From 86608c6770cf08c138a2bdab5855072f64be09ef Mon Sep 17 00:00:00 2001 From: joshua Date: Sat, 30 Dec 2023 23:54:31 -0500 Subject: initial commit --- .../STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_nand.c | 2241 ++++++++++++++++++++ 1 file changed, 2241 insertions(+) create mode 100644 Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_nand.c (limited to 'Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_nand.c') diff --git a/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_nand.c b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_nand.c new file mode 100644 index 0000000..ff19e3d --- /dev/null +++ b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_nand.c @@ -0,0 +1,2241 @@ +/** + ****************************************************************************** + * @file stm32h7xx_hal_nand.c + * @author MCD Application Team + * @brief NAND HAL module driver. + * This file provides a generic firmware to drive NAND memories mounted + * as external device. + * + ****************************************************************************** + * @attention + * + * Copyright (c) 2017 STMicroelectronics. + * All rights reserved. + * + * This software is licensed under terms that can be found in the LICENSE file + * in the root directory of this software component. + * If no LICENSE file comes with this software, it is provided AS-IS. + * + ****************************************************************************** + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a generic layered driver which contains a set of APIs used to + control NAND flash memories. It uses the FMC layer functions to interface + with NAND devices. This driver is used as follows: + + (+) NAND flash memory configuration sequence using the function HAL_NAND_Init() + with control and timing parameters for both common and attribute spaces. + + (+) Read NAND flash memory maker and device IDs using the function + HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef + structure declared by the function caller. + + (+) Access NAND flash memory by read/write operations using the functions + HAL_NAND_Read_Page_8b()/HAL_NAND_Read_SpareArea_8b(), + HAL_NAND_Write_Page_8b()/HAL_NAND_Write_SpareArea_8b(), + HAL_NAND_Read_Page_16b()/HAL_NAND_Read_SpareArea_16b(), + HAL_NAND_Write_Page_16b()/HAL_NAND_Write_SpareArea_16b() + to read/write page(s)/spare area(s). These functions use specific device + information (Block, page size..) predefined by the user in the NAND_DeviceConfigTypeDef + structure. The read/write address information is contained by the Nand_Address_Typedef + structure passed as parameter. + + (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset(). + + (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block(). + The erase block address information is contained in the Nand_Address_Typedef + structure passed as parameter. + + (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status(). + + (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/ + HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction + feature or the function HAL_NAND_GetECC() to get the ECC correction code. + + (+) You can monitor the NAND device HAL state by calling the function + HAL_NAND_GetState() + + [..] + (@) This driver is a set of generic APIs which handle standard NAND flash operations. + If a NAND flash device contains different operations and/or implementations, + it should be implemented separately. + + *** Callback registration *** + ============================================= + [..] + The compilation define USE_HAL_NAND_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + Use Functions HAL_NAND_RegisterCallback() to register a user callback, + it allows to register following callbacks: + (+) MspInitCallback : NAND MspInit. + (+) MspDeInitCallback : NAND MspDeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + Use function HAL_NAND_UnRegisterCallback() to reset a callback to the default + weak (surcharged) function. It allows to reset following callbacks: + (+) MspInitCallback : NAND MspInit. + (+) MspDeInitCallback : NAND MspDeInit. + This function) takes as parameters the HAL peripheral handle and the Callback ID. + + By default, after the HAL_NAND_Init and if the state is HAL_NAND_STATE_RESET + all callbacks are reset to the corresponding legacy weak (surcharged) functions. + Exception done for MspInit and MspDeInit callbacks that are respectively + reset to the legacy weak (surcharged) functions in the HAL_NAND_Init + and HAL_NAND_DeInit only when these callbacks are null (not registered beforehand). + If not, MspInit or MspDeInit are not null, the HAL_NAND_Init and HAL_NAND_DeInit + keep and use the user MspInit/MspDeInit callbacks (registered beforehand) + + Callbacks can be registered/unregistered in READY state only. + Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered + in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used + during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using HAL_NAND_RegisterCallback before calling HAL_NAND_DeInit + or HAL_NAND_Init function. + + When The compilation define USE_HAL_NAND_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registering feature is not available + and weak (surcharged) callbacks are