1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_mult_fast_q15.c
* Description: Q15 matrix multiplication (fast variant)
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupMatrix
*/
/**
@addtogroup MatrixMult
@{
*/
/**
@brief Q15 matrix multiplication (fast variant).
@param[in] pSrcA points to the first input matrix structure
@param[in] pSrcB points to the second input matrix structure
@param[out] pDst points to output matrix structure
@param[in] pState points to the array for storing intermediate results
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
@par Scaling and Overflow Behavior
The difference between the function \ref arm_mat_mult_q15() and this fast variant is that
the fast variant use a 32-bit rather than a 64-bit accumulator.
The result of each 1.15 x 1.15 multiplication is truncated to
2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
format. Finally, the accumulator is saturated and converted to a 1.15 result.
@par
The fast version has the same overflow behavior as the standard version but provides
less precision since it discards the low 16 bits of each multiplication result.
In order to avoid overflows completely the input signals must be scaled down.
Scale down one of the input matrices by log2(numColsA) bits to avoid overflows,
as a total of numColsA additions are computed internally for each output element.
@remark
Refer to \ref arm_mat_mult_q15() for a slower implementation of this function
which uses 64-bit accumulation to provide higher precision.
*/
arm_status arm_mat_mult_fast_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pState)
{
q31_t sum; /* Accumulator */
q15_t *pSrcBT = pState; /* Input data matrix pointer for transpose */
q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
q15_t *px; /* Temporary output data matrix pointer */
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
uint16_t numRowsB = pSrcB->numRows; /* Number of rows of input matrix A */
uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
arm_status status; /* Status of matrix multiplication */
#if defined (ARM_MATH_DSP)
q31_t in; /* Temporary variable to hold the input value */
q31_t inA1, inB1, inA2, inB2;
q31_t sum2, sum3, sum4;
q15_t *pInA2, *pInB2, *px2;
uint32_t j = 0;
#else
q15_t in; /* Temporary variable to hold the input value */
q15_t inA1, inB1, inA2, inB2;
#endif /* #if defined (ARM_MATH_DSP) */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) ||
(pSrcB->numCols != pDst->numCols) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Matrix transpose */
do
{
/* The pointer px is set to starting address of column being processed */
px = pSrcBT + i;
/* Apply loop unrolling and exchange columns with row elements */
col = numColsB >> 2U;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (col > 0U)
{
#if defined (ARM_MATH_DSP)
/* Read two elements from row */
in = read_q15x2_ia ((q15_t **) &pInB);
/* Unpack and store one element in destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) in;
#else
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update pointer px to point to next row of transposed matrix */
px += numRowsB;
/* Unpack and store second element in destination */
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#else
*px = (q15_t) in;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Update pointer px to point to next row of transposed matrix */
px += numRowsB;
in = read_q15x2_ia ((q15_t **) &pInB);
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) in;
#else
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
px += numRowsB;
#ifndef ARM_MATH_BIG_ENDIAN
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
#else
*px = (q15_t) in;
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
px += numRowsB;
#else /* #if defined (ARM_MATH_DSP) */
/* Read one element from row */
in = *pInB++;
/* Store one element in destination */
*px = in;
/* Update pointer px to point to next row of transposed matrix */
px += numRowsB;
in = *pInB++;
*px = in;
px += numRowsB;
in = *pInB++;
*px = in;
px += numRowsB;
in = *pInB++;
*px = in;
px += numRowsB;
#endif /* #if defined (ARM_MATH_DSP) */
/* Decrement column loop counter */
col--;
}
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
col = numColsB % 0x4U;
while (col > 0U)
{
/* Read and store input element in destination */
*px = *pInB++;
/* Update pointer px to point to next row of transposed matrix */
px += numRowsB;
/* Decrement column loop counter */
col--;
}
i++;
/* Decrement row loop counter */
row--;
} while (row > 0U);
/* Reset variables for usage in following multiplication process */
row = numRowsA;
i = 0U;
px = pDst->pData;
#if defined (ARM_MATH_DSP)
/* Process two rows from matrix A at a time and output two rows at a time */
row = row >> 1U;
px2 = px + numColsB;
