/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_scale_f32.c * Description: Multiplies a floating-point matrix by a scalar * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" /** @ingroup groupMatrix */ /** @defgroup MatrixScale Matrix Scale Multiplies a matrix by a scalar. This is accomplished by multiplying each element in the matrix by the scalar. For example: \image html MatrixScale.gif "Matrix Scaling of a 3 x 3 matrix" The function checks to make sure that the input and output matrices are of the same size. In the fixed-point Q15 and Q31 functions, scale is represented by a fractional multiplication scaleFract and an arithmetic shift shift. The shift allows the gain of the scaling operation to exceed 1.0. The overall scale factor applied to the fixed-point data is
      scale = scaleFract * 2^shift.
  
*/ /** @addtogroup MatrixScale @{ */ /** @brief Floating-point matrix scaling. @param[in] pSrc points to input matrix @param[in] scale scale factor to be applied @param[out] pDst points to output matrix structure @return execution status - \ref ARM_MATH_SUCCESS : Operation successful - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed */ #if defined(ARM_MATH_NEON_EXPERIMENTAL) arm_status arm_mat_scale_f32( const arm_matrix_instance_f32 * pSrc, float32_t scale, arm_matrix_instance_f32 * pDst) { float32_t *pIn = pSrc->pData; /* input data matrix pointer */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ arm_status status; /* status of matrix scaling */ float32_t in1, in2, in3, in4; /* temporary variables */ float32_t out1, out2, out3, out4; /* temporary variables */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { float32x4_t vec1; float32x4_t res; /* Total number of samples in the input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; blkCnt = numSamples >> 2; /* Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C(m,n) = A(m,n) * scale */ /* Scaling and results are stored in the destination buffer. */ vec1 = vld1q_f32(pIn); res = vmulq_f32(vec1, vdupq_n_f32(scale)); vst1q_f32(pOut, res); /* update pointers to process next sampels */ pIn += 4U; pOut += 4U; /* Decrement the numSamples loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4U; while (blkCnt > 0U) { /* C(m,n) = A(m,n) * scale */ /* The results are stored in the destination buffer. */ *pOut++ = (*pIn++) * scale; /* Decrement the loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else arm_status arm_mat_scale_f32( const arm_matrix_instance_f32 * pSrc, float32_t scale, arm_matrix_instance_f32 * pDst) { float32_t *pIn = pSrc->pData; /* Input data matrix pointer */ float32_t *pOut = pDst->pData; /* Output data matrix pointer */ uint32_t numSamples; /* Total number of elements in the matrix */ uint32_t blkCnt; /* Loop counters */ arm_status status; /* Status of matrix scaling */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* Total number of samples in input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C(m,n) = A(m,n) * scale */ /* Scale and store result in destination buffer. */ *pOut++ = (*pIn++) * scale; *pOut++ = (*pIn++) * scale; *pOut++ = (*pIn++) * scale; *pOut++ = (*pIn++) * scale; /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* C(m,n) = A(m,n) * scale */ /* Scale and store result in destination buffer. */ *pOut++ = (*pIn++) * scale; /* Decrement loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #endif /* #if defined(ARM_MATH_NEON) */ /** @} end of MatrixScale group */