used. + + @endverbatim + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32h7xx_hal.h" + + +/** @addtogroup STM32H7xx_HAL_Driver + * @{ + */ + +#ifdef HAL_NAND_MODULE_ENABLED + +/** @defgroup NAND NAND + * @brief NAND HAL module driver + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private Constants ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup NAND_Exported_Functions NAND Exported Functions + * @{ + */ + +/** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### NAND Initialization and de-initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to initialize/de-initialize + the NAND memory + +@endverbatim + * @{ + */ + +/** + * @brief Perform NAND memory Initialization sequence + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param ComSpace_Timing pointer to Common space timing structure + * @param AttSpace_Timing pointer to Attribute space timing structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, + FMC_NAND_PCC_TimingTypeDef *AttSpace_Timing) +{ + /* Check the NAND handle state */ + if (hnand == NULL) + { + return HAL_ERROR; + } + + if (hnand->State == HAL_NAND_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hnand->Lock = HAL_UNLOCKED; + +#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) + if (hnand->MspInitCallback == NULL) + { + hnand->MspInitCallback = HAL_NAND_MspInit; + } + hnand->ItCallback = HAL_NAND_ITCallback; + + /* Init the low level hardware */ + hnand->MspInitCallback(hnand); +#else + /* Initialize the low level hardware (MSP) */ + HAL_NAND_MspInit(hnand); +#endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ + } + + /* Initialize NAND control Interface */ + (void)FMC_NAND_Init(hnand->Instance, &(hnand->Init)); + + /* Initialize NAND common space timing Interface */ + (void)FMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank); + + /* Initialize NAND attribute space timing Interface */ + (void)FMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank); + + /* Enable the NAND device */ + __FMC_NAND_ENABLE(hnand->Instance); + + /* Enable FMC Peripheral */ + __FMC_ENABLE(); + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Perform NAND memory De-Initialization sequence + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand) +{ +#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) + if (hnand->MspDeInitCallback == NULL) + { + hnand->MspDeInitCallback = HAL_NAND_MspDeInit; + } + + /* DeInit the low level hardware */ + hnand->MspDeInitCallback(hnand); +#else + /* Initialize the low level hardware (MSP) */ + HAL_NAND_MspDeInit(hnand); +#endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ + + /* Configure the NAND registers with their reset values */ + (void)FMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank); + + /* Reset the NAND controller state */ + hnand->State = HAL_NAND_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief NAND MSP Init + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval None + */ +__weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hnand); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NAND_MspInit could be implemented in the user file + */ +} + +/** + * @brief NAND MSP DeInit + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval None + */ +__weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hnand); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NAND_MspDeInit could be implemented in the user file + */ +} + + +/** + * @brief This function handles NAND device interrupt request. + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand) +{ + /* Check NAND interrupt Rising edge flag */ + if (__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE)) + { + /* NAND interrupt callback*/ +#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) + hnand->ItCallback(hnand); +#else + HAL_NAND_ITCallback(hnand); +#endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ + + /* Clear NAND interrupt Rising edge pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_RISING_EDGE); + } + + /* Check NAND interrupt Level flag */ + if (__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL)) + { + /* NAND interrupt callback*/ +#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) + hnand->ItCallback(hnand); +#else + HAL_NAND_ITCallback(hnand); +#endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ + + /* Clear NAND interrupt Level pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_LEVEL); + } + + /* Check NAND interrupt Falling edge flag */ + if (__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE)) + { + /* NAND interrupt callback*/ +#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) + hnand->ItCallback(hnand); +#else + HAL_NAND_ITCallback(hnand); +#endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ + + /* Clear NAND interrupt Falling edge pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_FALLING_EDGE); + } + + /* Check NAND interrupt FIFO empty flag */ + if (__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT)) + { + /* NAND interrupt callback*/ +#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) + hnand->ItCallback(hnand); +#else + HAL_NAND_ITCallback(hnand); +#endif /* (USE_HAL_NAND_REGISTER_CALLBACKS) */ + + /* Clear NAND interrupt FIFO empty pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, FMC_FLAG_FEMPT); + } + +} + +/** + * @brief