Decrement column loop counter */ + col--; + + } while (col > 0U); + + /* Update pointer pInA to point to starting address of next row */ + i = i + numColsB; + pInA = pInA + 2 * numColsA; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +#endif /* #if defined(ARM_MATH_NEON) */ + +/** + @} end of MatrixMult group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c new file mode 100644 index 0000000..9c417aa --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c @@ -0,0 +1,340 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_cmplx_mat_mult_q15.c + * Description: Q15 complex matrix multiplication + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup CmplxMatrixMult + @{ + */ + +/** + @brief Q15 Complex matrix multiplication. + @param[in] pSrcA points to first input complex matrix structure + @param[in] pSrcB points to second input complex matrix structure + @param[out] pDst points to output complex matrix structure + @param[in] pScratch points to an array for storing intermediate results + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Conditions for optimum performance + Input, output and state buffers should be aligned by 32-bit + + @par Scaling and Overflow Behavior + The function is implemented using an internal 64-bit accumulator. The inputs to the + multiplications are in 1.15 format and multiplications yield a 2.30 result. + The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. + This approach provides 33 guard bits and there is no risk of overflow. The 34.30 result is then + truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format. + */ + +arm_status arm_mat_cmplx_mult_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pScratch) +{ + q15_t *pSrcBT = pScratch; /* input data matrix pointer for transpose */ + q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */ + q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */ + q15_t *px; /* Temporary output data matrix pointer */ + uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ + uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */ + q63_t sumReal, sumImag; /* accumulator */ + uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */ + arm_status status; /* Status of matrix multiplication */ + +#if defined (ARM_MATH_DSP) + q31_t prod1, prod2; + q31_t pSourceA, pSourceB; +#else + q15_t a, b, c, d; +#endif /* #if defined (ARM_MATH_DSP) */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Matrix transpose */ + do + { + /* The pointer px is set to starting address of column being processed */ + px = pSrcBT + i; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Apply loop unrolling and exchange the columns with row elements */ + col = numColsB >> 2; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. + a second loop below computes the remaining 1 to 3 samples. */ + while (col > 0U) + { + /* Read two elements from row */ + write_q15x2 (px, read_q15x2_ia (&pInB)); + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB * 2; + + /* Read two elements from row */ + write_q15x2 (px, read_q15x2_ia (&pInB)); + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB * 2; + + /* Read two elements from row */ + write_q15x2 (px, read_q15x2_ia (&pInB)); + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB * 2; + + /* Read two elements from row */ + write_q15x2 (px, read_q15x2_ia (&pInB)); + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB * 2; + + /* Decrement column loop counter */ + col--; + } + + /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + col = numColsB % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + col = numColsB; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (col > 0U) + { + /* Read two elements from row */ + write_q15x2 (px, read_q15x2_ia (&pInB)); + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB * 2; + + /* Decrement column loop counter */ + col--; + } + + i = i + 2U; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); + + /* Reset variables for usage in following multiplication process */ + row = numRowsA; + i = 0U; + px = pDst->pData; + + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + do + { + /* For every row wise process, column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */ + pInB = pSrcBT; + + /* column loop */ + do + { + /* Set variable sum, that acts as accumulator, to zero */ + sumReal = 0; + sumImag = 0; + + /* Initiate pointer pInA to point to starting address of column being processed */ + pInA = pSrcA->pData + i * 2; + + /* Apply loop unrolling and compute 2 MACs simultaneously. */ + colCnt = numColsA >> 1U; + + /* matrix multiplication */ + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + +#if defined (ARM_MATH_DSP) + + /* read real and imag values from pSrcA and pSrcB buffer */ + pSourceA = read_q15x2_ia ((q15_t **) &pInA); + pSourceB = read_q15x2_ia ((q15_t **) &pInB); + + /* Multiply and Accumlates */ +#ifdef ARM_MATH_BIG_ENDIAN + prod1 = -__SMUSD(pSourceA, pSourceB); +#else + prod1 = __SMUSD(pSourceA, pSourceB); +#endif + prod2 = __SMUADX(pSourceA, pSourceB); + sumReal += (q63_t) prod1; + sumImag += (q63_t) prod2; + + /* read real and imag values from pSrcA and pSrcB buffer */ + pSourceA = read_q15x2_ia ((q15_t **) &pInA); + pSourceB = read_q15x2_ia ((q15_t **) &pInB); + + /* Multiply and Accumlates */ +#ifdef ARM_MATH_BIG_ENDIAN + prod1 = -__SMUSD(pSourceA, pSourceB); +#else + prod1 = __SMUSD(pSourceA, pSourceB); +#endif + prod2 = __SMUADX(pSourceA, pSourceB); + sumReal += (q63_t) prod1; + sumImag += (q63_t) prod2; + +#else /* #if defined (ARM_MATH_DSP) */ + + /* read real and imag values from pSrcA buffer */ + a = *pInA; + b = *(pInA + 1U); + /* read real and imag values from pSrcB buffer */ + c = *pInB; + d = *(pInB + 1U); + + /* Multiply and Accumlates */ + sumReal += (q31_t) a *c; + sumImag += (q31_t) a *d; + sumReal -= (q31_t) b *d; + sumImag += (q31_t) b *c; + + /* read next real and imag values from pSrcA buffer */ + a = *(pInA + 2U); + b = *(pInA + 3U); + /* read next real and imag values from pSrcB buffer */ + c = *(pInB + 2U); + d = *(pInB + 3U); + + /* update pointer */ + pInA += 4U; + + /* Multiply and Accumlates */ + sumReal += (q31_t) a * c; + sumImag += (q31_t) a * d; + sumReal -= (q31_t) b * d; + sumImag += (q31_t) b * c; + /* update pointer */ + pInB += 4U; + +#endif /* #if defined (ARM_MATH_DSP) */ + + /* Decrement loop counter */ + colCnt--; + } + + /* process odd column samples */ + if ((numColsA & 0x1U) > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + +#if defined (ARM_MATH_DSP) + /* read real and imag values from pSrcA and pSrcB buffer */ + pSourceA = read_q15x2_ia ((q15_t **) &pInA); + pSourceB = read_q15x2_ia ((q15_t **) &pInB); + + /* Multiply and Accumlates */ +#ifdef ARM_MATH_BIG_ENDIAN + prod1 = -__SMUSD(pSourceA, pSourceB); +#else + prod1 = __SMUSD(pSourceA, pSourceB); +#endif + prod2 = __SMUADX(pSourceA, pSourceB); + sumReal += (q63_t) prod1; + sumImag += (q63_t) prod2; + +#else /* #if defined (ARM_MATH_DSP) */ + + /* read real and imag values from pSrcA and pSrcB buffer */ + a = *pInA++; + b = *pInA++; + c = *pInB++; + d = *pInB++; + + /* Multiply and Accumlates */ + sumReal += (q31_t) a * c; + sumImag += (q31_t) a * d; + sumReal -= (q31_t) b * d; + sumImag += (q31_t) b * c; + +#endif /* #if defined (ARM_MATH_DSP) */ + + } + + /* Saturate and store result in destination buffer */ + *px++ = (q15_t) (__SSAT(sumReal >> 15, 16)); + *px++ = (q15_t) (__SSAT(sumImag >> 15, 16)); + + /* Decrement column loop counter */ + col--; + + } while (col > 0U); + + i = i + numColsA; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixMult group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c new file mode 100644 index 0000000..0060fcb --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c @@ -0,0 +1,283 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_cmplx_mult_q31.c + * Description: Floating-point matrix multiplication + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup CmplxMatrixMult + @{ + */ + +/** + @brief Q31 Complex matrix multiplication. + @param[in] pSrcA points to first input complex matrix structure + @param[in] pSrcB points to second input complex matrix structure + @param[out] pDst points to output complex matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The function is implemented using an internal 64-bit accumulator. + The accumulator has a 2.62 format and maintains full precision of the intermediate + multiplication results but provides only a single guard bit. There is no saturation + on intermediate additions. Thus, if the accumulator overflows it wraps around and + distorts the result. The input signals should be scaled down to avoid intermediate + overflows. The input is thus scaled down by log2(numColsA) bits + to avoid overflows, as a total of numColsA additions are performed internally. + The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result. + */ + +arm_status arm_mat_cmplx_mult_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst) +{ + q31_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */ + q31_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */ + q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */ + q31_t *pOut = pDst->pData; /* Output data matrix pointer */ + q31_t *px; /* Temporary output data matrix pointer */ + uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */ + q63_t sumReal, sumImag; /* Accumulator */ + q31_t a1, b1, c1, d1; + uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */ + arm_status status; /* status of matrix multiplication */ + +#if defined (ARM_MATH_LOOPUNROLL) + q31_t a0, b0, c0, d0; +#endif + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + do + { + /* Output pointer is set to starting address of the row being processed */ + px = pOut + 2 * i; + + /* For every row wise process, the column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, the pIn2 pointer is set + ** to the starting address of the pSrcB data */ + pIn2 = pSrcB->pData; + + j = 0U; + + /* column loop */ + do + { + /* Set the variable sum, that acts as accumulator, to zero */ + sumReal = 0.0; + sumImag = 0.0; + + /* Initiate pointer pIn1 to point to starting address of column being processed */ + pIn1 = pInA; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Apply loop unrolling and compute 4 MACs simultaneously. */ + colCnt = numColsA >> 2U; + + /* matrix multiplication */ + while (colCnt > 0U) + { + + /* Reading real part of complex matrix A */ + a0 = *pIn1; + + /* Reading real part of complex matrix B */ + c0 = *pIn2; + + /* Reading imaginary part of complex matrix A */ + b0 = *(pIn1 + 1U); + + /* Reading imaginary part of complex matrix B */ + d0 = *(pIn2 + 1U); + + /* Multiply and Accumlates */ + sumReal += (q63_t) a0 * c0; + sumImag += (q63_t) b0 * c0; + + /* update pointers */ + pIn1 += 2U; + pIn2 += 2 * numColsB; + + /* Multiply and Accumlates */ + sumReal -= (q63_t) b0 * d0; + sumImag += (q63_t) a0 * d0; + + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + /* read real and imag values from pSrcA and pSrcB buffer */ + a1 = *(pIn1 ); + c1 = *(pIn2 ); + b1 = *(pIn1 + 1U); + d1 = *(pIn2 + 1U); + + /* Multiply and Accumlates */ + sumReal += (q63_t) a1 * c1; + sumImag += (q63_t) b1 * c1; + + /* update pointers */ + pIn1 += 2U; + pIn2 += 2 * numColsB; + + /* Multiply and Accumlates */ + sumReal -= (q63_t) b1 * d1; + sumImag += (q63_t) a1 * d1; + + a0 = *(pIn1 ); + c0 = *(pIn2 ); + b0 = *(pIn1 + 1U); + d0 = *(pIn2 + 1U); + + /* Multiply and Accumlates */ + sumReal += (q63_t) a0 * c0; + sumImag += (q63_t) b0 * c0; + + /* update pointers */ + pIn1 += 2U; + pIn2 += 2 * numColsB; + + /* Multiply and Accumlates */ + sumReal -= (q63_t) b0 * d0; + sumImag += (q63_t) a0 * d0; + + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + a1 = *(pIn1 ); + c1 = *(pIn2 ); + b1 = *(pIn1 + 1U); + d1 = *(pIn2 + 1U); + + /* Multiply and Accumlates */ + sumReal += (q63_t) a1 * c1; + sumImag += (q63_t) b1 * c1; + + /* update pointers */ + pIn1 += 2U; + pIn2 += 2 * numColsB; + + /* Multiply and Accumlates */ + sumReal -= (q63_t) b1 * d1; + sumImag += (q63_t) a1 * d1; + + /* Decrement loop count */ + colCnt--; + } + + /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + colCnt = numColsA % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + colCnt = numColsA; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + a1 = *(pIn1 ); + c1 = *(pIn2 ); + b1 = *(pIn1 + 1U); + d1 = *(pIn2 + 1U); + + /* Multiply and Accumlates */ + sumReal += (q63_t) a1 * c1; + sumImag += (q63_t) b1 * c1; + + /* update pointers */ + pIn1 += 2U; + pIn2 += 2 * numColsB; + + /* Multiply and Accumlates */ + sumReal -= (q63_t) b1 * d1; + sumImag += (q63_t) a1 * d1; + + /* Decrement loop counter */ + colCnt--; + } + + /* Store result in destination buffer */ + *px++ = (q31_t) clip_q63_to_q31(sumReal >> 31); + *px++ = (q31_t) clip_q63_to_q31(sumImag >> 31); + + /* Update pointer pIn2 to point to starting address of next column */ + j++; + pIn2 = pSrcB->pData + 2U * j; + + /* Decrement column loop counter */ + col--; + + } while (col > 0U); + + /* Update pointer pInA to point to starting address of next row */ + i = i + numColsB; + pInA = pInA + 2 * numColsA; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixMult group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_f32.c new file mode 100644 index 0000000..5fcd121 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_f32.c @@ -0,0 +1,76 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_init_f32.c + * Description: Floating-point matrix initialization + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @defgroup MatrixInit Matrix Initialization + + Initializes the underlying matrix data structure. + The functions set the numRows, + numCols, and pData fields + of the matrix data structure. + */ + +/** + @addtogroup MatrixInit + @{ + */ + +/** + @brief Floating-point matrix initialization. + @param[in,out] S points to an instance of the floating-point matrix structure + @param[in] nRows number of rows in the matrix + @param[in] nColumns number of columns in the matrix + @param[in] pData points to the matrix data array + @return none + */ + +void arm_mat_init_f32( + arm_matrix_instance_f32 * S, + uint16_t nRows, + uint16_t nColumns, + float32_t * pData) +{ + /* Assign Number of Rows */ + S->numRows = nRows; + + /* Assign Number of Columns */ + S->numCols = nColumns; + + /* Assign Data pointer */ + S->pData = pData; +} + +/** + @} end of MatrixInit group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q15.c new file mode 100644 index 0000000..28d8d65 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q15.c @@ -0,0 +1,67 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_init_q15.c + * Description: Q15 matrix initialization + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixInit + @{ + */ + +/** + @brief Q15 matrix initialization. + @param[in,out] S points to an instance of the floating-point matrix structure + @param[in] nRows number of rows in the matrix + @param[in] nColumns number of columns in the matrix + @param[in] pData points to the matrix data array + @return none + */ + +void arm_mat_init_q15( + arm_matrix_instance_q15 * S, + uint16_t nRows, + uint16_t nColumns, + q15_t * pData) +{ + /* Assign Number of Rows */ + S->numRows = nRows; + + /* Assign Number of Columns */ + S->numCols = nColumns; + + /* Assign Data pointer */ + S->pData = pData; +} + +/** + @} end of MatrixInit group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q31.c new file mode 100644 index 0000000..b691ede --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_init_q31.c @@ -0,0 +1,72 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_init_q31.c + * Description: Q31 matrix initialization + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @defgroup MatrixInit Matrix Initialization + + */ + +/** + @addtogroup MatrixInit + @{ + */ + +/** + @brief Q31 matrix initialization. + @param[in,out] S points to an instance of the Q31 matrix structure + @param[in] nRows number of rows in the matrix + @param[in] nColumns number of columns in the matrix + @param[in] pData points to the matrix data array + @return none + */ + +void arm_mat_init_q31( + arm_matrix_instance_q31 * S, + uint16_t nRows, + uint16_t nColumns, + q31_t * pData) +{ + /* Assign Number of Rows */ + S->numRows = nRows; + + /* Assign Number of Columns */ + S->numCols = nColumns; + + /* Assign Data pointer */ + S->pData = pData; +} + +/** + @} end of MatrixInit group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f32.c new file mode 100644 index 0000000..df84b4d --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f32.c @@ -0,0 +1,1127 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_inverse_f32.c + * Description: Floating-point matrix inverse + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @defgroup MatrixInv Matrix Inverse + + Computes the inverse of a matrix. + + The inverse is defined only if the input matrix is square and non-singular (the determinant is non-zero). + The function checks that the input and output matrices are square and of the same size. + + Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix + inversion of floating-point matrices. + + @par Algorithm + The Gauss-Jordan method is used to find the inverse. + The algorithm performs a sequence of elementary row-operations until it + reduces the input matrix to an identity matrix. Applying the same sequence + of elementary row-operations to an identity matrix yields the inverse matrix. + If the input matrix is singular, then the algorithm terminates and returns error status + ARM_MATH_SINGULAR. + \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method" + */ + +/** + @addtogroup MatrixInv + @{ + */ + +/** + @brief Floating-point matrix inverse. + @param[in] pSrc points to input matrix structure + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + - \ref ARM_MATH_SINGULAR : Input matrix is found to be singular (non-invertible) + */ +#if defined(ARM_MATH_NEON) +arm_status arm_mat_inverse_f32( + const arm_matrix_instance_f32 * pSrc, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn = pSrc->pData; /* input data matrix pointer */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */ + float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */ + float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */ + uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */ + uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */ + + float32_t maxC; /* maximum value in the column */ + + float32_t Xchg, in = 0.0f, in1; /* Temporary input values */ + uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */ + arm_status status; /* status of matrix inverse */ + float32x4_t vec1; + float32x4_t vec2; + float32x4_t tmpV; + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols) + || (pSrc->numRows != pDst->numRows)) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /*-------------------------------------------------------------------------------------------------------------- + * Matrix Inverse can be solved using elementary row operations. + * + * Gauss-Jordan Method: + * + * 1. First combine the identity matrix and the input matrix separated by a bar to form an + * augmented matrix as follows: + * _ _ _ _ + * | a11 a12 | 1 0 | | X11 X12 | + * | | | = | | + * |_ a21 a22 | 0 1 _| |_ X21 X21 _| + * + * 2. In our implementation, pDst Matrix is used as identity matrix. + * + * 3. Begin with the first row. Let i = 1. + * + * 4. Check to see if the pivot for column i is the greatest of the column. + * The pivot is the element of the main diagonal that is on the current row. + * For instance, if working with row i, then the pivot element is aii. + * If the pivot is not the most significant of the columns, exchange that row with a row + * below it that does contain the most significant value in column i. If the most + * significant value of the column is zero, then an inverse to that matrix does not exist. + * The most significant value of the column is the absolute maximum. + * + * 5. Divide every element of row i by the pivot. + * + * 6. For every row below and row i, replace that row with the sum of that row and + * a multiple of row i so that each new element in column i below row i is zero. + * + * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros + * for every element below and above the main diagonal. + * + * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc). + * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst). + *----------------------------------------------------------------------------------------------------------------*/ + + /* Working pointer for destination matrix */ + pOutT1 = pOut; + + /* Loop over the number of rows */ + rowCnt = numRows; + + /* Making the destination matrix as identity matrix */ + while (rowCnt > 0U) + { + /* Writing all zeroes in lower triangle of the destination matrix */ + j = numRows - rowCnt; + while (j > 0U) + { + *pOutT1++ = 0.0f; + j--; + } + + /* Writing all ones in the diagonal of the destination matrix */ + *pOutT1++ = 1.0f; + + /* Writing all zeroes in upper triangle of the destination matrix */ + j = rowCnt - 1U; + + while (j > 0U) + { + *pOutT1++ = 0.0f; + j--; + } + + /* Decrement the loop counter */ + rowCnt--; + } + + /* Loop over the number of columns of the input matrix. + All the elements in each column are processed by the row operations */ + loopCnt = numCols; + + /* Index modifier to navigate through the columns */ + l = 0U; + + while (loopCnt > 0U) + { + /* Check if the pivot element is zero.. + * If it is zero then interchange the row with non zero row below. + * If there is no non zero element to replace in the rows below, + * then the matrix is Singular. */ + + /* Working pointer for the input matrix that points + * to the pivot element of the particular row */ + pInT1 = pIn + (l * numCols); + + /* Working pointer for the destination matrix that points + * to the pivot element of the particular row */ + pOutT1 = pOut + (l * numCols); + + /* Temporary variable to hold the pivot value */ + in = *pInT1; + + /* Grab the most significant value from column l */ + maxC = 0; + + for (i = l; i < numRows; i++) + { + maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC); + pInT1 += numCols; + } + + /* Update the status if the matrix is singular */ + if (maxC == 0.0f) + { + return ARM_MATH_SINGULAR; + } + + /* Restore pInT1 */ + pInT1 = pIn; + + /* Destination pointer modifier */ + k = 1U; + + /* Check if the pivot element is the most significant of the column */ + if ( (in > 0.0f ? in : -in) != maxC) + { + /* Loop over the number rows present below */ + i = numRows - (l + 1U); + + while (i > 0U) + { + /* Update the input and destination pointers */ + pInT2 = pInT1 + (numCols * l); + pOutT2 = pOutT1 + (numCols * k); + + /* Look for the most significant element to + * replace in the rows below */ + if ((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC) + { + /* Loop over number of columns + * to the right of the pilot element */ + j = numCols - l; + + while (j > 0U) + { + /* Exchange the row elements of the input matrix */ + Xchg = *pInT2; + *pInT2++ = *pInT1; + *pInT1++ = Xchg; + + /* Decrement the loop counter */ + j--; + } + + /* Loop over number of columns of the destination matrix */ + j = numCols; + + while (j > 0U) + { + /* Exchange the row elements of the destination matrix */ + Xchg = *pOutT2; + *pOutT2++ = *pOutT1; + *pOutT1++ = Xchg; + + /* Decrement the loop counter */ + j--; + } + + /* Flag to indicate whether exchange is done or not */ + flag = 1U; + + /* Break after exchange is done */ + break; + } + + /* Update the destination pointer modifier */ + k++; + + /* Decrement the loop counter */ + i--; + } + } + + /* Update the status if the matrix is singular */ + if ((flag != 1U) && (in == 0.0f)) + { + return ARM_MATH_SINGULAR; + } + + /* Points to the pivot row of input and destination matrices */ + pPivotRowIn = pIn + (l * numCols); + pPivotRowDst = pOut + (l * numCols); + + /* Temporary pointers to the pivot row pointers */ + pInT1 = pPivotRowIn; + pInT2 = pPivotRowDst; + + /* Pivot element of the row */ + in = *pPivotRowIn; + tmpV = vdupq_n_f32(1.0/in); + + /* Loop over number of columns + * to the right of the pilot element */ + j = (numCols - l) >> 2; + + while (j > 0U) + { + /* Divide each element of the row of the input matrix + * by the pivot element */ + vec1 = vld1q_f32(pInT1); + + vec1 = vmulq_f32(vec1, tmpV); + vst1q_f32(pInT1, vec1); + pInT1 += 4; + + /* Decrement the loop counter */ + j--; + } + + /* Tail */ + j = (numCols - l) & 3; + + while (j > 0U) + { + /* Divide each element of the row of the input matrix + * by the pivot element */ + in1 = *pInT1; + *pInT1++ = in1 / in; + + /* Decrement the loop counter */ + j--; + } + + /* Loop over number of columns of the destination matrix */ + j = numCols >> 2; + + while (j > 0U) + { + /* Divide each element of the row of the destination matrix + * by the pivot element */ + vec1 = vld1q_f32(pInT2); + + vec1 = vmulq_f32(vec1, tmpV); + vst1q_f32(pInT2, vec1); + pInT2 += 4; + + /* Decrement the loop counter */ + j--; + } + + /* Tail */ + j = numCols & 3; + + while (j > 0U) + { + /* Divide each element of the row of the destination matrix + * by the pivot element */ + in1 = *pInT2; + *pInT2++ = in1 / in; + + /* Decrement the loop counter */ + j--; + } + + /* Replace the rows with the sum of that row and a multiple of row i + * so that each new element in column i above row i is zero.*/ + + /* Temporary pointers for input and destination matrices */ + pInT1 = pIn; + pInT2 = pOut; + + /* index used to check for pivot element */ + i = 0U; + + /* Loop over number of rows */ + /* to be replaced by the sum of that row and a multiple of row i */ + k = numRows; + + while (k > 0U) + { + /* Check for the pivot element */ + if (i == l) + { + /* If the processing element is the pivot element, + only the columns to the right are to be processed */ + pInT1 += numCols - l; + + pInT2 += numCols; + } + else + { + /* Element of the reference row */ + in = *pInT1; + tmpV = vdupq_n_f32(in); + + /* Working pointers for input and destination pivot rows */ + pPRT_in = pPivotRowIn; + pPRT_pDst = pPivotRowDst; + + /* Loop over the number of columns to the right of the pivot element, + to replace the elements in the input matrix */ + j = (numCols - l) >> 2; + + while (j > 0U) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + vec1 = vld1q_f32(pInT1); + vec2 = vld1q_f32(pPRT_in); + vec1 = vmlsq_f32(vec1, tmpV, vec2); + vst1q_f32(pInT1, vec1); + pPRT_in += 4; + pInT1 += 4; + + /* Decrement the loop counter */ + j--; + } + + /* Tail */ + j = (numCols - l) & 3; + + while (j > 0U) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + in1 = *pInT1; + *pInT1++ = in1 - (in * *pPRT_in++); + + /* Decrement the loop counter */ + j--; + } + + /* Loop over the number of columns to + replace the elements in the destination matrix */ + j = numCols >> 2; + + while (j > 0U) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + vec1 = vld1q_f32(pInT2); + vec2 = vld1q_f32(pPRT_pDst); + vec1 = vmlsq_f32(vec1, tmpV, vec2); + vst1q_f32(pInT2, vec1); + pPRT_pDst += 4; + pInT2 += 4; + + /* Decrement the loop counter */ + j--; + } + + /* Tail */ + j = numCols & 3; + + while (j > 0U) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + in1 = *pInT2; + *pInT2++ = in1 - (in * *pPRT_pDst++); + + /* Decrement the loop counter */ + j--; + } + + } + + /* Increment the temporary input pointer */ + pInT1 = pInT1 + l; + + /* Decrement the loop counter */ + k--; + + /* Increment the pivot index */ + i++; + } + + /* Increment the input pointer */ + pIn++; + + /* Decrement the loop counter */ + loopCnt--; + + /* Increment the index modifier */ + l++; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + + if ((flag != 1U) && (in == 0.0f)) + { + pIn = pSrc->pData; + for (i = 0; i < numRows * numCols; i++) + { + if (pIn[i] != 0.0f) + break; + } + + if (i == numRows * numCols) + status = ARM_MATH_SINGULAR; + } + } + /* Return to application */ + return (status); +} +#else +arm_status arm_mat_inverse_f32( + const arm_matrix_instance_f32 * pSrc, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn = pSrc->pData; /* input data matrix pointer */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + float32_t *pInT1, *pInT2; /* Temporary input data matrix pointer */ + float32_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */ + float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */ + uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */ + uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */ + +#if defined (ARM_MATH_DSP) + float32_t maxC; /* maximum value in the column */ + + float32_t Xchg, in = 0.0f, in1; /* Temporary input values */ + uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */ + arm_status status; /* status of matrix inverse */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pSrc->numCols) || + (pDst->numRows != pDst->numCols) || + (pSrc->numRows != pDst->numRows) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + + /*-------------------------------------------------------------------------------------------------------------- + * Matrix Inverse can be solved using elementary row operations. + * + * Gauss-Jordan Method: + * + * 1. First combine the identity matrix and the input matrix separated by a bar to form an + * augmented matrix as follows: + * _ _ _ _ + * | a11 a12 | 1 0 | | X11 X12 | + * | | | = | | + * |_ a21 a22 | 0 1 _| |_ X21 X21 _| + * + * 2. In our implementation, pDst Matrix is used as identity matrix. + * + * 3. Begin with the first row. Let i = 1. + * + * 4. Check to see if the pivot for column i is the greatest of the column. + * The pivot is the element of the main diagonal that is on the current row. + * For instance, if working with row i, then the pivot element is aii. + * If the pivot is not the most significant of the columns, exchange that row with a row + * below it that does contain the most significant value in column i. If the most + * significant value of the column is zero, then an inverse to that matrix does not exist. + * The most significant value of the column is the absolute maximum. + * + * 5. Divide every element of row i by the pivot. + * + * 6. For every row below and row i, replace that row with the sum of that row and + * a multiple of row i so that each new element in column i below row i is zero. + * + * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros + * for every element below and above the main diagonal. + * + * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc). + * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst). + *----------------------------------------------------------------------------------------------------------------*/ + + /* Working pointer for destination matrix */ + pOutT1 = pOut; + + /* Loop over the number of rows */ + rowCnt = numRows; + + /* Making the destination matrix as identity matrix */ + while (rowCnt > 0U) + { + /* Writing all zeroes in lower triangle of the destination matrix */ + j = numRows - rowCnt; + while (j > 0U) + { + *pOutT1++ = 0.0f; + j--; + } + + /* Writing all ones in the diagonal of the destination matrix */ + *pOutT1++ = 1.0f; + + /* Writing all zeroes in upper triangle of the destination matrix */ + j = rowCnt - 1U; + while (j > 0U) + { + *pOutT1++ = 0.0f; + j--; + } + + /* Decrement loop counter */ + rowCnt--; + } + + /* Loop over the number of columns of the input matrix. + All the elements in each column are processed by the row operations */ + loopCnt = numCols; + + /* Index modifier to navigate through the columns */ + l = 0U; + + while (loopCnt > 0U) + { + /* Check if the pivot element is zero.. + * If it is zero then interchange the row with non zero row below. + * If there is no non zero element to replace in the rows below, + * then the matrix is Singular. */ + + /* Working pointer for the input matrix that points + * to the pivot element of the particular row */ + pInT1 = pIn + (l * numCols); + + /* Working pointer for the destination matrix that points + * to the pivot element of the particular row */ + pOutT1 = pOut + (l * numCols); + + /* Temporary variable to hold the pivot value */ + in = *pInT1; + + /* Grab the most significant value from column l */ + maxC = 0; + for (i = l; i < numRows; i++) + { + maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC); + pInT1 += numCols; + } + + /* Update the status if the