#endif
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
while (row > 0U)
{
/* For every row wise process, column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
pInB = pSrcBT;
#if defined (ARM_MATH_DSP)
/* Process two (transposed) columns from matrix B at a time */
col = col >> 1U;
j = 0;
#endif
/* column loop */
while (col > 0U)
{
/* Set variable sum, that acts as accumulator, to zero */
sum = 0;
/* Initiate pointer pInA to point to starting address of column being processed */
pInA = pSrcA->pData + i;
#if defined (ARM_MATH_DSP)
sum2 = 0;
sum3 = 0;
sum4 = 0;
pInB = pSrcBT + j;
pInA2 = pInA + numColsA;
pInB2 = pInB + numRowsB;
/* Read in two elements at once - alows dual MAC instruction */
colCnt = numColsA >> 1U;
#else
colCnt = numColsA >> 2U;
#endif
/* matrix multiplication */
while (colCnt > 0U)
{
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
#if defined (ARM_MATH_DSP)
/* read real and imag values from pSrcA and pSrcB buffer */
inA1 = read_q15x2_ia ((q15_t **) &pInA);
inB1 = read_q15x2_ia ((q15_t **) &pInB);
inA2 = read_q15x2_ia ((q15_t **) &pInA2);
inB2 = read_q15x2_ia ((q15_t **) &pInB2);
/* Multiply and Accumlates */
sum = __SMLAD(inA1, inB1, sum);
sum2 = __SMLAD(inA1, inB2, sum2);
sum3 = __SMLAD(inA2, inB1, sum3);
sum4 = __SMLAD(inA2, inB2, sum4);
#else
/* read real and imag values from pSrcA and pSrcB buffer */
inA1 = *pInA++;
inB1 = *pInB++;
/* Multiply and Accumlates */
sum += inA1 * inB1;
inA2 = *pInA++;
inB2 = *pInB++;
sum += inA2 * inB2;
inA1 = *pInA++;
inB1 = *pInB++;
sum += inA1 * inB1;
inA2 = *pInA++;
inB2 = *pInB++;
sum += inA2 * inB2;
#endif /* #if defined (ARM_MATH_DSP) */
/* Decrement loop counter */
colCnt--;
}
/* process odd column samples */
#if defined (ARM_MATH_DSP)
if (numColsA & 1U) {
inA1 = *pInA++;
inB1 = *pInB++;
inA2 = *pInA2++;
inB2 = *pInB2++;
sum += inA1 * inB1;
sum2 += inA1 * inB2;
sum3 += inA2 * inB1;
sum4 += inA2 * inB2;
}
#else
colCnt = numColsA % 0x4U;
while (colCnt > 0U)
{
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
sum += (q31_t) *pInA++ * *pInB++;
/* Decrement loop counter */
colCnt--;
}
#endif /* #if defined (ARM_MATH_DSP) */
/* Saturate and store result in destination buffer */
*px++ = (q15_t) (sum >> 15);
#if defined (ARM_MATH_DSP)
*px++ = (q15_t) (sum2 >> 15);
*px2++ = (q15_t) (sum3 >> 15);
*px2++ = (q15_t) (sum4 >> 15);
j += numRowsB * 2;
#endif
/* Decrement column loop counter */
col--;
}
i = i + numColsA;
#if defined (ARM_MATH_DSP)
i = i + numColsA;
px = px2 + (numColsB & 1U);
px2 = px + numColsB;
#endif
/* Decrement row loop counter */
row--;
}
/* Compute any remaining odd row/column below */
#if defined (ARM_MATH_DSP)
/* Compute remaining output column */
if (numColsB & 1U) {
/* Avoid redundant computation of last element */
row = numRowsA & (~0x1);
/* Point to remaining unfilled column in output matrix */
px = pDst->pData + numColsB-1;
pInA = pSrcA->pData;
/* row loop */
while (row > 0)
{
/* point to last column in matrix B */
pInB = pSrcBT + numRowsB * (numColsB-1);
/* Set variable sum, that acts as accumulator, to zero */
sum = 0;
/* Compute 4 columns at once */
colCnt = numColsA >> 2U;
/* matrix multiplication */
while (colCnt > 0U)
{
inA1 = read_q15x2_ia ((q15_t **) &pInA);
inA2 = read_q15x2_ia ((q15_t **) &pInA);
inB1 = read_q15x2_ia ((q15_t **) &pInB);
inB2 = read_q15x2_ia ((q15_t **) &pInB);
sum = __SMLAD(inA1, inB1, sum);
sum = __SMLAD(inA2, inB2, sum);
/* Decrement loop counter */
colCnt--;
}
colCnt = numColsA & 3U;
while (colCnt > 0U) {
sum += (q31_t) (*pInA++) * (*pInB++);
colCnt--;
}
/* Store result in destination buffer */
*px = (q15_t) (sum >> 15);
px += numColsB;
/* Decrement row loop counter */
row--;
}
}
/* Compute remaining output row */
if (numRowsA & 1U) {
/* point to last row in output matrix */
px = pDst->pData + (numColsB) * (numRowsA-1);
pInB = pSrcBT;
col = numColsB;
i = 0U;
/* col loop */
while (col > 0)
{
/* point to last row in matrix A */
pInA = pSrcA->pData + (numRowsA-1) * numColsA;
/* Set variable sum, that acts as accumulator, to zero */
sum = 0;
/* Compute 4 columns at once */
colCnt = numColsA >> 2U;
/* matrix multiplication */
while (colCnt > 0U)
{
inA1 = read_q15x2_ia ((q15_t **) &pInA);
inA2 = read_q15x2_ia ((q15_t **) &pInA);
inB1 = read_q15x2_ia ((q15_t **) &pInB);
inB2 = read_q15x2_ia ((q15_t **) &pInB);
sum = __SMLAD(inA1, inB1, sum);
sum = __SMLAD(inA2, inB2, sum);
/* Decrement loop counter */
colCnt--;
}
colCnt = numColsA % 4U;
while (colCnt > 0U) {
sum += (q31_t) (*pInA++) * (*pInB++);
colCnt--;
}
/* Store result in destination buffer */
*px++ = (q15_t) (sum >> 15);
/* Decrement column loop counter */
col--;
}
}
#endif /* #if defined (ARM_MATH_DSP) */
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
@} end of MatrixMult group
*/
|