NAND interrupt feature callback + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval None + */ +__weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hnand); + + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NAND_ITCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup NAND_Exported_Functions_Group2 Input and Output functions + * @brief Input Output and memory control functions + * + @verbatim + ============================================================================== + ##### NAND Input and Output functions ##### + ============================================================================== + [..] + This section provides functions allowing to use and control the NAND + memory + +@endverbatim + * @{ + */ + +/** + * @brief Read the NAND memory electronic signature + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pNAND_ID NAND ID structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID) +{ + __IO uint32_t data = 0; + __IO uint32_t data1 = 0; + uint32_t deviceaddress; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* Send Read ID command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_READID; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; + __DSB(); + + /* Read the electronic signature from NAND flash */ + if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8) + { + data = *(__IO uint32_t *)deviceaddress; + + /* Return the data read */ + pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); + pNAND_ID->Device_Id = ADDR_2ND_CYCLE(data); + pNAND_ID->Third_Id = ADDR_3RD_CYCLE(data); + pNAND_ID->Fourth_Id = ADDR_4TH_CYCLE(data); + } + else + { + data = *(__IO uint32_t *)deviceaddress; + data1 = *((__IO uint32_t *)deviceaddress + 4); + + /* Return the data read */ + pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); + pNAND_ID->Device_Id = ADDR_3RD_CYCLE(data); + pNAND_ID->Third_Id = ADDR_1ST_CYCLE(data1); + pNAND_ID->Fourth_Id = ADDR_3RD_CYCLE(data1); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief NAND memory reset + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand) +{ + uint32_t deviceaddress; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* Send NAND reset command */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = 0xFF; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; + +} + +/** + * @brief Configure the device: Enter the physical parameters of the device + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pDeviceConfig pointer to NAND_DeviceConfigTypeDef structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_ConfigDevice(NAND_HandleTypeDef *hnand, NAND_DeviceConfigTypeDef *pDeviceConfig) +{ + hnand->Config.PageSize = pDeviceConfig->PageSize; + hnand->Config.SpareAreaSize = pDeviceConfig->SpareAreaSize; + hnand->Config.BlockSize = pDeviceConfig->BlockSize; + hnand->Config.BlockNbr = pDeviceConfig->BlockNbr; + hnand->Config.PlaneSize = pDeviceConfig->PlaneSize; + hnand->Config.PlaneNbr = pDeviceConfig->PlaneNbr; + hnand->Config.ExtraCommandEnable = pDeviceConfig->ExtraCommandEnable; + + return HAL_OK; +} + +/** + * @brief Read Page(s) from NAND memory block (8-bits addressing) + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress pointer to NAND address structure + * @param pBuffer pointer to destination read buffer + * @param NumPageToRead number of pages to read from block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, + uint32_t NumPageToRead) +{ + uint32_t index; + uint32_t tickstart; + uint32_t deviceaddress; + uint32_t numpagesread = 0U; + uint32_t nandaddress; + uint32_t nbpages = NumPageToRead; + uint8_t *buff = pBuffer; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* NAND raw address calculation */ + nandaddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Page(s) read loop */ + while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) + { + /* Send read page command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + + /* Cards with page size <= 512 bytes */ + if ((hnand->Config.PageSize) <= 512U) + { + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + else /* (hnand->Config.PageSize) > 512 */ + { + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; + __DSB(); + + + if (hnand->Config.ExtraCommandEnable == ENABLE) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while (HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) + { + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_TIMEOUT; + } + } + + /* Go back to read mode */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); + __DSB(); + } + + /* Get Data into Buffer */ + for (index = 0U; index < hnand->Config.PageSize; index++) + { + *buff = *(uint8_t *)deviceaddress; + buff++; + } + + /* Increment read pages number */ + numpagesread++; + + /* Decrement pages to read */ + nbpages--; + + /* Increment the NAND address */ + nandaddress = (uint32_t)(nandaddress + 1U); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Read Page(s) from NAND memory block (16-bits addressing) + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress pointer to NAND address structure + * @param pBuffer pointer to destination read buffer. pBuffer should be 16bits aligned + * @param NumPageToRead number of pages to read from