matrix is singular */ + if (maxC == 0.0f) + { + return ARM_MATH_SINGULAR; + } + + /* Restore pInT1 */ + pInT1 = pIn; + + /* Destination pointer modifier */ + k = 1U; + + /* Check if the pivot element is the most significant of the column */ + if ( (in > 0.0f ? in : -in) != maxC) + { + /* Loop over the number rows present below */ + i = numRows - (l + 1U); + + while (i > 0U) + { + /* Update the input and destination pointers */ + pInT2 = pInT1 + (numCols * l); + pOutT2 = pOutT1 + (numCols * k); + + /* Look for the most significant element to + * replace in the rows below */ + if ((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC) + { + /* Loop over number of columns + * to the right of the pilot element */ + j = numCols - l; + + while (j > 0U) + { + /* Exchange the row elements of the input matrix */ + Xchg = *pInT2; + *pInT2++ = *pInT1; + *pInT1++ = Xchg; + + /* Decrement the loop counter */ + j--; + } + + /* Loop over number of columns of the destination matrix */ + j = numCols; + + while (j > 0U) + { + /* Exchange the row elements of the destination matrix */ + Xchg = *pOutT2; + *pOutT2++ = *pOutT1; + *pOutT1++ = Xchg; + + /* Decrement loop counter */ + j--; + } + + /* Flag to indicate whether exchange is done or not */ + flag = 1U; + + /* Break after exchange is done */ + break; + } + + /* Update the destination pointer modifier */ + k++; + + /* Decrement loop counter */ + i--; + } + } + + /* Update the status if the matrix is singular */ + if ((flag != 1U) && (in == 0.0f)) + { + return ARM_MATH_SINGULAR; + } + + /* Points to the pivot row of input and destination matrices */ + pPivotRowIn = pIn + (l * numCols); + pPivotRowDst = pOut + (l * numCols); + + /* Temporary pointers to the pivot row pointers */ + pInT1 = pPivotRowIn; + pInT2 = pPivotRowDst; + + /* Pivot element of the row */ + in = *pPivotRowIn; + + /* Loop over number of columns + * to the right of the pilot element */ + j = (numCols - l); + + while (j > 0U) + { + /* Divide each element of the row of the input matrix + * by the pivot element */ + in1 = *pInT1; + *pInT1++ = in1 / in; + + /* Decrement the loop counter */ + j--; + } + + /* Loop over number of columns of the destination matrix */ + j = numCols; + + while (j > 0U) + { + /* Divide each element of the row of the destination matrix + * by the pivot element */ + in1 = *pInT2; + *pInT2++ = in1 / in; + + /* Decrement the loop counter */ + j--; + } + + /* Replace the rows with the sum of that row and a multiple of row i + * so that each new element in column i above row i is zero.*/ + + /* Temporary pointers for input and destination matrices */ + pInT1 = pIn; + pInT2 = pOut; + + /* index used to check for pivot element */ + i = 0U; + + /* Loop over number of rows */ + /* to be replaced by the sum of that row and a multiple of row i */ + k = numRows; + + while (k > 0U) + { + /* Check for the pivot element */ + if (i == l) + { + /* If the processing element is the pivot element, + only the columns to the right are to be processed */ + pInT1 += numCols - l; + + pInT2 += numCols; + } + else + { + /* Element of the reference row */ + in = *pInT1; + + /* Working pointers for input and destination pivot rows */ + pPRT_in = pPivotRowIn; + pPRT_pDst = pPivotRowDst; + + /* Loop over the number of columns to the right of the pivot element, + to replace the elements in the input matrix */ + j = (numCols - l); + + while (j > 0U) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + in1 = *pInT1; + *pInT1++ = in1 - (in * *pPRT_in++); + + /* Decrement the loop counter */ + j--; + } + + /* Loop over the number of columns to + replace the elements in the destination matrix */ + j = numCols; + + while (j > 0U) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + in1 = *pInT2; + *pInT2++ = in1 - (in * *pPRT_pDst++); + + /* Decrement loop counter */ + j--; + } + + } + + /* Increment temporary input pointer */ + pInT1 = pInT1 + l; + + /* Decrement loop counter */ + k--; + + /* Increment pivot index */ + i++; + } + + /* Increment the input pointer */ + pIn++; + + /* Decrement the loop counter */ + loopCnt--; + + /* Increment the index modifier */ + l++; + } + + +#else + + float32_t Xchg, in = 0.0f; /* Temporary input values */ + uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */ + arm_status status; /* status of matrix inverse */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pSrc->numCols) || + (pDst->numRows != pDst->numCols) || + (pSrc->numRows != pDst->numRows) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + + /*-------------------------------------------------------------------------------------------------------------- + * Matrix Inverse can be solved using elementary row operations. + * + * Gauss-Jordan Method: + * + * 1. First combine the identity matrix and the input matrix separated by a bar to form an + * augmented matrix as follows: + * _ _ _ _ _ _ _ _ + * | | a11 a12 | | | 1 0 | | | X11 X12 | + * | | | | | | | = | | + * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _| + * + * 2. In our implementation, pDst Matrix is used as identity matrix. + * + * 3. Begin with the first row. Let i = 1. + * + * 4. Check to see if the pivot for row i is zero. + * The pivot is the element of the main diagonal that is on the current row. + * For instance, if working with row i, then the pivot element is aii. + * If the pivot is zero, exchange that row with a row below it that does not + * contain a zero in column i. If this is not possible, then an inverse + * to that matrix does not exist. + * + * 5. Divide every element of row i by the pivot. + * + * 6. For every row below and row i, replace that row with the sum of that row and + * a multiple of row i so that each new element in column i below row i is zero. + * + * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros + * for every element below and above the main diagonal. + * + * 8. Now an identical matrix is formed to the left of the bar(input matrix, src). + * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst). + *----------------------------------------------------------------------------------------------------------------*/ + + /* Working pointer for destination matrix */ + pOutT1 = pOut; + + /* Loop over the number of rows */ + rowCnt = numRows; + + /* Making the destination matrix as identity matrix */ + while (rowCnt > 0U) + { + /* Writing all zeroes in lower triangle of the destination matrix */ + j = numRows - rowCnt; + while (j > 0U) + { + *pOutT1++ = 0.0f; + j--; + } + + /* Writing all ones in the diagonal of the destination matrix */ + *pOutT1++ = 1.0f; + + /* Writing all zeroes in upper triangle of the destination matrix */ + j = rowCnt - 1U; + while (j > 0U) + { + *pOutT1++ = 0.0f; + j--; + } + + /* Decrement loop counter */ + rowCnt--; + } + + /* Loop over the number of columns of the input matrix. + All the elements in each column are processed by the row operations */ + loopCnt = numCols; + + /* Index modifier to navigate through the columns */ + l = 0U; + + while (loopCnt > 0U) + { + /* Check if the pivot element is zero.. + * If it is zero then interchange the row with non zero row below. + * If there is no non zero element to replace in the rows below, + * then the matrix is Singular. */ + + /* Working pointer for the input matrix that points + * to the pivot element of the particular row */ + pInT1 = pIn + (l * numCols); + + /* Working pointer for the destination matrix that points + * to the pivot element of the particular row */ + pOutT1 = pOut + (l * numCols); + + /* Temporary variable to hold the pivot value */ + in = *pInT1; + + /* Destination pointer modifier */ + k = 1U; + + /* Check if the pivot element is zero */ + if (*pInT1 == 0.0f) + { + /* Loop over the number rows present below */ + for (i = (l + 1U); i < numRows; i++) + { + /* Update the input and destination pointers */ + pInT2 = pInT1 + (numCols * l); + pOutT2 = pOutT1 + (numCols * k); + + /* Check if there is a non zero pivot element to + * replace in the rows below */ + if (*pInT2 != 0.0f) + { + /* Loop over number of columns + * to the right of the pilot element */ + for (j = 0U; j < (numCols - l); j++) + { + /* Exchange the row elements of the input matrix */ + Xchg = *pInT2; + *pInT2++ = *pInT1; + *pInT1++ = Xchg; + } + + for (j = 0U; j < numCols; j++) + { + Xchg = *pOutT2; + *pOutT2++ = *pOutT1; + *pOutT1++ = Xchg; + } + + /* Flag to indicate whether exchange is done or not */ + flag = 1U; + + /* Break after exchange is done */ + break; + } + + /* Update the destination pointer modifier */ + k++; + } + } + + /* Update the status if the matrix is singular */ + if ((flag != 1U) && (in == 0.0f)) + { + return ARM_MATH_SINGULAR; + } + + /* Points to the pivot row of input and destination matrices */ + pPivotRowIn = pIn + (l * numCols); + pPivotRowDst = pOut + (l * numCols); + + /* Temporary pointers to the pivot row pointers */ + pInT1 = pPivotRowIn; + pOutT1 = pPivotRowDst; + + /* Pivot element of the row */ + in = *(pIn + (l * numCols)); + + /* Loop over number of columns + * to the right of the pilot element */ + for (j = 0U; j < (numCols - l); j++) + { + /* Divide each element of the row of the input matrix + * by the pivot element */ + *pInT1 = *pInT1 / in; + pInT1++; + } + for (j = 0U; j < numCols; j++) + { + /* Divide each element of the row of the destination matrix + * by the pivot element */ + *pOutT1 = *pOutT1 / in; + pOutT1++; + } + + /* Replace the rows with the sum of that row and a multiple of row i + * so that each new element in column i above row i is zero.*/ + + /* Temporary pointers for input and destination matrices */ + pInT1 = pIn; + pOutT1 = pOut; + + for (i = 0U; i < numRows; i++) + { + /* Check for the pivot element */ + if (i == l) + { + /* If the processing element is the pivot element, + only the columns to the right are to be processed */ + pInT1 += numCols - l; + pOutT1 += numCols; + } + else + { + /* Element of the reference row */ + in = *pInT1; + + /* Working pointers for input and destination pivot rows */ + pPRT_in = pPivotRowIn; + pPRT_pDst = pPivotRowDst; + + /* Loop over the number of columns to the right of the pivot element, + to replace the elements in the input matrix */ + for (j = 0U; j < (numCols - l); j++) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + *pInT1 = *pInT1 - (in * *pPRT_in++); + pInT1++; + } + + /* Loop over the number of columns to + replace the elements in the destination matrix */ + for (j = 0U; j < numCols; j++) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + *pOutT1 = *pOutT1 - (in * *pPRT_pDst++); + pOutT1++; + } + + } + + /* Increment temporary input pointer */ + pInT1 = pInT1 + l; + } + + /* Increment the input pointer */ + pIn++; + + /* Decrement the loop counter */ + loopCnt--; + + /* Increment the index modifier */ + l++; + } + +#endif /* #if defined (ARM_MATH_DSP) */ + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + + if ((flag != 1U) && (in == 0.0f)) + { + pIn = pSrc->pData; + for (i = 0; i < numRows * numCols; i++) + { + if (pIn[i] != 0.0f) + break; + } + + if (i == numRows * numCols) + status = ARM_MATH_SINGULAR; + } + } + + /* Return to application */ + return (status); +} +#endif /* #if defined(ARM_MATH_NEON) */ + +/** + @} end of MatrixInv group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c new file mode 100644 index 0000000..17390c8 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_inverse_f64.c @@ -0,0 +1,673 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_inverse_f64.c + * Description: Floating-point matrix inverse + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + + +/** + @addtogroup MatrixInv + @{ + */ + +/** + @brief Floating-point (64 bit) matrix inverse. + @param[in] pSrc points to input matrix structure + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + - \ref ARM_MATH_SINGULAR : Input matrix is found to be singular (non-invertible) + */ + +arm_status arm_mat_inverse_f64( + const arm_matrix_instance_f64 * pSrc, + arm_matrix_instance_f64 * pDst) +{ + float64_t *pIn = pSrc->pData; /* input data matrix pointer */ + float64_t *pOut = pDst->pData; /* output data matrix pointer */ + float64_t *pInT1, *pInT2; /* Temporary input data matrix pointer */ + float64_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */ + float64_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */ + uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */ + uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */ + +#if defined (ARM_MATH_DSP) + float64_t maxC; /* maximum value in the column */ + + float64_t Xchg, in = 0.0, in1; /* Temporary input values */ + uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */ + arm_status status; /* status of matrix inverse */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pSrc->numCols) || + (pDst->numRows != pDst->numCols) || + (pSrc->numRows != pDst->numRows) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + + /*-------------------------------------------------------------------------------------------------------------- + * Matrix Inverse can be solved using elementary row operations. + * + * Gauss-Jordan Method: + * + * 1. First combine the identity matrix and the input matrix separated by a bar to form an + * augmented matrix as follows: + * _ _ _ _ + * | a11 a12 | 1 0 | | X11 X12 | + * | | | = | | + * |_ a21 a22 | 0 1 _| |_ X21 X21 _| + * + * 2. In our implementation, pDst Matrix is used as identity matrix. + * + * 3. Begin with the first row. Let i = 1. + * + * 4. Check to see if the pivot for column i is the greatest of the column. + * The pivot is the element of the main diagonal that is on the current row. + * For instance, if working with row i, then the pivot element is aii. + * If the pivot is not the most significant of the columns, exchange that row with a row + * below it that does contain the most significant value in column i. If the most + * significant value of the column is zero, then an inverse to that matrix does not exist. + * The most significant value of the column is the absolute maximum. + * + * 5. Divide every element of row i by the pivot. + * + * 6. For every row below and row i, replace that row with the sum of that row and + * a multiple of row i so that each new element in column i below row i is zero. + * + * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros + * for every element below and above the main diagonal. + * + * 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc). + * Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst). + *----------------------------------------------------------------------------------------------------------------*/ + + /* Working pointer for destination matrix */ + pOutT1 = pOut; + + /* Loop over the number of rows */ + rowCnt = numRows; + + /* Making the destination matrix as identity matrix */ + while (rowCnt > 0U) + { + /* Writing all zeroes in lower triangle of the destination matrix */ + j = numRows - rowCnt; + while (j > 0U) + { + *pOutT1++ = 0.0; + j--; + } + + /* Writing all ones in the diagonal of the destination matrix */ + *pOutT1++ = 1.0; + + /* Writing all zeroes in upper triangle of the destination matrix */ + j = rowCnt - 1U; + while (j > 0U) + { + *pOutT1++ = 0.0; + j--; + } + + /* Decrement loop counter */ + rowCnt--; + } + + /* Loop over the number of columns of the input matrix. + All the elements in each column are processed by the row operations */ + loopCnt = numCols; + + /* Index modifier to navigate through the columns */ + l = 0U; + + while (loopCnt > 0U) + { + /* Check if the pivot element is zero.. + * If it is zero then interchange the row with non zero row below. + * If there is no non zero element to replace in the rows below, + * then the matrix is Singular. */ + + /* Working pointer for the input matrix that points + * to the pivot element of the particular row */ + pInT1 = pIn + (l * numCols); + + /* Working pointer for the destination matrix that points + * to the pivot element of the particular row */ + pOutT1 = pOut + (l * numCols); + + /* Temporary variable to hold the pivot value */ + in = *pInT1; + + /* Grab the most significant value from column l */ + maxC = 0; + for (i = l; i < numRows; i++) + { + maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC); + pInT1 += numCols; + } + + /* Update the status if the matrix is singular */ + if (maxC == 0.0) + { + return ARM_MATH_SINGULAR; + } + + /* Restore pInT1 */ + pInT1 = pIn; + + /* Destination pointer modifier */ + k = 1U; + + /* Check if the pivot element is the most significant of the column */ + if ( (in > 0.0 ? in : -in) != maxC) + { + /* Loop over the number rows present below */ + i = numRows - (l + 1U); + + while (i > 0U) + { + /* Update the input and destination pointers */ + pInT2 = pInT1 + (numCols * l); + pOutT2 = pOutT1 + (numCols * k); + + /* Look for the most significant element to + * replace in the rows below */ + if ((*pInT2 > 0.0 ? *pInT2: -*pInT2) == maxC) + { + /* Loop over number of columns + * to the right of the pilot element */ + j = numCols - l; + + while (j > 0U) + { + /* Exchange the row elements of the input matrix */ + Xchg = *pInT2; + *pInT2++ = *pInT1; + *pInT1++ = Xchg; + + /* Decrement the loop counter */ + j--; + } + + /* Loop over number of columns of the destination matrix */ + j = numCols; + + while (j > 0U) + { + /* Exchange the row elements of the destination matrix */ + Xchg = *pOutT2; + *pOutT2++ = *pOutT1; + *pOutT1++ = Xchg; + + /* Decrement loop counter */ + j--; + } + + /* Flag to indicate whether exchange is done or not */ + flag = 1U; + + /* Break after exchange is done */ + break; + } + + /* Update the destination pointer modifier */ + k++; + + /* Decrement loop counter */ + i--; + } + } + + /* Update the status if the matrix is singular */ + if ((flag != 1U) && (in == 0.0)) + { + return ARM_MATH_SINGULAR; + } + + /* Points to the pivot row of input and destination matrices */ + pPivotRowIn = pIn + (l * numCols); + pPivotRowDst = pOut + (l * numCols); + + /* Temporary pointers to the pivot row pointers */ + pInT1 = pPivotRowIn; + pInT2 = pPivotRowDst; + + /* Pivot element of the row */ + in = *pPivotRowIn; + + /* Loop over number of columns + * to the right of the pilot element */ + j = (numCols - l); + + while (j > 0U) + { + /* Divide each element of the row of the input matrix + * by the pivot element */ + in1 = *pInT1; + *pInT1++ = in1 / in; + + /* Decrement the loop counter */ + j--; + } + + /* Loop over number of columns of the destination matrix */ + j = numCols; + + while (j > 0U) + { + /* Divide each element of the row of the destination matrix + * by the pivot element */ + in1 = *pInT2; + *pInT2++ = in1 / in; + + /* Decrement the loop counter */ + j--; + } + + /* Replace the rows with the sum of that row and a multiple of row i + * so that each new element in column i above row i is zero.*/ + + /* Temporary pointers for input and destination matrices */ + pInT1 = pIn; + pInT2 = pOut; + + /* index used to check for pivot element */ + i = 0U; + + /* Loop over number of rows */ + /* to be replaced by the sum of that row and a multiple of row i */ + k = numRows; + + while (k > 0U) + { + /* Check for the pivot element */ + if (i == l) + { + /* If the processing element is the pivot element, + only the columns to the right are to be processed */ + pInT1 += numCols - l; + + pInT2 += numCols; + } + else + { + /* Element of the reference row */ + in = *pInT1; + + /* Working pointers for input and destination pivot rows */ + pPRT_in = pPivotRowIn; + pPRT_pDst = pPivotRowDst; + + /* Loop over the number of columns to the right of the pivot element, + to replace the elements in the input matrix */ + j = (numCols - l); + + while (j > 0U) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + in1 = *pInT1; + *pInT1++ = in1 - (in * *pPRT_in++); + + /* Decrement the loop counter */ + j--; + } + + /* Loop over the number of columns to + replace the elements in the destination matrix */ + j = numCols; + + while (j > 0U) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + in1 = *pInT2; + *pInT2++ = in1 - (in * *pPRT_pDst++); + + /* Decrement loop counter */ + j--; + } + + } + + /* Increment temporary input pointer */ + pInT1 = pInT1 + l; + + /* Decrement loop counter */ + k--; + + /* Increment pivot index */ + i++; + } + + /* Increment the input pointer */ + pIn++; + + /* Decrement the loop counter */ + loopCnt--; + + /* Increment the index modifier */ + l++; + } + + +#else + + float64_t Xchg, in = 0.0; /* Temporary input values */ + uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l; /* loop counters */ + arm_status status; /* status of matrix inverse */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pSrc->numCols) || + (pDst->numRows != pDst->numCols) || + (pSrc->numRows != pDst->numRows) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + + /*-------------------------------------------------------------------------------------------------------------- + * Matrix Inverse can be solved using elementary row operations. + * + * Gauss-Jordan Method: + * + * 1. First combine the identity matrix and the input matrix separated by a bar to form an + * augmented matrix as follows: + * _ _ _ _ _ _ _ _ + * | | a11 a12 | | | 1 0 | | | X11 X12 | + * | | | | | | | = | | + * |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _| + * + * 2. In our implementation, pDst Matrix is used as identity matrix. + * + * 3. Begin with the first row. Let i = 1. + * + * 4. Check to see if the pivot for row i is zero. + * The pivot is the element of the main diagonal that is on the current row. + * For instance, if working with row i, then the pivot element is aii. + * If the pivot is zero, exchange that row with a row below it that does not + * contain a zero in column i. If this is not possible, then an inverse + * to that matrix does not exist. + * + * 5. Divide every element of row i by the pivot. + * + * 6. For every row below and row i, replace that row with the sum of that row and + * a multiple of row i so that each new element in column i below row i is zero. + * + * 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros + * for every element below and above the main diagonal. + * + * 8. Now an identical matrix is formed to the left of the bar(input matrix, src). + * Therefore, the matrix to the right of the bar is our solution(dst matrix, dst). + *----------------------------------------------------------------------------------------------------------------*/ + + /* Working pointer for destination matrix */ + pOutT1 = pOut; + + /* Loop over the number of rows */ + rowCnt = numRows; + + /* Making the destination matrix as identity matrix */ + while (rowCnt > 0U) + { + /* Writing all zeroes in lower triangle of the destination matrix */ + j = numRows - rowCnt; + while (j > 0U) + { + *pOutT1++ = 0.0; + j--; + } + + /* Writing all ones in the diagonal of the destination matrix */ + *pOutT1++ = 1.0; + + /* Writing all zeroes in upper triangle of the destination matrix */ + j = rowCnt - 1U; + while (j > 0U) + { + *pOutT1++ = 0.0; + j--; + } + + /* Decrement loop counter */ + rowCnt--; + } + + /* Loop over the number of columns of the input matrix. + All the elements in each column are processed by the row operations */ + loopCnt = numCols; + + /* Index modifier to navigate through the columns */ + l = 0U; + + while (loopCnt > 0U) + { + /* Check if the pivot element is zero.. + * If it is zero then interchange the row with non zero row below. + * If there is no non zero element to replace in the rows below, + * then the matrix is Singular. */ + + /* Working pointer for the input matrix that points + * to the pivot element of the particular row */ + pInT1 = pIn + (l * numCols); + + /* Working pointer for the destination matrix that points + * to the pivot element of the particular row */ + pOutT1 = pOut + (l * numCols); + + /* Temporary variable to hold the pivot value */ + in = *pInT1; + + /* Destination pointer modifier */ + k = 1U; + + /* Check if the pivot element is zero */ + if (*pInT1 == 0.0) + { + /* Loop over the number rows present below */ + for (i = (l + 1U); i < numRows; i++) + { + /* Update the input and destination pointers */ + pInT2 = pInT1 + (numCols * l); + pOutT2 = pOutT1 + (numCols * k); + + /* Check if there is a non zero pivot element to + * replace in the rows below */ + if (*pInT2 != 0.0) + { + /* Loop over number of columns + * to the right of the pilot element */ + for (j = 0U; j < (numCols - l); j++) + { + /* Exchange the row elements of the input matrix */ + Xchg = *pInT2; + *pInT2++ = *pInT1; + *pInT1++ = Xchg; + } + + for (j = 0U; j < numCols; j++) + { + Xchg = *pOutT2; + *pOutT2++ = *pOutT1; + *pOutT1++ = Xchg; + } + + /* Flag to indicate whether exchange is done or not */ + flag = 1U; + + /* Break after exchange is done */ + break; + } + + /* Update the destination pointer modifier */ + k++; + } + } + + /* Update the status if the matrix is singular */ + if ((flag != 1U) && (in == 0.0)) + { + return ARM_MATH_SINGULAR; + } + + /* Points to the pivot row of input and destination matrices */ + pPivotRowIn = pIn + (l * numCols); + pPivotRowDst = pOut + (l * numCols); + + /* Temporary pointers to the pivot row pointers */ + pInT1 = pPivotRowIn; + pOutT1 = pPivotRowDst; + + /* Pivot element of the row */ + in = *(pIn + (l * numCols)); + + /* Loop over number of columns + * to the right of the pilot element */ + for (j = 0U; j < (numCols - l); j++) + { + /* Divide each element of the row of the input matrix + * by the pivot element */ + *pInT1 = *pInT1 / in; + pInT1++; + } + for (j = 0U; j < numCols; j++) + { + /* Divide each element of the row of the destination matrix + * by the pivot element */ + *pOutT1 = *pOutT1 / in; + pOutT1++; + } + + /* Replace the rows with the sum of that row and a multiple of row i + * so that each new element in column i above row i is zero.*/ + + /* Temporary pointers for input and destination matrices */ + pInT1 = pIn; + pOutT1 = pOut; + + for (i = 0U; i < numRows; i++) + { + /* Check for the pivot element */ + if (i == l) + { + /* If the processing element is the pivot element, + only the columns to the right are to be processed */ + pInT1 += numCols - l; + pOutT1 += numCols; + } + else + { + /* Element of the reference row */ + in = *pInT1; + + /* Working pointers for input and destination pivot rows */ + pPRT_in = pPivotRowIn; + pPRT_pDst = pPivotRowDst; + + /* Loop over the number of columns to the right of the pivot element, + to replace the elements in the input matrix */ + for (j = 0U; j < (numCols - l); j++) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + *pInT1 = *pInT1 - (in * *pPRT_in++); + pInT1++; + } + + /* Loop over the number of columns to + replace the elements in the destination matrix */ + for (j = 0U; j < numCols; j++) + { + /* Replace the element by the sum of that row + and a multiple of the reference row */ + *pOutT1 = *pOutT1 - (in * *pPRT_pDst++); + pOutT1++; + } + + } + + /* Increment temporary input pointer */ + pInT1 = pInT1 + l; + } + + /* Increment the input pointer */ + pIn++; + + /* Decrement the loop counter */ + loopCnt--; + + /* Increment the index modifier */ + l++; + } + +#endif /* #if defined (ARM_MATH_DSP) */ + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + + if ((flag != 1U) && (in == 0.0)) + { + pIn = pSrc->pData; + for (i = 0; i < numRows * numCols; i++) + { + if (pIn[i] != 0.0) + break; + } + + if (i == numRows * numCols) + status = ARM_MATH_SINGULAR; + } + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixInv group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c new file mode 100644 index 0000000..35517d6 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c @@ -0,0 +1,534 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_mult_f32.c + * Description: Floating-point matrix multiplication + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + * @ingroup groupMatrix + */ + +/** + * @defgroup MatrixMult Matrix Multiplication + * + * Multiplies two matrices. + * + * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices" + + * Matrix multiplication is only defined if the number of columns of the + * first matrix equals the number of rows of the second matrix. + * Multiplying an M x N matrix with an N x P matrix results + * in an M x P matrix. + * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of + * pSrcA and pSrcB are equal; and (2) that the size of the output + * matrix equals the outer dimensions of pSrcA and pSrcB. + */ + + +/** + * @addtogroup MatrixMult + * @{ + */ + +/** + * @brief Floating-point matrix multiplication. + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +#if defined(ARM_MATH_NEON) + +#define GROUPOFROWS 8 + +arm_status arm_mat_mult_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ + float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ + float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + float32_t *px; /* Temporary output data matrix pointer */ + float32_t sum; /* Accumulator */ + uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ + + + float32_t in1, in2, in3, in4; + uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt; /* loop counters */ + arm_status status; /* status of matrix multiplication */ + + float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V; + float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp; + float32x2_t accum = vdup_n_f32(0); + float32_t *pIn1B = pSrcA->pData; + float32_t *pIn1C = pSrcA->pData; + float32_t *pIn1D = pSrcA->pData; + float32_t *pIn1E = pSrcA->pData; + float32_t *pIn1F = pSrcA->pData; + float32_t *pIn1G = pSrcA->pData; + float32_t *pIn1H = pSrcA->pData; + + float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH; /* Temporary output data matrix pointer */ + float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7; + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + { + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* Row loop */ + rowCnt = row >> 3; + + while(rowCnt > 0) + { + /* Output pointer is set to starting address of the row being processed */ + px = pOut + GROUPOFROWS*i; + pxB = px + numColsB; + pxC = px + 2*numColsB; + pxD = px + 3*numColsB; + pxE = px + 4*numColsB; + pxF = px + 5*numColsB; + pxG = px + 6*numColsB; + pxH = px + 7*numColsB; + + /* For every row wise process, the column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, the pIn2 pointer is set + ** to the starting address of the pSrcB data */ + pIn2 = pSrcB->pData; + + j = 0U; + + /* Column loop */ + do + { + /* Set the variable sum, that acts as accumulator, to zero */ + sum0 = 0.0f; + sum1 = 0.0f; + sum2 = 0.0f; + sum3 = 0.0f; + sum4 = 0.0f; + sum5 = 0.0f; + sum6 = 0.0f; + sum7 = 0.0f; + + /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ + pIn1 = pInA; + pIn1B = pIn1 + numColsA; + pIn1C = pIn1 + 2*numColsA; + pIn1D = pIn1 + 3*numColsA; + pIn1E = pIn1 + 4*numColsA; + pIn1F = pIn1 + 5*numColsA; + pIn1G = pIn1 + 6*numColsA; + pIn1H = pIn1 + 7*numColsA; + + acc0 = vdupq_n_f32(0.0); + acc1 = vdupq_n_f32(0.0); + acc2 = vdupq_n_f32(0.0); + acc3 = vdupq_n_f32(0.0); + acc4 = vdupq_n_f32(0.0); + acc5 = vdupq_n_f32(0.0); + acc6 = vdupq_n_f32(0.0); + acc7 = vdupq_n_f32(0.0); + + /* Compute 4 MACs simultaneously. */ + colCnt = numColsA >> 2U; + + /* Matrix multiplication */ + while (colCnt > 0U) + { + /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */ + a0V = vld1q_f32(pIn1); + a1V = vld1q_f32(pIn1B); + a2V = vld1q_f32(pIn1C); + a3V = vld1q_f32(pIn1D); + a4V = vld1q_f32(pIn1E); + a5V = vld1q_f32(pIn1F); + a6V = vld1q_f32(pIn1G); + a7V = vld1q_f32(pIn1H); + + pIn1 += 4; + pIn1B += 4; + pIn1C += 4; + pIn1D += 4; + pIn1E += 4; + pIn1F += 4; + pIn1G += 4; + pIn1H += 4; + + temp[0] = *pIn2; + pIn2 += numColsB; + temp[1] = *pIn2; + pIn2 += numColsB; + temp[2] = *pIn2; + pIn2 += numColsB; + temp[3] = *pIn2; + pIn2 += numColsB; + + acc0 = vmlaq_f32(acc0,a0V,temp); + acc1 = vmlaq_f32(acc1,a1V,temp); + acc2 = vmlaq_f32(acc2,a2V,temp); + acc3 = vmlaq_f32(acc3,a3V,temp); + acc4 = vmlaq_f32(acc4,a4V,temp); + acc5 = vmlaq_f32(acc5,a5V,temp); + acc6 = vmlaq_f32(acc6,a6V,temp); + acc7 = vmlaq_f32(acc7,a7V,temp); + + /* Decrement the loop count */ + colCnt--; + } + + accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0)); + sum0 += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1)); + sum1 += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2)); + sum2 += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3)); + sum3 += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4)); + sum4 += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5)); + sum5 += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6)); + sum6 += accum[0] + accum[1]; + + accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7)); + sum7 += accum[0] + accum[1]; + + /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + colCnt = numColsA & 3; + + while (colCnt > 0U) + { + /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */ + sum0 += *pIn1++ * (*pIn2); + sum1 += *pIn1B++ * (*pIn2); + sum2 += *pIn1C++ * (*pIn2); + sum3 += *pIn1D++ * (*pIn2); + sum4 += *pIn1E++ * (*pIn2); + sum5 += *pIn1F++ * (*pIn2); + sum6 += *pIn1G++ * (*pIn2); + sum7 += *pIn1H++ * (*pIn2); + pIn2 += numColsB; + + /* Decrement the loop counter */ + colCnt--; + } + + /* Store the result in the destination buffer */ + *px++ = sum0; + *pxB++ = sum1; + *pxC++ = sum2; + *pxD++ = sum3; + *pxE++ = sum4; + *pxF++ = sum5; + *pxG++ = sum6; + *pxH++ = sum7; + + /* Update the pointer pIn2 to point to the starting address of the next column */ + j++; + pIn2 = pSrcB->pData + j; + + /* Decrement the column loop counter */ + col--; + + } while (col > 0U); + + /* Update the pointer pInA to point to the starting address of the next row */ + i = i + numColsB; + pInA = pInA + GROUPOFROWS*numColsA; + + /* Decrement the row loop counter */ + rowCnt--; + } + + /* + + i was the index of a group of rows computed by previous loop. + Now i is the index of a row since below code is computing row per row + and no more group of row per group of rows. + + */ + + i = GROUPOFROWS*i; + rowCnt = row & 7; + + while(rowCnt > 0) + { + /* Output pointer is set to starting address of the row being processed */ + px = pOut + i; + + /* For every row wise process, the column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, the pIn2 pointer is set + ** to the starting address of the pSrcB data */ + pIn2 = pSrcB->pData; + + j = 0U; + + /* Column loop */ + do + { + /* Set the variable sum, that acts as accumulator, to zero */ + sum = 0.0f; + + /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ + pIn1 = pInA; + + acc0 = vdupq_n_f32(0.0); + + /* Compute 4 MACs simultaneously. */ + colCnt = numColsA >> 2U; + + /* Matrix multiplication */ + while (colCnt > 0U) + { + /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */ + a0V = vld1q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2) + pIn1 += 4; + + temp[0] = *pIn2; + pIn2 += numColsB; + temp[1] = *pIn2; + pIn2 += numColsB; + temp[2] = *pIn2; + pIn2 += numColsB; + temp[3] = *pIn2; + pIn2 += numColsB; + + acc0 = vmlaq_f32(acc0,a0V,temp); + + /* Decrement the loop count */ + colCnt--; + } + + accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0)); + sum += accum[0] + accum[1]; + + /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. + ** No loop unrolling is used. */ + colCnt = numColsA % 0x4U; + + while (colCnt > 0U) + { + /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */ + sum += *pIn1++ * (*pIn2); + pIn2 += numColsB; + + /* Decrement the loop counter */ + colCnt--; + } + + /* Store the result in the destination buffer */ + *px++ = sum; + + /* Update the pointer pIn2 to point to the starting address of the next column */ + j++; + pIn2 = pSrcB->pData + j; + + /* Decrement the column loop counter */ + col--; + + } while (col > 0U); + + + /* Update the pointer pInA to point to the starting address of the next row */ + i = i + numColsB; + pInA = pInA + numColsA; + + /* Decrement the row loop counter */ + rowCnt--; + + } + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#else +arm_status arm_mat_mult_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */ + float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */ + float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */ + float32_t *pInB = pSrcB->pData; /* Input data matrix pointer B */ + float32_t *pOut = pDst->pData; /* Output data matrix pointer */ + float32_t *px; /* Temporary output data matrix pointer */ + float32_t sum; /* Accumulator */ + uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */ + uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */ + arm_status status; /* Status of matrix multiplication */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + do + { + /* Output pointer is set to starting address of row being processed */ + px = pOut + i; + + /* For every row wise process, column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */ + pIn2 = pSrcB->pData; + + /* column loop */ + do + { + /* Set the variable sum, that acts as accumulator, to zero */ + sum = 0.0f; + + /* Initialize pointer pIn1 to point to starting address of column being processed */ + pIn1 = pInA; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 MACs at a time. */ + colCnt = numColsA >> 2U; + + /* matrix multiplication */ + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + /* Perform the multiply-accumulates */ + sum += *pIn1++ * *pIn2; + pIn2 += numColsB; + + sum += *pIn1++ * *pIn2; + pIn2 += numColsB; + + sum += *pIn1++ * *pIn2; + pIn2 += numColsB; + + sum += *pIn1++ * *pIn2; + pIn2 += numColsB; + + /* Decrement loop counter */ + colCnt--; + } + + /* Loop unrolling: Compute remaining MACs */ + colCnt = numColsA % 0x4U; + +#else + + /* Initialize cntCnt with number of columns */ + colCnt = numColsA; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + /* Perform the multiply-accumulates */ + sum += *pIn1++ * *pIn2; + pIn2 += numColsB; + + /* Decrement loop counter */ + colCnt--; + } + + /* Store result in destination buffer */ + *px++ = sum; + + /* Decrement column loop counter */ + col--; + + /* Update pointer pIn2 to point to starting address of next column */ + pIn2 = pInB + (numColsB - col); + + } while (col > 0U); + + /* Update pointer pInA to point to starting address of next row */ + i = i + numColsB; + pInA = pInA + numColsA; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +#endif /* #if defined(ARM_MATH_NEON) */ + +/** + * @} end of MatrixMult group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c new file mode 100644 index 0000000..384974e --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c @@ -0,0 +1,483 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_mult_fast_q15.c + * Description: Q15 matrix multiplication (fast variant) + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixMult + @{ + */ + +/** + @brief Q15 matrix multiplication (fast variant). + @param[in] pSrcA points to the first input matrix structure + @param[in] pSrcB points to the second input matrix structure + @param[out] pDst points to output matrix structure + @param[in] pState points to the array for storing intermediate results + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The difference between the function \ref arm_mat_mult_q15() and this fast variant is that + the fast variant use a 32-bit rather than a 64-bit accumulator. + The result of each 1.15 x 1.15 multiplication is truncated to + 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30 + format. Finally, the accumulator is saturated and converted to a 1.15 result. + @par + The fast version has the same overflow behavior as the standard version but provides + less precision since it discards the low 16 bits of each multiplication result. + In order to avoid overflows completely the input signals must be scaled down. + Scale down one of the input matrices by log2(numColsA) bits to avoid overflows, + as a total of numColsA additions are computed internally for each output element. + @remark + Refer to \ref arm_mat_mult_q15() for a slower implementation of this function + which uses 64-bit accumulation to provide higher precision. + */ + +arm_status arm_mat_mult_fast_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pState) +{ + q31_t sum; /* Accumulator */ + q15_t *pSrcBT = pState; /* Input data matrix pointer for transpose */ + q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */ + q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */ + q15_t *px; /* Temporary output data matrix pointer */ + uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */ + uint16_t numRowsB = pSrcB->numRows; /* Number of rows of input matrix A */ + uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */ + arm_status status; /* Status of matrix multiplication */ + +#if defined (ARM_MATH_DSP) + q31_t in; /* Temporary variable to hold the input value */ + q31_t inA1, inB1, inA2, inB2; + q31_t sum2, sum3, sum4; + q15_t *pInA2, *pInB2, *px2; + uint32_t j = 0; +#else + q15_t in; /* Temporary variable to hold the input value */ + q15_t inA1, inB1, inA2, inB2; +#endif /* #if defined (ARM_MATH_DSP) */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Matrix transpose */ + do + { + /* The pointer px is set to starting address of column being processed */ + px = pSrcBT + i; + + /* Apply loop unrolling and exchange columns with row elements */ + col = numColsB >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while (col > 0U) + { + +#if defined (ARM_MATH_DSP) + + /* Read two elements from row */ + in = read_q15x2_ia ((q15_t **) &pInB); + + /* Unpack and store one element in destination */ +#ifndef ARM_MATH_BIG_ENDIAN + *px = (q15_t) in; +#else + *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB; + + /* Unpack and store second element in destination */ +#ifndef ARM_MATH_BIG_ENDIAN + *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#else + *px = (q15_t) in; +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB; + + in = read_q15x2_ia ((q15_t **) &pInB); +#ifndef ARM_MATH_BIG_ENDIAN + *px = (q15_t) in; +#else + *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + px += numRowsB; + +#ifndef ARM_MATH_BIG_ENDIAN + *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#else + *px = (q15_t) in; +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + px += numRowsB; + +#else /* #if defined (ARM_MATH_DSP) */ + + /* Read one element from row */ + in = *pInB++; + + /* Store one element in destination */ + *px = in; + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB; + + in = *pInB++; + *px = in; + px += numRowsB; + + in = *pInB++; + *px = in; + px += numRowsB; + + in = *pInB++; + *px = in; + px += numRowsB; + +#endif /* #if defined (ARM_MATH_DSP) */ + + /* Decrement column loop counter */ + col--; + } + + /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + col = numColsB % 0x4U; + + while (col > 0U) + { + /* Read and store input element in destination */ + *px = *pInB++; + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB; + + /* Decrement column loop counter */ + col--; + } + + i++; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); + + /* Reset variables for usage in following multiplication process */ + row = numRowsA; + i = 0U; + px = pDst->pData; + +#if defined (ARM_MATH_DSP) + /* Process two rows from matrix A at a time and output two rows at a time */ + row = row >> 1U; + px2 = px + numColsB; +#endif + + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + while (row > 0U) + { + /* For every row wise process, column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */ + pInB = pSrcBT; + +#if defined (ARM_MATH_DSP) + /* Process two (transposed) columns from matrix B at a time */ + col = col >> 1U; + j = 0; +#endif + + /* column loop */ + while (col > 0U) + { + /* Set variable sum, that acts as accumulator, to zero */ + sum = 0; + + /* Initiate pointer pInA to point to starting address of column being processed */ + pInA = pSrcA->pData + i; + +#if defined (ARM_MATH_DSP) + sum2 = 0; + sum3 = 0; + sum4 = 0; + pInB = pSrcBT + j; + pInA2 = pInA + numColsA; + pInB2 = pInB + numRowsB; + + /* Read in two elements at once - alows dual MAC instruction */ + colCnt = numColsA >> 1U; +#else + colCnt = numColsA >> 2U; +#endif + + /* matrix multiplication */ + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + +#if defined (ARM_MATH_DSP) + /* read real and imag values from pSrcA and pSrcB buffer */ + inA1 = read_q15x2_ia ((q15_t **) &pInA); + inB1 = read_q15x2_ia ((q15_t **) &pInB); + + inA2 = read_q15x2_ia ((q15_t **) &pInA2); + inB2 = read_q15x2_ia ((q15_t **) &pInB2); + + /* Multiply and Accumlates */ + sum = __SMLAD(inA1, inB1, sum); + sum2 = __SMLAD(inA1, inB2, sum2); + sum3 = __SMLAD(inA2, inB1, sum3); + sum4 = __SMLAD(inA2, inB2, sum4); +#else + /* read real and imag values from pSrcA and pSrcB buffer */ + inA1 = *pInA++; + inB1 = *pInB++; + /* Multiply and Accumlates */ + sum += inA1 * inB1; + + inA2 = *pInA++; + inB2 = *pInB++; + sum += inA2 * inB2; + + inA1 = *pInA++; + inB1 = *pInB++; + sum += inA1 * inB1; + + inA2 = *pInA++; + inB2 = *pInB++; + sum += inA2 * inB2; +#endif /* #if defined (ARM_MATH_DSP) */ + + /* Decrement loop counter */ + colCnt--; + } + + /* process odd column samples */ +#if defined (ARM_MATH_DSP) + if (numColsA & 1U) { + inA1 = *pInA++; + inB1 = *pInB++; + inA2 = *pInA2++; + inB2 = *pInB2++; + sum += inA1 * inB1; + sum2 += inA1 * inB2; + sum3 += inA2 * inB1; + sum4 += inA2 * inB2; + } +#else + colCnt = numColsA % 0x4U; + + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + sum += (q31_t) *pInA++ * *pInB++; + + /* Decrement loop counter */ + colCnt--; + } +#endif /* #if defined (ARM_MATH_DSP) */ + + /* Saturate and store result in destination buffer */ + *px++ = (q15_t) (sum >> 15); + +#if defined (ARM_MATH_DSP) + *px++ = (q15_t) (sum2 >> 15); + *px2++ = (q15_t) (sum3 >> 15); + *px2++ = (q15_t) (sum4 >> 15); + j += numRowsB * 2; +#endif + + /* Decrement column loop counter */ + col--; + + } + + i = i + numColsA; + +#if defined (ARM_MATH_DSP) + i = i + numColsA; + px = px2 + (numColsB & 1U); + px2 = px + numColsB; +#endif + + /* Decrement row loop counter */ + row--; + + } + + /* Compute any remaining odd row/column below */ + +#if defined (ARM_MATH_DSP) + + /* Compute remaining output column */ + if (numColsB & 1U) { + + /* Avoid redundant computation of last element */ + row = numRowsA & (~0x1); + + /* Point to remaining unfilled column in output matrix */ + px = pDst->pData + numColsB-1; + pInA = pSrcA->pData; + + /* row loop */ + while (row > 0) + { + + /* point to last column in matrix B */ + pInB = pSrcBT + numRowsB * (numColsB-1); + + /* Set variable sum, that acts as accumulator, to zero */ + sum = 0; + + /* Compute 4 columns at once */ + colCnt = numColsA >> 2U; + + /* matrix multiplication */ + while (colCnt > 0U) + { + inA1 = read_q15x2_ia ((q15_t **) &pInA); + inA2 = read_q15x2_ia ((q15_t **) &pInA); + inB1 = read_q15x2_ia ((q15_t **) &pInB); + inB2 = read_q15x2_ia ((q15_t **) &pInB); + + sum = __SMLAD(inA1, inB1, sum); + sum = __SMLAD(inA2, inB2, sum); + + /* Decrement loop counter */ + colCnt--; + } + + colCnt = numColsA & 3U; + while (colCnt > 0U) { + sum += (q31_t) (*pInA++) * (*pInB++); + colCnt--; + } + + /* Store result in destination buffer */ + *px = (q15_t) (sum >> 15); + px += numColsB; + + /* Decrement row loop counter */ + row--; + } + } + + /* Compute remaining output row */ + if (numRowsA & 1U) { + + /* point to last row in output matrix */ + px = pDst->pData + (numColsB) * (numRowsA-1); + + pInB = pSrcBT; + col = numColsB; + i = 0U; + + /* col loop */ + while (col > 0) + { + /* point to last row in matrix A */ + pInA = pSrcA->pData + (numRowsA-1) * numColsA; + + /* Set variable sum, that acts as accumulator, to zero */ + sum = 0; + + /* Compute 4 columns at once */ + colCnt = numColsA >> 2U; + + /* matrix multiplication */ + while (colCnt > 0U) + { + inA1 = read_q15x2_ia ((q15_t **) &pInA); + inA2 = read_q15x2_ia ((q15_t **) &pInA); + inB1 = read_q15x2_ia ((q15_t **) &pInB); + inB2 = read_q15x2_ia ((q15_t **) &pInB); + + sum = __SMLAD(inA1, inB1, sum); + sum = __SMLAD(inA2, inB2, sum); + + /* Decrement loop counter */ + colCnt--; + } + + colCnt = numColsA % 4U; + while (colCnt > 0U) { + sum += (q31_t) (*pInA++) * (*pInB++); + + colCnt--; + } + + /* Store result in destination buffer */ + *px++ = (q15_t) (sum >> 15); + + /* Decrement column loop counter */ + col--; + } + } + +#endif /* #if defined (ARM_MATH_DSP) */ + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixMult group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c new file mode 100644 index 0000000..0d753f7 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c @@ -0,0 +1,374 