1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
/*
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* ----------------------------------------------------------------------
* Project: CMSIS NN Library
* Title: arm_convolve_1x1_HWC_q7_fast_nonsquare.c
* Description: Fast Q7 version of 1x1 convolution (non-square shape)
*
* $Date: 17. January 2018
* $Revision: V.1.0.0
*
* Target Processor: Cortex-M cores
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_nnfunctions.h"
/**
* @ingroup groupNN
*/
/**
* @addtogroup NNConv
* @{
*/
/**
* @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
* @param[in] Im_in pointer to input tensor
* @param[in] dim_im_in_x input tensor dimention x
* @param[in] dim_im_in_y input tensor dimention y
* @param[in] ch_im_in number of input tensor channels
* @param[in] wt pointer to kernel weights
* @param[in] ch_im_out number of filters, i.e., output tensor channels
* @param[in] dim_kernel_x filter kernel size x
* @param[in] dim_kernel_y filter kernel size y
* @param[in] padding_x padding size x
* @param[in] padding_y padding size y
* @param[in] stride_x convolution stride x
* @param[in] stride_y convolution stride y
* @param[in] bias pointer to bias
* @param[in] bias_shift amount of left-shift for bias
* @param[in] out_shift amount of right-shift for output
* @param[in,out] Im_out pointer to output tensor
* @param[in] dim_im_out_x output tensor dimension x
* @param[in] dim_im_out_y output tensor dimension y
* @param[in,out] bufferA pointer to buffer space for input
* @param[in,out] bufferB pointer to buffer space for output
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1
* and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise
* separable convolution.
*
* This function is the version with full list of optimization tricks, but with
* some contraints:
* ch_im_in is multiple of 4
* ch_im_out is multiple of 2
*
* [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
* https://arxiv.org/abs/1704.04861
*/
arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
const uint16_t dim_im_in_x,
const uint16_t dim_im_in_y,
const uint16_t ch_im_in,
const q7_t * wt,
const uint16_t ch_im_out,
const uint16_t dim_kernel_x,
const uint16_t dim_kernel_y,
const uint16_t padding_x,
const uint16_t padding_y,
const uint16_t stride_x,
const uint16_t stride_y,
const q7_t * bias,
const uint16_t bias_shift,
const uint16_t out_shift,
q7_t * Im_out,
const uint16_t dim_im_out_x,
const uint16_t dim_im_out_y,
q15_t * bufferA,
q7_t * bufferB)
{
#if defined (ARM_MATH_DSP)
/* Run the following code for Cortex-M4 and Cortex-M7 */
int16_t i_out_y, i_out_x;
int16_t i_ch_out;
/* -----------------------
* Here we use bufferA as q15_t internally as computation are done with q15_t level
* im2col are done to output in q15_t format from q7_t input
*/
q15_t *pBuffer = bufferA;
q7_t *pOut = Im_out;
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
|| padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
{
/* check if the input dimension meets the constraints */
return ARM_MATH_SIZE_MISMATCH;
}
for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
{
for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
{
/* This part implements the im2col function */
arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer,
ch_im_in);
pBuffer += ch_im_in;
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
{
pOut =
arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut);
/* counter reset */
pBuffer = bufferA;
}
}
}
/* check if there is left-over for compute */
if (pBuffer != bufferA)
{
const q7_t *pA = wt;
for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
{
q31_t sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
q15_t *pB = bufferA;
/* basically each time it process 4 entries */
uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
while (colCnt)
{
q31_t inA1, inA2;
q31_t inB1, inB2;
pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2);
inB1 = *__SIMD32(pB)++;
sum = __SMLAD(inA1, inB1, sum);
inB2 = *__SIMD32(pB)++;
sum = __SMLAD(inA2, inB2, sum);
colCnt--;
}
colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3;
while (colCnt)
{
q7_t inA1 = *pA++;
q15_t inB1 = *pB++;
sum += inA1 * inB1;
colCnt--;
}
*pOut = (q7_t) __SSAT((sum >> out_shift), 8);
pOut++;
}
}
#else
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
int i, j, k, l, m, n;
int conv_out;
int in_row, in_col;
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1
|| padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1)
{
/* check if the input dimension meets the constraints */
return ARM_MATH_SIZE_MISMATCH;
}
for (i = 0; i < ch_im_out; i++)
{
for (j = 0; j < dim_im_out_y; j++)
{
for (k = 0; k < dim_im_out_x; k++)
{
conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
for (m = 0; m < dim_kernel_y; m++)
{
for (n = 0; n < dim_kernel_x; n++)
{
// if-for implementation
in_row = stride_y * j + m - padding_y;
in_col = stride_x * k + n - padding_x;
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
{
for (l = 0; l < ch_im_in; l++)
{
conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l];
}
}
}
}
Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
}
}
}
#endif /* ARM_MATH_DSP */
/* Return to application */
return ARM_MATH_SUCCESS;
}
/**
* @} end of NNConv group
*/
|