block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, + uint32_t NumPageToRead) +{ + uint32_t index; + uint32_t tickstart; + uint32_t deviceaddress; + uint32_t numpagesread = 0U; + uint32_t nandaddress; + uint32_t nbpages = NumPageToRead; + uint16_t *buff = pBuffer; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* NAND raw address calculation */ + nandaddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Page(s) read loop */ + while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) + { + /* Send read page command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + + /* Cards with page size <= 512 bytes */ + if ((hnand->Config.PageSize) <= 512U) + { + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + else /* (hnand->Config.PageSize) > 512 */ + { + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; + __DSB(); + + if (hnand->Config.ExtraCommandEnable == ENABLE) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while (HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) + { + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_TIMEOUT; + } + } + + /* Go back to read mode */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); + __DSB(); + } + + /* Calculate PageSize */ + if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8) + { + hnand->Config.PageSize = hnand->Config.PageSize / 2U; + } + else + { + /* Do nothing */ + /* Keep the same PageSize for FMC_NAND_MEM_BUS_WIDTH_16*/ + } + + /* Get Data into Buffer */ + for (index = 0U; index < hnand->Config.PageSize; index++) + { + *buff = *(uint16_t *)deviceaddress; + buff++; + } + + /* Increment read pages number */ + numpagesread++; + + /* Decrement pages to read */ + nbpages--; + + /* Increment the NAND address */ + nandaddress = (uint32_t)(nandaddress + 1U); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Write Page(s) to NAND memory block (8-bits addressing) + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress pointer to NAND address structure + * @param pBuffer pointer to source buffer to write + * @param NumPageToWrite number of pages to write to block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, + uint32_t NumPageToWrite) +{ + uint32_t index; + uint32_t tickstart; + uint32_t deviceaddress; + uint32_t numpageswritten = 0U; + uint32_t nandaddress; + uint32_t nbpages = NumPageToWrite; + uint8_t *buff = pBuffer; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* NAND raw address calculation */ + nandaddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Page(s) write loop */ + while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) + { + /* Send write page command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; + __DSB(); + + /* Cards with page size <= 512 bytes */ + if ((hnand->Config.PageSize) <= 512U) + { + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + else /* (hnand->Config.PageSize) > 512 */ + { + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + + /* Write data to memory */ + for (index = 0U; index < hnand->Config.PageSize; index++) + { + *(__IO uint8_t *)deviceaddress = *buff; + buff++; + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; + __DSB(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while (HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) + { + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_TIMEOUT; + } + } + + /* Increment written pages number */ + numpageswritten++; + + /* Decrement pages to write */ + nbpages--; + + /* Increment the NAND address */ + nandaddress = (uint32_t)(nandaddress + 1U); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Write Page(s) to NAND memory block (16-bits addressing) + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress pointer to NAND address structure + * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned + * @param NumPageToWrite number of pages to write to block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, + uint32_t NumPageToWrite) +{ + uint32_t index; + uint32_t tickstart; + uint32_t deviceaddress; + uint32_t numpageswritten = 0U; + uint32_t nandaddress; + uint32_t nbpages = NumPageToWrite; + uint16_t *buff = pBuffer; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* NAND raw address calculation */ + nandaddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Page(s) write loop */ + while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) + { + /* Send write page command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; + __DSB(); + + /* Cards with page size <= 512 bytes */ + if ((hnand->Config.PageSize) <= 512U) + { + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + else /* (hnand->Config.PageSize) > 512 */ + { + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + + /* Calculate PageSize */ + if (hnand->Init.MemoryDataWidth == FMC_NAND_MEM_BUS_WIDTH_8) + { + hnand->Config.PageSize = hnand->Config.PageSize / 2U; + } + else + { + /* Do nothing */ + /* Keep the same PageSize for FMC_NAND_MEM_BUS_WIDTH_16*/ + } + + /* Write data to memory */ + for (index = 0U; index < hnand->Config.PageSize; index++) + { + *(__IO uint16_t *)deviceaddress = *buff; + buff++; + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; + __DSB(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while (HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) + { + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_TIMEOUT; + } + } + + /* Increment