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_mult_fast_q31.c + * Description: Q31 matrix multiplication (fast variant) + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixMult + @{ + */ + +/** + @brief Q31 matrix multiplication (fast variant). + @param[in] pSrcA points to the first input matrix structure + @param[in] pSrcB points to the second input matrix structure + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The difference between the function \ref arm_mat_mult_q31() and this fast variant is that + the fast variant use a 32-bit rather than a 64-bit accumulator. + The result of each 1.31 x 1.31 multiplication is truncated to + 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30 + format. Finally, the accumulator is saturated and converted to a 1.31 result. + @par + The fast version has the same overflow behavior as the standard version but provides + less precision since it discards the low 32 bits of each multiplication result. + In order to avoid overflows completely the input signals must be scaled down. + Scale down one of the input matrices by log2(numColsA) bits to avoid overflows, + as a total of numColsA additions are computed internally for each output element. + @remark + Refer to \ref arm_mat_mult_q31() for a slower implementation of this function + which uses 64-bit accumulation to provide higher precision. + */ + +arm_status arm_mat_mult_fast_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst) +{ + q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */ + q31_t *pInB = pSrcB->pData; /* Input data matrix pointer B */ + q31_t *pInA2; + q31_t *px; /* Temporary output data matrix pointer */ + q31_t *px2; + q31_t sum1, sum2, sum3, sum4; /* Accumulator */ + q31_t inA1, inA2, inB1, inB2; + uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */ + uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* Loop counters */ + arm_status status; /* Status of matrix multiplication */ + + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + px = pDst->pData; + + row = row >> 1U; + px2 = px + numColsB; + + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + while (row > 0U) + { + /* For every row wise process, column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */ + pInB = pSrcB->pData; + + j = 0U; + + col = col >> 1U; + + /* column loop */ + while (col > 0U) + { + /* Set the variable sum, that acts as accumulator, to zero */ + sum1 = 0; + sum2 = 0; + sum3 = 0; + sum4 = 0; + + /* Initiate data pointers */ + pInA = pSrcA->pData + i; + pInB = pSrcB->pData + j; + pInA2 = pInA + numColsA; + + colCnt = numColsA; + + /* matrix multiplication */ + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + inA1 = *pInA++; + inB1 = pInB[0]; + inA2 = *pInA2++; + inB2 = pInB[1]; + pInB += numColsB; + +#if defined (ARM_MATH_DSP) + sum1 = __SMMLA(inA1, inB1, sum1); + sum2 = __SMMLA(inA1, inB2, sum2); + sum3 = __SMMLA(inA2, inB1, sum3); + sum4 = __SMMLA(inA2, inB2, sum4); +#else + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32); + sum2 = (q31_t) ((((q63_t) sum2 << 32) + ((q63_t) inA1 * inB2)) >> 32); + sum3 = (q31_t) ((((q63_t) sum3 << 32) + ((q63_t) inA2 * inB1)) >> 32); + sum4 = (q31_t) ((((q63_t) sum4 << 32) + ((q63_t) inA2 * inB2)) >> 32); +#endif + + /* Decrement loop counter */ + colCnt--; + } + + /* Convert the result from 2.30 to 1.31 format and store in destination buffer */ + *px++ = sum1 << 1; + *px++ = sum2 << 1; + *px2++ = sum3 << 1; + *px2++ = sum4 << 1; + + j += 2; + + /* Decrement column loop counter */ + col--; + } + + i = i + (numColsA << 1U); + px = px2 + (numColsB & 1U); + px2 = px + numColsB; + + /* Decrement row loop counter */ + row--; + } + + /* Compute any remaining odd row/column below */ + + /* Compute remaining output column */ + if (numColsB & 1U) { + + /* Avoid redundant computation of last element */ + row = numRowsA & (~1U); + + /* Point to remaining unfilled column in output matrix */ + px = pDst->pData + numColsB-1; + pInA = pSrcA->pData; + + /* row loop */ + while (row > 0) + { + + /* point to last column in matrix B */ + pInB = pSrcB->pData + numColsB-1; + + /* Set variable sum1, that acts as accumulator, to zero */ + sum1 = 0; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 columns at a time. */ + colCnt = numColsA >> 2U; + + /* matrix multiplication */ + while (colCnt > 0U) + { +#if defined (ARM_MATH_DSP) + sum1 = __SMMLA(*pInA++, *pInB, sum1); +#else + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32); +#endif + pInB += numColsB; + +#if defined (ARM_MATH_DSP) + sum1 = __SMMLA(*pInA++, *pInB, sum1); +#else + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32); +#endif + pInB += numColsB; + +#if defined (ARM_MATH_DSP) + sum1 = __SMMLA(*pInA++, *pInB, sum1); +#else + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32); +#endif + pInB += numColsB; + +#if defined (ARM_MATH_DSP) + sum1 = __SMMLA(*pInA++, *pInB, sum1); +#else + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32); +#endif + pInB += numColsB; + + /* Decrement loop counter */ + colCnt--; + } + + /* Loop unrolling: Compute remaining column */ + colCnt = numColsA % 4U; + +#else + + /* Initialize colCnt with number of columns */ + colCnt = numColsA; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (colCnt > 0U) { +#if defined (ARM_MATH_DSP) + sum1 = __SMMLA(*pInA++, *pInB, sum1); +#else + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32); +#endif + pInB += numColsB; + + colCnt--; + } + + /* Convert the result from 2.30 to 1.31 format and store in destination buffer */ + *px = sum1 << 1; + px += numColsB; + + /* Decrement row loop counter */ + row--; + } + } + + /* Compute remaining output row */ + if (numRowsA & 1U) { + + /* point to last row in output matrix */ + px = pDst->pData + (numColsB) * (numRowsA-1); + + col = numColsB; + i = 0U; + + /* col loop */ + while (col > 0) + { + + /* point to last row in matrix A */ + pInA = pSrcA->pData + (numRowsA-1) * numColsA; + pInB = pSrcB->pData + i; + + /* Set variable sum1, that acts as accumulator, to zero */ + sum1 = 0; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 columns at a time. */ + colCnt = numColsA >> 2U; + + /* matrix multiplication */ + while (colCnt > 0U) + { + inA1 = *pInA++; + inA2 = *pInA++; + inB1 = *pInB; + pInB += numColsB; + inB2 = *pInB; + pInB += numColsB; +#if defined (ARM_MATH_DSP) + sum1 = __SMMLA(inA1, inB1, sum1); + sum1 = __SMMLA(inA2, inB2, sum1); +#else + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32); + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA2 * inB2)) >> 32); +#endif + + inA1 = *pInA++; + inA2 = *pInA++; + inB1 = *pInB; + pInB += numColsB; + inB2 = *pInB; + pInB += numColsB; +#if defined (ARM_MATH_DSP) + sum1 = __SMMLA(inA1, inB1, sum1); + sum1 = __SMMLA(inA2, inB2, sum1); +#else + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA1 * inB1)) >> 32); + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) inA2 * inB2)) >> 32); +#endif + + /* Decrement loop counter */ + colCnt--; + } + + /* Loop unrolling: Compute remaining column */ + colCnt = numColsA % 4U; + +#else + + /* Initialize colCnt with number of columns */ + colCnt = numColsA; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (colCnt > 0U) { +#if defined (ARM_MATH_DSP) + sum1 = __SMMLA(*pInA++, *pInB, sum1); +#else + sum1 = (q31_t) ((((q63_t) sum1 << 32) + ((q63_t) *pInA++ * *pInB)) >> 32); +#endif + pInB += numColsB; + + colCnt--; + } + + /* Saturate and store the result in the destination buffer */ + *px++ = sum1 << 1; + i++; + + /* Decrement col loop counter */ + col--; + } + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixMult group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c new file mode 100644 index 0000000..4a3bde8 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q15.c @@ -0,0 +1,357 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_mult_q15.c + * Description: Q15 matrix multiplication + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixMult + @{ + */ + +/** + @brief Q15 matrix multiplication. + @param[in] pSrcA points to the first input matrix structure + @param[in] pSrcB points to the second input matrix structure + @param[out] pDst points to output matrix structure + @param[in] pState points to the array for storing intermediate results (Unused) + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The function is implemented using an internal 64-bit accumulator. The inputs to the + multiplications are in 1.15 format and multiplications yield a 2.30 result. + The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. + This approach provides 33 guard bits and there is no risk of overflow. + The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits + and then saturated to 1.15 format. + @par + Refer to \ref arm_mat_mult_fast_q15() for a faster but less precise version of this function. + */ + +arm_status arm_mat_mult_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pState) +{ + q63_t sum; /* Accumulator */ + +#if defined (ARM_MATH_DSP) /* != CM0 */ + + q15_t *pSrcBT = pState; /* Input data matrix pointer for transpose */ + q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */ + q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */ + q15_t *px; /* Temporary output data matrix pointer */ + uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */ + uint16_t numRowsB = pSrcB->numRows; /* Number of rows of input matrix A */ + uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */ + arm_status status; /* Status of matrix multiplication */ + + q31_t in; /* Temporary variable to hold the input value */ + q31_t inA1, inB1, inA2, inB2; + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Matrix transpose */ + do + { + /* The pointer px is set to starting address of column being processed */ + px = pSrcBT + i; + + /* Apply loop unrolling and exchange columns with row elements */ + col = numColsB >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while (col > 0U) + { + /* Read two elements from row */ + in = read_q15x2_ia ((q15_t **) &pInB); + + /* Unpack and store one element in destination */ +#ifndef ARM_MATH_BIG_ENDIAN + *px = (q15_t) in; +#else + *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB; + + /* Unpack and store second element in destination */ +#ifndef ARM_MATH_BIG_ENDIAN + *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#else + *px = (q15_t) in; +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB; + + /* Read two elements from row */ + in = read_q15x2_ia ((q15_t **) &pInB); + + /* Unpack and store one element in destination */ +#ifndef ARM_MATH_BIG_ENDIAN + *px = (q15_t) in; +#else + *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + px += numRowsB; + +#ifndef ARM_MATH_BIG_ENDIAN + *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#else + *px = (q15_t) in; +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + px += numRowsB; + + /* Decrement column loop counter */ + col--; + } + + /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + col = numColsB % 0x4U; + + while (col > 0U) + { + /* Read and store input element in destination */ + *px = *pInB++; + + /* Update pointer px to point to next row of transposed matrix */ + px += numRowsB; + + /* Decrement column loop counter */ + col--; + } + + i++; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); + + /* Reset variables for usage in following multiplication process */ + row = numRowsA; + i = 0U; + px = pDst->pData; + + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + do + { + /* For every row wise process, column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */ + pInB = pSrcBT; + + /* column loop */ + do + { + /* Set variable sum, that acts as accumulator, to zero */ + sum = 0; + + /* Initiate pointer pInA to point to starting address of column being processed */ + pInA = pSrcA->pData + i; + + /* Apply loop unrolling and compute 2 MACs simultaneously. */ + colCnt = numColsA >> 2U; + + /* matrix multiplication */ + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + /* read real and imag values from pSrcA and pSrcB buffer */ + inA1 = read_q15x2_ia ((q15_t **) &pInA); + inB1 = read_q15x2_ia ((q15_t **) &pInB); + + inA2 = read_q15x2_ia ((q15_t **) &pInA); + inB2 = read_q15x2_ia ((q15_t **) &pInB); + + /* Multiply and Accumlates */ + sum = __SMLALD(inA1, inB1, sum); + sum = __SMLALD(inA2, inB2, sum); + + /* Decrement loop counter */ + colCnt--; + } + + /* process remaining column samples */ + colCnt = numColsA % 0x4U; + + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + sum += *pInA++ * *pInB++; + + /* Decrement loop counter */ + colCnt--; + } + + /* Saturate and store result in destination buffer */ + *px = (q15_t) (__SSAT((sum >> 15), 16)); + px++; + + /* Decrement column loop counter */ + col--; + + } while (col > 0U); + + i = i + numColsA; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); + +#else /* #if defined (ARM_MATH_DSP) */ + + q15_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */ + q15_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */ + q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */ + q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */ + q15_t *pOut = pDst->pData; /* Output data matrix pointer */ + q15_t *px; /* Temporary output data matrix pointer */ + uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */ + uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */ + uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */ + arm_status status; /* Status of matrix multiplication */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + do + { + /* Output pointer is set to starting address of the row being processed */ + px = pOut + i; + + /* For every row wise process, column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */ + pIn2 = pSrcB->pData; + + /* column loop */ + do + { + /* Set the variable sum, that acts as accumulator, to zero */ + sum = 0; + + /* Initiate pointer pIn1 to point to starting address of pSrcA */ + pIn1 = pInA; + + /* Matrix A columns number of MAC operations are to be performed */ + colCnt = numColsA; + + /* matrix multiplication */ + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + /* Perform multiply-accumulates */ + sum += (q31_t) * pIn1++ * *pIn2; + pIn2 += numColsB; + + /* Decrement loop counter */ + colCnt--; + } + + /* Convert result from 34.30 to 1.15 format and store saturated value in destination buffer */ + + /* Saturate and store result in destination buffer */ + *px++ = (q15_t) __SSAT((sum >> 15), 16); + + /* Decrement column loop counter */ + col--; + + /* Update pointer pIn2 to point to starting address of next column */ + pIn2 = pInB + (numColsB - col); + + } while (col > 0U); + + /* Update pointer pSrcA to point to starting address of next row */ + i = i + numColsB; + pInA = pInA + numColsA; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); + +#endif /* #if defined (ARM_MATH_DSP) */ + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixMult group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c new file mode 100644 index 0000000..88c8791 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c @@ -0,0 +1,196 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_mult_q31.c + * Description: Q31 matrix multiplication + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixMult + @{ + */ + +/** + @brief Q31 matrix multiplication. + @param[in] pSrcA points to the first input matrix structure + @param[in] pSrcB points to the second input matrix structure + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The function is implemented using an internal 64-bit accumulator. + The accumulator has a 2.62 format and maintains full precision of the intermediate + multiplication results but provides only a single guard bit. There is no saturation + on intermediate additions. Thus, if the accumulator overflows it wraps around and + distorts the result. The input signals should be scaled down to avoid intermediate + overflows. The input is thus scaled down by log2(numColsA) bits + to avoid overflows, as a total of numColsA additions are performed internally. + The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result. + @remark + Refer to \ref arm_mat_mult_fast_q31() for a faster but less precise implementation of this