/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cfft_q31.c * Description: Combined Radix Decimation in Frequency CFFT fixed point processing function * * $Date: 18. March 2019 * $Revision: V1.6.0 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_math.h" extern void arm_radix4_butterfly_q31( q31_t * pSrc, uint32_t fftLen, const q31_t * pCoef, uint32_t twidCoefModifier); extern void arm_radix4_butterfly_inverse_q31( q31_t * pSrc, uint32_t fftLen, const q31_t * pCoef, uint32_t twidCoefModifier); extern void arm_bitreversal_32( uint32_t * pSrc, const uint16_t bitRevLen, const uint16_t * pBitRevTable); void arm_cfft_radix4by2_q31( q31_t * pSrc, uint32_t fftLen, const q31_t * pCoef); void arm_cfft_radix4by2_inverse_q31( q31_t * pSrc, uint32_t fftLen, const q31_t * pCoef); /** @ingroup groupTransforms */ /** @addtogroup ComplexFFT @{ */ /** @brief Processing function for the Q31 complex FFT. @param[in] S points to an instance of the fixed-point CFFT structure @param[in,out] p1 points to the complex data buffer of size 2*fftLen. Processing occurs in-place @param[in] ifftFlag flag that selects transform direction - value = 0: forward transform - value = 1: inverse transform @param[in] bitReverseFlag flag that enables / disables bit reversal of output - value = 0: disables bit reversal of output - value = 1: enables bit reversal of output @return none */ void arm_cfft_q31( const arm_cfft_instance_q31 * S, q31_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag) { uint32_t L = S->fftLen; if (ifftFlag == 1U) { switch (L) { case 16: case 64: case 256: case 1024: case 4096: arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 ); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle ); break; } } else { switch (L) { case 16: case 64: case 256: case 1024: case 4096: arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 ); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle ); break; } } if ( bitReverseFlag ) arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable); } /** @} end of ComplexFFT group */ void arm_cfft_radix4by2_q31( q31_t * pSrc, uint32_t fftLen, const q31_t * pCoef) { uint32_t i, l; uint32_t n2; q31_t xt, yt, cosVal, sinVal; q31_t p0, p1; n2 = fftLen >> 1U; for (i = 0; i < n2; i++) { cosVal = pCoef[2 * i]; sinVal = pCoef[2 * i + 1]; l = i + n2; xt = (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U); pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U); yt = (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U); pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U); mult_32x32_keep32_R(p0, xt, cosVal); mult_32x32_keep32_R(p1, yt, cosVal); multAcc_32x32_keep32_R(p0, yt, sinVal); multSub_32x32_keep32_R(p1, xt, sinVal); pSrc[2 * l] = p0 << 1; pSrc[2 * l + 1] = p1 << 1; } /* first col */ arm_radix4_butterfly_q31 (pSrc, n2, (q31_t*)pCoef, 2U); /* second col */ arm_radix4_butterfly_q31 (pSrc + fftLen, n2, (q31_t*)pCoef, 2U); n2 = fftLen >> 1U; for (i = 0; i < n2; i++) { p0 = pSrc[4 * i + 0]; p1 = pSrc[4 * i + 1]; xt = pSrc[4 * i + 2]; yt = pSrc[4 * i + 3]; p0 <<= 1U; p1 <<= 1U; xt <<= 1U; yt <<= 1U; pSrc[4 * i + 0] = p0; pSrc[4 * i + 1] = p1; pSrc[4 * i + 2] = xt; pSrc[4 * i + 3] = yt; } } void arm_cfft_radix4by2_inverse_q31( q31_t * pSrc, uint32_t fftLen, const q31_t * pCoef) { uint32_t i, l; uint32_t n2; q31_t xt, yt, cosVal, sinVal; q31_t p0, p1; n2 = fftLen >> 1U; for (i = 0; i < n2; i++) { cosVal = pCoef[2 * i]; sinVal = pCoef[2 * i + 1]; l = i + n2; xt = (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U); pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U); yt = (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U); pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U); mult_32x32_keep32_R(p0, xt, cosVal); mult_32x32_keep32_R(p1, yt, cosVal); multSub_32x32_keep32_R(p0, yt, sinVal); multAcc_32x32_keep32_R(p1, xt, sinVal); pSrc[2 * l] = p0 << 1U; pSrc[2 * l + 1] = p1 << 1U; } /* first col */ arm_radix4_butterfly_inverse_q31( pSrc, n2, (q31_t*)pCoef, 2U); /* second col */ arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U); n2 = fftLen >> 1U; for (i = 0; i < n2; i++) { p0 = pSrc[4 * i + 0]; p1 = pSrc[4 * i + 1]; xt = pSrc[4 * i + 2]; yt = pSrc[4 * i + 3]; p0 <<= 1U; p1 <<= 1U; xt <<= 1U; yt <<= 1U; pSrc[4 * i + 0] = p0; pSrc[4 * i + 1] = p1; pSrc[4 * i + 2] = xt; pSrc[4 * i + 3] = yt; } }