written pages number */ + numpageswritten++; + + /* Decrement pages to write */ + nbpages--; + + /* Increment the NAND address */ + nandaddress = (uint32_t)(nandaddress + 1U); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Read Spare area(s) from NAND memory (8-bits addressing) + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress pointer to NAND address structure + * @param pBuffer pointer to source buffer to write + * @param NumSpareAreaToRead Number of spare area to read + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, + uint32_t NumSpareAreaToRead) +{ + uint32_t index; + uint32_t tickstart; + uint32_t deviceaddress; + uint32_t numsparearearead = 0U; + uint32_t nandaddress; + uint32_t columnaddress; + uint32_t nbspare = NumSpareAreaToRead; + uint8_t *buff = pBuffer; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* NAND raw address calculation */ + nandaddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Column in page address */ + columnaddress = COLUMN_ADDRESS(hnand); + + /* Spare area(s) read loop */ + while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) + { + /* Cards with page size <= 512 bytes */ + if ((hnand->Config.PageSize) <= 512U) + { + /* Send read spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; + __DSB(); + + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + else /* (hnand->Config.PageSize) > 512 */ + { + /* Send read spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; + __DSB(); + + if (hnand->Config.ExtraCommandEnable == ENABLE) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while (HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) + { + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_TIMEOUT; + } + } + + /* Go back to read mode */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); + __DSB(); + } + + /* Get Data into Buffer */ + for (index = 0U; index < hnand->Config.SpareAreaSize; index++) + { + *buff = *(uint8_t *)deviceaddress; + buff++; + } + + /* Increment read spare areas number */ + numsparearearead++; + + /* Decrement spare areas to read */ + nbspare--; + + /* Increment the NAND address */ + nandaddress = (uint32_t)(nandaddress + 1U); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Read Spare area(s) from NAND memory (16-bits addressing) + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress pointer to NAND address structure + * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. + * @param NumSpareAreaToRead Number of spare area to read + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, + uint16_t *pBuffer, uint32_t NumSpareAreaToRead) +{ + uint32_t index; + uint32_t tickstart; + uint32_t deviceaddress; + uint32_t numsparearearead = 0U; + uint32_t nandaddress; + uint32_t columnaddress; + uint32_t nbspare = NumSpareAreaToRead; + uint16_t *buff = pBuffer; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* NAND raw address calculation */ + nandaddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Column in page address */ + columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand)); + + /* Spare area(s) read loop */ + while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) + { + /* Cards with page size <= 512 bytes */ + if ((hnand->Config.PageSize) <= 512U) + { + /* Send read spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; + __DSB(); + + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + else /* (hnand->Config.PageSize) > 512 */ + { + /* Send read spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; + __DSB(); + + if (hnand->Config.ExtraCommandEnable == ENABLE) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while (HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) + { + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_TIMEOUT; + } + } + + /* Go back to read mode */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00); + __DSB(); + } + + /* Get Data into Buffer */ + for (index = 0U; index < hnand->Config.SpareAreaSize; index++) + { + *buff = *(uint16_t *)deviceaddress; + buff++; + } + + /* Increment read spare areas number */ + numsparearearead++; + + /* Decrement spare areas to read */ + nbspare--; + + /* Increment the NAND address */ + nandaddress = (uint32_t)(nandaddress + 1U); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Write Spare area(s) to NAND memory (8-bits addressing) + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress pointer to NAND address structure + * @param pBuffer pointer to source buffer to write + * @param NumSpareAreaTowrite number of spare areas to write to block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, + uint8_t *pBuffer, uint32_t NumSpareAreaTowrite) +{ + uint32_t index; + uint32_t tickstart; + uint32_t deviceaddress; + uint32_t numspareareawritten = 0U; + uint32_t nandaddress; + uint32_t columnaddress; + uint32_t nbspare = NumSpareAreaTowrite; + uint8_t *buff = pBuffer; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* Page address calculation */ + nandaddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Column in page address */ + columnaddress = COLUMN_ADDRESS(hnand); + + /* Spare area(s) write loop */ + while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) + { + /* Cards with page size <= 512 bytes */ + if ((hnand->Config.PageSize) <= 512U) + { + /* Send write Spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; + __DSB(); + + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + else /* (hnand->Config.PageSize) > 512 */ + { + /* Send write Spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; + __DSB(); + + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + + /* Write data to memory */ + for (index = 0U; index < hnand->Config.SpareAreaSize; index++) + { + *(__IO uint8_t *)deviceaddress = *buff; + buff++; + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; + __DSB(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while (HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) + { + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_TIMEOUT; + } + } + + /* Increment written spare areas number */ + numspareareawritten++; + + /* Decrement spare areas to write */ + nbspare--; + + /* Increment the NAND address */ + nandaddress = (uint32_t)(nandaddress + 1U); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Write Spare area(s) to NAND memory (16-bits addressing) + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress pointer to NAND address structure + * @param pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned. + * @param NumSpareAreaTowrite number of spare areas to write to block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, + uint16_t *pBuffer, uint32_t NumSpareAreaTowrite) +{ + uint32_t index; + uint32_t tickstart; + uint32_t deviceaddress; + uint32_t numspareareawritten = 0U; + uint32_t nandaddress; + uint32_t columnaddress; + uint32_t nbspare = NumSpareAreaTowrite; + uint16_t *buff = pBuffer; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* NAND raw address calculation */ + nandaddress = ARRAY_ADDRESS(pAddress, hnand); + + /* Column in page address */ + columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand)); + + /* Spare area(s) write loop */ + while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)))) + { + /* Cards with page size <= 512 bytes */ + if ((hnand->Config.PageSize) <= 512U) + { + /* Send write Spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; + __DSB(); + + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + else /* (hnand->Config.PageSize) > 512 */ + { + /* Send write Spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; + __DSB(); + + if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + } + else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */ + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress); + __DSB(); + } + } + + /* Write data to memory */ + for (index = 0U; index < hnand->Config.SpareAreaSize; index++) + { + *(__IO uint16_t *)deviceaddress = *buff; + buff++; + __DSB(); + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; + __DSB(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while (HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT) + { + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_TIMEOUT; + } + } + + /* Increment written spare areas number */ + numspareareawritten++; + + /* Decrement spare areas to write */ + nbspare--; + + /* Increment the NAND address */ + nandaddress = (uint32_t)(nandaddress + 1U); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief NAND memory Block erase + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress pointer to NAND address structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) +{ + uint32_t deviceaddress; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* Send Erase block command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE0; + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + __DSB(); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + __DSB(); + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE1; + __DSB(); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Increment the NAND memory address + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress pointer to NAND address structure + * @retval The new status of the increment address operation. It can be: + * - NAND_VALID_ADDRESS: When the new address is valid address + * - NAND_INVALID_ADDRESS: When the new address is invalid address + */ +uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) +{ + uint32_t status = NAND_VALID_ADDRESS; + + /* Increment page address */ + pAddress->Page++; + + /* Check NAND address is valid */ + if (pAddress->Page == hnand->Config.BlockSize) + { + pAddress->Page = 0; + pAddress->Block++; + + if (pAddress->Block == hnand->Config.PlaneSize) + { + pAddress->Block = 0; + pAddress->Plane++; + + if (pAddress->Plane == (hnand->Config.PlaneNbr)) + { + status = NAND_INVALID_ADDRESS; + } + } + } + + return (status); +} + +#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User NAND Callback + * To be used instead of the weak (surcharged) predefined callback + * @param hnand : NAND handle + * @param CallbackId : ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_NAND_MSP_INIT_CB_ID NAND MspInit callback ID + * @arg @ref HAL_NAND_MSP_DEINIT_CB_ID NAND MspDeInit callback ID + * @arg @ref HAL_NAND_IT_CB_ID NAND IT callback ID + * @param pCallback : pointer to the Callback function + * @retval status + */ +HAL_StatusTypeDef