function. + */ + +arm_status arm_mat_mult_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst) +{ + q31_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */ + q31_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */ + q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */ + q31_t *pInB = pSrcB->pData; /* Input data matrix pointer B */ + q31_t *pOut = pDst->pData; /* Output data matrix pointer */ + q31_t *px; /* Temporary output data matrix pointer */ + q63_t sum; /* Accumulator */ + uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */ + uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */ + uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */ + arm_status status; /* Status of matrix multiplication */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + do + { + /* Output pointer is set to starting address of row being processed */ + px = pOut + i; + + /* For every row wise process, column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */ + pIn2 = pSrcB->pData; + + /* column loop */ + do + { + /* Set the variable sum, that acts as accumulator, to zero */ + sum = 0; + + /* Initialize pointer pIn1 to point to starting address of column being processed */ + pIn1 = pInA; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 MACs at a time. */ + colCnt = numColsA >> 2U; + + /* matrix multiplication */ + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + /* Perform the multiply-accumulates */ + sum += (q63_t) *pIn1++ * *pIn2; + pIn2 += numColsB; + + sum += (q63_t) *pIn1++ * *pIn2; + pIn2 += numColsB; + + sum += (q63_t) *pIn1++ * *pIn2; + pIn2 += numColsB; + + sum += (q63_t) *pIn1++ * *pIn2; + pIn2 += numColsB; + + /* Decrement loop counter */ + colCnt--; + } + + /* Loop unrolling: Compute remaining MACs */ + colCnt = numColsA % 0x4U; + +#else + + /* Initialize cntCnt with number of columns */ + colCnt = numColsA; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (colCnt > 0U) + { + /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ + + /* Perform the multiply-accumulates */ + sum += (q63_t) *pIn1++ * *pIn2; + pIn2 += numColsB; + + /* Decrement loop counter */ + colCnt--; + } + + /* Convert result from 2.62 to 1.31 format and store in destination buffer */ + *px++ = (q31_t) (sum >> 31); + + /* Decrement column loop counter */ + col--; + + /* Update pointer pIn2 to point to starting address of next column */ + pIn2 = pInB + (numColsB - col); + + } while (col > 0U); + + /* Update pointer pInA to point to starting address of next row */ + i = i + numColsB; + pInA = pInA + numColsA; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixMult group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_f32.c new file mode 100644 index 0000000..91c56b1 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_f32.c @@ -0,0 +1,221 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_scale_f32.c + * Description: Multiplies a floating-point matrix by a scalar + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @defgroup MatrixScale Matrix Scale + + Multiplies a matrix by a scalar. This is accomplished by multiplying each element in the + matrix by the scalar. For example: + \image html MatrixScale.gif "Matrix Scaling of a 3 x 3 matrix" + + The function checks to make sure that the input and output matrices are of the same size. + + In the fixed-point Q15 and Q31 functions, scale is represented by + a fractional multiplication scaleFract and an arithmetic shift shift. + The shift allows the gain of the scaling operation to exceed 1.0. + The overall scale factor applied to the fixed-point data is +
+      scale = scaleFract * 2^shift.
+  
+ */ + +/** + @addtogroup MatrixScale + @{ + */ + +/** + @brief Floating-point matrix scaling. + @param[in] pSrc points to input matrix + @param[in] scale scale factor to be applied + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + */ +#if defined(ARM_MATH_NEON_EXPERIMENTAL) +arm_status arm_mat_scale_f32( + const arm_matrix_instance_f32 * pSrc, + float32_t scale, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn = pSrc->pData; /* input data matrix pointer */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + uint32_t numSamples; /* total number of elements in the matrix */ + uint32_t blkCnt; /* loop counters */ + arm_status status; /* status of matrix scaling */ + + + float32_t in1, in2, in3, in4; /* temporary variables */ + float32_t out1, out2, out3, out4; /* temporary variables */ + + +#ifdef ARM_MATH_MATRIX_CHECK + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols)) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + { + float32x4_t vec1; + float32x4_t res; + + /* Total number of samples in the input matrix */ + numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; + + blkCnt = numSamples >> 2; + + /* Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) * scale */ + /* Scaling and results are stored in the destination buffer. */ + vec1 = vld1q_f32(pIn); + res = vmulq_f32(vec1, vdupq_n_f32(scale)); + vst1q_f32(pOut, res); + + /* update pointers to process next sampels */ + pIn += 4U; + pOut += 4U; + + /* Decrement the numSamples loop counter */ + blkCnt--; + } + + /* If the numSamples is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = numSamples % 0x4U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) * scale */ + /* The results are stored in the destination buffer. */ + *pOut++ = (*pIn++) * scale; + + /* Decrement the loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#else +arm_status arm_mat_scale_f32( + const arm_matrix_instance_f32 * pSrc, + float32_t scale, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn = pSrc->pData; /* Input data matrix pointer */ + float32_t *pOut = pDst->pData; /* Output data matrix pointer */ + uint32_t numSamples; /* Total number of elements in the matrix */ + uint32_t blkCnt; /* Loop counters */ + arm_status status; /* Status of matrix scaling */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pDst->numRows) || + (pSrc->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Total number of samples in input matrix */ + numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) * scale */ + + /* Scale and store result in destination buffer. */ + *pOut++ = (*pIn++) * scale; + *pOut++ = (*pIn++) * scale; + *pOut++ = (*pIn++) * scale; + *pOut++ = (*pIn++) * scale; + + /* Decrement loop counter */ + blkCnt--; + } + + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) * scale */ + + /* Scale and store result in destination buffer. */ + *pOut++ = (*pIn++) * scale; + + /* Decrement loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#endif /* #if defined(ARM_MATH_NEON) */ + +/** + @} end of MatrixScale group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q15.c new file mode 100644 index 0000000..7956670 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q15.c @@ -0,0 +1,170 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_scale_q15.c + * Description: Multiplies a Q15 matrix by a scalar + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixScale + @{ + */ + +/** + @brief Q15 matrix scaling. + @param[in] pSrc points to input matrix + @param[in] scaleFract fractional portion of the scale factor + @param[in] shift number of bits to shift the result by + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The input data *pSrc and scaleFract are in 1.15 format. + These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format. + */ + +arm_status arm_mat_scale_q15( + const arm_matrix_instance_q15 * pSrc, + q15_t scaleFract, + int32_t shift, + arm_matrix_instance_q15 * pDst) +{ + q15_t *pIn = pSrc->pData; /* Input data matrix pointer */ + q15_t *pOut = pDst->pData; /* Output data matrix pointer */ + uint32_t numSamples; /* Total number of elements in the matrix */ + uint32_t blkCnt; /* Loop counter */ + arm_status status; /* Status of matrix scaling */ + int32_t kShift = 15 - shift; /* Total shift to apply after scaling */ + +#if defined (ARM_MATH_LOOPUNROLL) && defined (ARM_MATH_DSP) + q31_t inA1, inA2; + q31_t out1, out2, out3, out4; /* Temporary output variables */ + q15_t in1, in2, in3, in4; /* Temporary input variables */ +#endif + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pDst->numRows) || + (pSrc->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Total number of samples in input matrix */ + numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) * k */ + +#if defined (ARM_MATH_DSP) + /* read 2 times 2 samples at a time from source */ + inA1 = read_q15x2_ia ((q15_t **) &pIn); + inA2 = read_q15x2_ia ((q15_t **) &pIn); + + /* Scale inputs and store result in temporary variables + * in single cycle by packing the outputs */ + out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract); + out2 = (q31_t) ((q15_t) (inA1 ) * scaleFract); + out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract); + out4 = (q31_t) ((q15_t) (inA2 ) * scaleFract); + + /* apply shifting */ + out1 = out1 >> kShift; + out2 = out2 >> kShift; + out3 = out3 >> kShift; + out4 = out4 >> kShift; + + /* saturate the output */ + in1 = (q15_t) (__SSAT(out1, 16)); + in2 = (q15_t) (__SSAT(out2, 16)); + in3 = (q15_t) (__SSAT(out3, 16)); + in4 = (q15_t) (__SSAT(out4, 16)); + + /* store result to destination */ + write_q15x2_ia (&pOut, __PKHBT(in2, in1, 16)); + write_q15x2_ia (&pOut, __PKHBT(in4, in3, 16)); + +#else + *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16)); + *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16)); + *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16)); + *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16)); +#endif + + /* Decrement loop counter */ + blkCnt--; + } + + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) * k */ + + /* Scale, saturate and store result in destination buffer. */ + *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16)); + + /* Decrement loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixScale group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q31.c new file mode 100644 index 0000000..7f2fe8b --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_scale_q31.c @@ -0,0 +1,164 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_scale_q31.c + * Description: Multiplies a Q31 matrix by a scalar + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixScale + @{ + */ + +/** + @brief Q31 matrix scaling. + @param[in] pSrc points to input matrix + @param[in] scaleFract fractional portion of the scale factor + @param[in] shift number of bits to shift the result by + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The input data *pSrc and scaleFract are in 1.31 format. + These are multiplied to yield a 2.62 intermediate result which is shifted with saturation to 1.31 format. + */ + +arm_status arm_mat_scale_q31( + const arm_matrix_instance_q31 * pSrc, + q31_t scaleFract, + int32_t shift, + arm_matrix_instance_q31 * pDst) +{ + q31_t *pIn = pSrc->pData; /* Input data matrix pointer */ + q31_t *pOut = pDst->pData; /* Output data matrix pointer */ + uint32_t numSamples; /* Total number of elements in the matrix */ + uint32_t blkCnt; /* Loop counter */ + arm_status status; /* Status of matrix scaling */ + int32_t kShift = shift + 1; /* Shift to apply after scaling */ + q31_t in, out; /* Temporary variabels */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pDst->numRows) || + (pSrc->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Total number of samples in input matrix */ + numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) * k */ + + /* Scale, saturate and store result in destination buffer. */ + in = *pIn++; /* read four inputs from source */ + in = ((q63_t) in * scaleFract) >> 32; /* multiply input with scaler value */ + out = in << kShift; /* apply shifting */ + if (in != (out >> kShift)) /* saturate the results. */ + out = 0x7FFFFFFF ^ (in >> 31); + *pOut++ = out; /* Store result destination */ + + in = *pIn++; + in = ((q63_t) in * scaleFract) >> 32; + out = in << kShift; + if (in != (out >> kShift)) + out = 0x7FFFFFFF ^ (in >> 31); + *pOut++ = out; + + in = *pIn++; + in = ((q63_t) in * scaleFract) >> 32; + out = in << kShift; + if (in != (out >> kShift)) + out = 0x7FFFFFFF ^ (in >> 31); + *pOut++ = out; + + in = *pIn++; + in = ((q63_t) in * scaleFract) >> 32; + out = in << kShift; + if (in != (out >> kShift)) + out = 0x7FFFFFFF ^ (in >> 31); + *pOut++ = out; + + /* Decrement loop counter */ + blkCnt--; + } + + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) * k */ + + /* Scale, saturate and store result in destination buffer. */ + in = *pIn++; + in = ((q63_t) in * scaleFract) >> 32; + out = in << kShift; + if (in != (out >> kShift)) + out = 0x7FFFFFFF ^ (in >> 31); + *pOut++ = out; + + /* Decrement loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixScale group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_f32.c new file mode 100644 index 0000000..4f812a6 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_f32.c @@ -0,0 +1,226 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_sub_f32.c + * Description: Floating-point matrix subtraction + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @defgroup MatrixSub Matrix Subtraction + + Subtract two matrices. + \image html MatrixSubtraction.gif "Subraction of two 3 x 3 matrices" + + The functions check to make sure that + pSrcA, pSrcB, and pDst have the same + number of rows and columns. + */ + +/** + @addtogroup MatrixSub + @{ + */ + +/** + @brief Floating-point matrix subtraction. + @param[in] pSrcA points to the first input matrix structure + @param[in] pSrcB points to the second input matrix structure + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + */ + +#if defined(ARM_MATH_NEON) +arm_status arm_mat_sub_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ + float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + + + float32_t inA1, inA2, inB1, inB2, out1, out2; /* temporary variables */ + + + uint32_t numSamples; /* total number of elements in the matrix */ + uint32_t blkCnt; /* loop counters */ + arm_status status; /* status of matrix subtraction */ + +#ifdef ARM_MATH_MATRIX_CHECK + /* Check for matrix mismatch condition */ + if ((pSrcA->numRows != pSrcB->numRows) || + (pSrcA->numCols != pSrcB->numCols) || + (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols)) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + { + float32x4_t vec1; + float32x4_t vec2; + float32x4_t res; + + /* Total number of samples in the input matrix */ + numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; + + blkCnt = numSamples >> 2U; + + /* Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) - B(m,n) */ + /* Subtract and then store the results in the destination buffer. */ + /* Read values from source A */ + vec1 = vld1q_f32(pIn1); + vec2 = vld1q_f32(pIn2); + res = vsubq_f32(vec1, vec2); + vst1q_f32(pOut, res); + + /* Update pointers to process next samples */ + pIn1 += 4U; + pIn2 += 4U; + pOut += 4U; + + /* Decrement the loop counter */ + blkCnt--; + } + + /* If the numSamples is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = numSamples % 0x4U; + + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) - B(m,n) */ + /* Subtract and then store the results in the destination buffer. */ + *pOut++ = (*pIn1++) - (*pIn2++); + + /* Decrement the loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#else +arm_status arm_mat_sub_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + + uint32_t numSamples; /* total number of elements in the matrix */ + uint32_t blkCnt; /* loop counters */ + arm_status status; /* status of matrix subtraction */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numRows != pSrcB->numRows) || + (pSrcA->numCols != pSrcB->numCols) || + (pSrcA->numRows != pDst->numRows) || + (pSrcA->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Total number of samples in input matrix */ + numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) - B(m,n) */ + + /* Subtract and store result in destination buffer. */ + *pOut++ = (*pInA++) - (*pInB++); + *pOut++ = (*pInA++) - (*pInB++); + *pOut++ = (*pInA++) - (*pInB++); + *pOut++ = (*pInA++) - (*pInB++); + + /* Decrement loop counter */ + blkCnt--; + } + + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) - B(m,n) */ + + /* Subtract and store result in destination buffer. */ + *pOut++ = (*pInA++) - (*pInB++); + + /* Decrement loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#endif /* #if defined(ARM_MATH_NEON) */ +/** + @} end of MatrixSub group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q15.c new file mode 100644 index 0000000..37496ea --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q15.c @@ -0,0 +1,144 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_sub_q15.c + * Description: Q15 Matrix subtraction + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixSub + @{ + */ + +/** + @brief Q15 matrix subtraction. + @param[in] pSrcA points to the first input matrix structure + @param[in] pSrcB points to the second input matrix structure + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The function uses saturating arithmetic. + Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated. + */ + +arm_status arm_mat_sub_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst) +{ + q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */ + q15_t *pOut = pDst->pData; /* output data matrix pointer */ + + uint32_t numSamples; /* total number of elements in the matrix */ + uint32_t blkCnt; /* loop counters */ + arm_status status; /* status of matrix subtraction */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numRows != pSrcB->numRows) || + (pSrcA->numCols != pSrcB->numCols) || + (pSrcA->numRows != pDst->numRows) || + (pSrcA->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Total number of samples in input matrix */ + numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) - B(m,n) */ + + /* Subtract, Saturate and store result in destination buffer. */ +#if defined (ARM_MATH_DSP) + write_q15x2_ia (&pOut, __QSUB16(read_q15x2_ia ((q15_t **) &pInA), read_q15x2_ia ((q15_t **) &pInB))); + write_q15x2_ia (&pOut, __QSUB16(read_q15x2_ia ((q15_t **) &pInA), read_q15x2_ia ((q15_t **) &pInB))); +#else + *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16); + *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16); + *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16); + *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16); +#endif + + /* Decrement loop counter */ + blkCnt--; + } + + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) - B(m,n) */ + + /* Subtract and store result in destination buffer. */ +#if defined (ARM_MATH_DSP) + *pOut++ = (q15_t) __QSUB16(*pInA++, *pInB++); +#else + *pOut++ = (q15_t) __SSAT(((q31_t) * pInA++ - *pInB++), 16); +#endif + + /* Decrement loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixSub group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q31.c new file mode 100644 index 0000000..8a5e693 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_sub_q31.c @@ -0,0 +1,139 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_sub_q31.c + * Description: Q31 matrix subtraction + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixSub + @{ + */ + +/** + @brief Q31 matrix subtraction. + @param[in] pSrcA points to the first input matrix structure + @param[in] pSrcB points to the second input matrix structure + @param[out] pDst points to output matrix structure + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + + @par Scaling and Overflow Behavior + The function uses saturating arithmetic. + Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated. + */ + +arm_status arm_mat_sub_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst) +{ + q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */ + q31_t *pOut = pDst->pData; /* output data matrix pointer */ + + uint32_t numSamples; /* total number of elements in the matrix */ + uint32_t blkCnt; /* loop counters */ + arm_status status; /* status of matrix subtraction */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numRows != pSrcB->numRows) || + (pSrcA->numCols != pSrcB->numCols) || + (pSrcA->numRows != pDst->numRows) || + (pSrcA->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Total number of samples in input matrix */ + numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) - B(m,n) */ + + /* Subtract, saturate and then store the results in the destination buffer. */ + *pOut++ = __QSUB(*pInA++, *pInB++); + + *pOut++ = __QSUB(*pInA++, *pInB++); + + *pOut++ = __QSUB(*pInA++, *pInB++); + + *pOut++ = __QSUB(*pInA++, *pInB++); + + /* Decrement loop counter */ + blkCnt--; + } + + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (blkCnt > 0U) + { + /* C(m,n) = A(m,n) - B(m,n) */ + + /* Subtract, saturate and store result in destination buffer. */ + *pOut++ = __QSUB(*pInA++, *pInB++); + + /* Decrement loop counter */ + blkCnt--; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixSub group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_f32.c new file mode 100644 index 0000000..f002949 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_f32.c @@ -0,0 +1,284 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_trans_f32.c + * Description: Floating-point matrix transpose + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @defgroup MatrixTrans Matrix Transpose + + Tranposes a matrix. + + Transposing an M x N matrix flips it around the center diagonal and results in an N x M matrix. + \image html MatrixTranspose.gif "Transpose of a 3 x 3 matrix" + */ + +/** + @addtogroup MatrixTrans + @{ + */ + +/** + @brief Floating-point matrix transpose. + @param[in] pSrc points to input matrix + @param[out] pDst points to output matrix + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + */ + +#if defined(ARM_MATH_NEON) + +arm_status arm_mat_trans_f32( + const arm_matrix_instance_f32 * pSrc, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn = pSrc->pData; /* input data matrix pointer */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + float32_t *px; /* Temporary output data matrix pointer */ + uint16_t nRows = pSrc->numRows; /* number of rows */ + uint16_t nColumns = pSrc->numCols; /* number of columns */ + + uint16_t blkCnt, rowCnt, i = 0U, row = nRows; /* loop counters */ + arm_status status; /* status of matrix transpose */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows)) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Matrix transpose by exchanging the rows with columns */ + /* Row loop */ + rowCnt = row >> 2; + while (rowCnt > 0U) + { + float32x4_t row0V,row1V,row2V,row3V; + float32x4x2_t ra0,ra1,rb0,rb1; + + blkCnt = nColumns >> 2; + + /* The pointer px is set to starting address of the column being processed */ + px = pOut + i; + + /* Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while (blkCnt > 0U) /* Column loop */ + { + row0V = vld1q_f32(pIn); + row1V = vld1q_f32(pIn + 1 * nColumns); + row2V = vld1q_f32(pIn + 2 * nColumns); + row3V = vld1q_f32(pIn + 3 * nColumns); + pIn += 4; + + ra0 = vzipq_f32(row0V,row2V); + ra1 = vzipq_f32(row1V,row3V); + + rb0 = vzipq_f32(ra0.val[0],ra1.val[0]); + rb1 = vzipq_f32(ra0.val[1],ra1.val[1]); + + vst1q_f32(px,rb0.val[0]); + px += nRows; + + vst1q_f32(px,rb0.val[1]); + px += nRows; + + vst1q_f32(px,rb1.val[0]); + px += nRows; + + vst1q_f32(px,rb1.val[1]); + px += nRows; + + /* Decrement the column loop counter */ + blkCnt--; + } + + /* Perform matrix transpose for last 3 samples here. */ + blkCnt = nColumns % 0x4U; + + while (blkCnt > 0U) + { + /* Read and store the input element in the destination */ + *px++ = *pIn; + *px++ = *(pIn + 1 * nColumns); + *px++ = *(pIn + 2 * nColumns); + *px++ = *(pIn + 3 * nColumns); + + px += (nRows - 4); + pIn++; + + /* Decrement the column loop counter */ + blkCnt--; + } + + i += 4; + pIn += 3 * nColumns; + + /* Decrement the row loop counter */ + rowCnt--; + + } /* Row loop end */ + + rowCnt = row & 3; + while (rowCnt > 0U) + { + blkCnt = nColumns ; + /* The pointer px is set to starting address of the column being processed */ + px = pOut + i; + + while (blkCnt > 0U) + { + /* Read and store the input element in the destination */ + *px = *pIn++; + + /* Update the pointer px to point to the next row of the transposed matrix */ + px += nRows; + + /* Decrement the column loop counter */ + blkCnt--; + } + i++; + rowCnt -- ; + } + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#else +arm_status arm_mat_trans_f32( + const arm_matrix_instance_f32 * pSrc, + arm_matrix_instance_f32 * pDst) +{ + float32_t *pIn = pSrc->pData; /* input data matrix pointer */ + float32_t *pOut = pDst->pData; /* output data matrix pointer */ + float32_t *px; /* Temporary output data matrix pointer */ + uint16_t nRows = pSrc->numRows; /* number of rows */ + uint16_t nCols = pSrc->numCols; /* number of columns */ + uint32_t col, row = nRows, i = 0U; /* Loop counters */ + arm_status status; /* status of matrix transpose */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pDst->numCols) || + (pSrc->numCols != pDst->numRows) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Matrix transpose by exchanging the rows with columns */ + /* row loop */ + do + { + /* Pointer px is set to starting address of column being processed */ + px = pOut + i; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + col = nCols >> 2U; + + while (col > 0U) /* column loop */ + { + /* Read and store input element in destination */ + *px = *pIn++; + /* Update pointer px to point to next row of transposed matrix */ + px += nRows; + + *px = *pIn++; + px += nRows; + + *px = *pIn++; + px += nRows; + + *px = *pIn++; + px += nRows; + + /* Decrement column loop counter */ + col--; + } + + /* Loop unrolling: Compute remaining outputs */ + col = nCols % 0x4U; + +#else + + /* Initialize col with number of samples */ + col = nCols; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (col > 0U) + { + /* Read and store input element in destination */ + *px = *pIn++; + + /* Update pointer px to point to next row of transposed matrix */ + px += nRows; + + /* Decrement column loop counter */ + col--; + } + + i++; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); /* row loop end */ + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#endif /* #if defined(ARM_MATH_NEON) */ + +/** + * @} end of MatrixTrans group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q15.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q15.c new file mode 100644 index 0000000..3774e83 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q15.c @@ -0,0 +1,182 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_trans_q15.c + * Description: Q15 matrix transpose + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixTrans + @{ + */ + +/** + @brief Q15 matrix transpose. + @param[in] pSrc points to input matrix + @param[out] pDst points to output matrix + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + */ + +arm_status arm_mat_trans_q15( + const arm_matrix_instance_q15 * pSrc, + arm_matrix_instance_q15 * pDst) +{ + q15_t *pIn = pSrc->pData; /* input data matrix pointer */ + q15_t *pOut = pDst->pData; /* output data matrix pointer */ + uint16_t nRows = pSrc->numRows; /* number of rows */ + uint16_t nCols = pSrc->numCols; /* number of columns */ + uint32_t col, row = nRows, i = 0U; /* Loop counters */ + arm_status status; /* status of matrix transpose */ + +#if defined (ARM_MATH_LOOPUNROLL) + q31_t in; /* variable to hold temporary output */ +#endif + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pDst->numCols) || + (pSrc->numCols != pDst->numRows) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Matrix transpose by exchanging the rows with columns */ + /* row loop */ + do + { + /* Pointer pOut is set to starting address of column being processed */ + pOut = pDst->pData + i; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + col = nCols >> 2U; + + while (col > 0U) /* column loop */ + { + /* Read two elements from row */ + in = read_q15x2_ia ((q15_t **) &pIn); + + /* Unpack and store one element in destination */ +#ifndef ARM_MATH_BIG_ENDIAN + *pOut = (q15_t) in; +#else + *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Update pointer pOut to point to next row of transposed matrix */ + pOut += nRows; + + /* Unpack and store second element in destination */ +#ifndef ARM_MATH_BIG_ENDIAN + *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#else + *pOut = (q15_t) in; +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Update pointer pOut to point to next row of transposed matrix */ + pOut += nRows; + + /* Read two elements from row */ + in = read_q15x2_ia ((q15_t **) &pIn); + + /* Unpack and store one element in destination */ +#ifndef ARM_MATH_BIG_ENDIAN + *pOut = (q15_t) in; +#else + *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Update pointer pOut to point to next row of transposed matrix */ + pOut += nRows; + + /* Unpack and store second element in destination */ +#ifndef ARM_MATH_BIG_ENDIAN + *pOut = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); +#else + *pOut = (q15_t) in; +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Update pointer pOut to point to next row of transposed matrix */ + pOut += nRows; + + /* Decrement column loop counter */ + col--; + } + + /* Loop unrolling: Compute remaining outputs */ + col = nCols % 0x4U; + +#else + + /* Initialize col with number of samples */ + col = nCols; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (col > 0U) + { + /* Read and store input element in destination */ + *pOut = *pIn++; + + /* Update pointer pOut to point to next row of transposed matrix */ + pOut += nRows; + + /* Decrement column loop counter */ + col--; + } + + i++; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); /* row loop end */ + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixTrans group + */ diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q31.c new file mode 100644 index 0000000..d6efd59 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_trans_q31.c @@ -0,0 +1,146 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_trans_q31.c + * Description: Q31 matrix transpose + * + * $Date: 18. March 2019 + * $Revision: V1.6.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_math.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixTrans + @{ + */ + +/** + @brief Q31 matrix transpose. + @param[in] pSrc points to input matrix + @param[out] pDst points to output matrix + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed + */ + +arm_status arm_mat_trans_q31( + const arm_matrix_instance_q31 * pSrc, + arm_matrix_instance_q31 * pDst) +{ + q31_t *pIn = pSrc->pData; /* input data matrix pointer */ + q31_t *pOut = pDst->pData; /* output data matrix pointer */ + q31_t *px; /* Temporary output data matrix pointer */ + uint16_t nRows = pSrc->numRows; /* number of rows */ + uint16_t nCols = pSrc->numCols; /* number of columns */ + uint32_t col, row = nRows, i = 0U; /* Loop counters */ + arm_status status; /* status of matrix transpose */ + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrc->numRows != pDst->numCols) || + (pSrc->numCols != pDst->numRows) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* Matrix transpose by exchanging the rows with columns */ + /* row loop */ + do + { + /* Pointer px is set to starting address of column being processed */ + px = pOut + i; + +#if defined (ARM_MATH_LOOPUNROLL) + + /* Loop unrolling: Compute 4 outputs at a time */ + col = nCols >> 2U; + + while (col > 0U) /* column loop */ + { + /* Read and store input element in destination */ + *px = *pIn++; + /* Update pointer px to point to next row of transposed matrix */ + px += nRows; + + *px = *pIn++; + px += nRows; + + *px = *pIn++; + px += nRows; + + *px = *pIn++; + px += nRows; + + /* Decrement column loop counter */ + col--; + } + + /* Loop unrolling: Compute remaining outputs */ + col = nCols % 0x4U; + +#else + + /* Initialize col with number of samples */ + col = nCols; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ + + while (col > 0U) + { + /* Read and store input element in destination */ + *px = *pIn++; + + /* Update pointer px to point to next row of transposed matrix */ + px += nRows; + + /* Decrement column loop counter */ + col--; + } + + i++; + + /* Decrement row loop counter */ + row--; + + } while (row > 0U); /* row loop end */ + + /* Set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} + +/** + @} end of MatrixTrans group + */ -- cgit v1.2.3