/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cmplx_conj_f32.c
* Description: Floating-point complex conjugate
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupCmplxMath
*/
/**
@defgroup cmplx_conj Complex Conjugate
Conjugates the elements of a complex data vector.
The pSrc
points to the source data and
pDst
points to the destination data where the result should be written.
numSamples
specifies the number of complex samples
and the data in each array is stored in an interleaved fashion
(real, imag, real, imag, ...).
Each array has a total of 2*numSamples
values.
The underlying algorithm is used:
for (n = 0; n < numSamples; n++) { pDst[(2*n) ] = pSrc[(2*n) ]; // real part pDst[(2*n)+1] = -pSrc[(2*n)+1]; // imag part }There are separate functions for floating-point, Q15, and Q31 data types. */ /** @addtogroup cmplx_conj @{ */ /** @brief Floating-point complex conjugate. @param[in] pSrc points to the input vector @param[out] pDst points to the output vector @param[in] numSamples number of samples in each vector @return none */ void arm_cmplx_conj_f32( const float32_t * pSrc, float32_t * pDst, uint32_t numSamples) { uint32_t blkCnt; /* Loop counter */ #if defined(ARM_MATH_NEON) float32x4_t zero; float32x4x2_t vec; zero = vdupq_n_f32(0.0); /* Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C[0]+jC[1] = A[0]+(-1)*jA[1] */ /* Calculate Complex Conjugate and then store the results in the destination buffer. */ vec = vld2q_f32(pSrc); vec.val[1] = vsubq_f32(zero,vec.val[1]); vst2q_f32(pDst,vec); /* Increment pointers */ pSrc += 8; pDst += 8; /* Decrement the loop counter */ blkCnt--; } /* Tail */ blkCnt = numSamples & 0x3; #else #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C[0] + jC[1] = A[0]+ j(-1)A[1] */ /* Calculate Complex Conjugate and store result in destination buffer. */ *pDst++ = *pSrc++; *pDst++ = -*pSrc++; *pDst++ = *pSrc++; *pDst++ = -*pSrc++; *pDst++ = *pSrc++; *pDst++ = -*pSrc++; *pDst++ = *pSrc++; *pDst++ = -*pSrc++; /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined (ARM_MATH_NEON) */ while (blkCnt > 0U) { /* C[0] + jC[1] = A[0]+ j(-1)A[1] */ /* Calculate Complex Conjugate and store result in destination buffer. */ *pDst++ = *pSrc++; *pDst++ = -*pSrc++; /* Decrement loop counter */ blkCnt--; } } /** @} end of cmplx_conj group */