HAL_NAND_RegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId, + pNAND_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hnand); + + if (hnand->State == HAL_NAND_STATE_READY) + { + switch (CallbackId) + { + case HAL_NAND_MSP_INIT_CB_ID : + hnand->MspInitCallback = pCallback; + break; + case HAL_NAND_MSP_DEINIT_CB_ID : + hnand->MspDeInitCallback = pCallback; + break; + case HAL_NAND_IT_CB_ID : + hnand->ItCallback = pCallback; + break; + default : + /* update return status */ + status = HAL_ERROR; + break; + } + } + else if (hnand->State == HAL_NAND_STATE_RESET) + { + switch (CallbackId) + { + case HAL_NAND_MSP_INIT_CB_ID : + hnand->MspInitCallback = pCallback; + break; + case HAL_NAND_MSP_DEINIT_CB_ID : + hnand->MspDeInitCallback = pCallback; + break; + default : + /* update return status */ + status = HAL_ERROR; + break; + } + } + else + { + /* update return status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hnand); + return status; +} + +/** + * @brief Unregister a User NAND Callback + * NAND Callback is redirected to the weak (surcharged) predefined callback + * @param hnand : NAND handle + * @param CallbackId : ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_NAND_MSP_INIT_CB_ID NAND MspInit callback ID + * @arg @ref HAL_NAND_MSP_DEINIT_CB_ID NAND MspDeInit callback ID + * @arg @ref HAL_NAND_IT_CB_ID NAND IT callback ID + * @retval status + */ +HAL_StatusTypeDef HAL_NAND_UnRegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hnand); + + if (hnand->State == HAL_NAND_STATE_READY) + { + switch (CallbackId) + { + case HAL_NAND_MSP_INIT_CB_ID : + hnand->MspInitCallback = HAL_NAND_MspInit; + break; + case HAL_NAND_MSP_DEINIT_CB_ID : + hnand->MspDeInitCallback = HAL_NAND_MspDeInit; + break; + case HAL_NAND_IT_CB_ID : + hnand->ItCallback = HAL_NAND_ITCallback; + break; + default : + /* update return status */ + status = HAL_ERROR; + break; + } + } + else if (hnand->State == HAL_NAND_STATE_RESET) + { + switch (CallbackId) + { + case HAL_NAND_MSP_INIT_CB_ID : + hnand->MspInitCallback = HAL_NAND_MspInit; + break; + case HAL_NAND_MSP_DEINIT_CB_ID : + hnand->MspDeInitCallback = HAL_NAND_MspDeInit; + break; + default : + /* update return status */ + status = HAL_ERROR; + break; + } + } + else + { + /* update return status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hnand); + return status; +} +#endif /* USE_HAL_NAND_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions + * @brief management functions + * +@verbatim + ============================================================================== + ##### NAND Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the NAND interface. + +@endverbatim + * @{ + */ + + +/** + * @brief Enables dynamically NAND ECC feature. + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand) +{ + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Enable ECC feature */ + (void)FMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank); + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_READY; + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_NAND ECC feature. + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand) +{ + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Disable ECC feature */ + (void)FMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank); + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_READY; + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Disables dynamically NAND ECC feature. + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param ECCval pointer to ECC value + * @param Timeout maximum timeout to wait + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout) +{ + HAL_StatusTypeDef status; + + /* Check the NAND controller state */ + if (hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + else if (hnand->State == HAL_NAND_STATE_READY) + { + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Get NAND ECC value */ + status = FMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout); + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_READY; + } + else + { + return HAL_ERROR; + } + + return status; +} + +/** + * @} + */ + + +/** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### NAND State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the NAND controller + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief return the NAND state + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL state + */ +HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand) +{ + return hnand->State; +} + +/** + * @brief NAND memory read status + * @param hnand pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval NAND status + */ +uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand) +{ + uint32_t data; + uint32_t deviceaddress; + UNUSED(hnand); + + /* Identify the device address */ + deviceaddress = NAND_DEVICE; + + /* Send Read status operation command */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_STATUS; + + /* Read status register data */ + data = *(__IO uint8_t *)deviceaddress; + + /* Return the status */ + if ((data & NAND_ERROR) == NAND_ERROR) + { + return NAND_ERROR; + } + else if ((data & NAND_READY) == NAND_READY) + { + return NAND_READY; + } + else + { + return NAND_BUSY; + } +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_NAND_MODULE_ENABLED */ + +/** + * @} + */ + -- cgit v1.2.3