1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
/*
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* ----------------------------------------------------------------------
* Project: CMSIS NN Library
* Title: arm_convolve_HWC_q7_fast.c
* Description: Fast Q7 version of convolution
*
* $Date: 17. January 2018
* $Revision: V.1.0.0
*
* Target Processor: Cortex-M cores
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_nnfunctions.h"
/**
* @ingroup groupNN
*/
/**
* @addtogroup NNConv
* @{
*/
/**
* @brief Fast Q7 convolution function
* @param[in] Im_in pointer to input tensor
* @param[in] dim_im_in input tensor dimention
* @param[in] ch_im_in number of input tensor channels
* @param[in] wt pointer to kernel weights
* @param[in] ch_im_out number of filters, i.e., output tensor channels
* @param[in] dim_kernel filter kernel size
* @param[in] padding padding sizes
* @param[in] stride convolution stride
* @param[in] bias pointer to bias
* @param[in] bias_shift amount of left-shift for bias
* @param[in] out_shift amount of right-shift for output
* @param[in,out] Im_out pointer to output tensor
* @param[in] dim_im_out output tensor dimension
* @param[in,out] bufferA pointer to buffer space for input
* @param[in,out] bufferB pointer to buffer space for output
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*
* @details
*
* <b>Buffer size:</b>
*
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
*
* bufferB size: 0
*
* <b>Input dimension constraints:</b>
*
* ch_im_in is multiple of 4 ( because of the SIMD32 read and swap )
*
* ch_im_out is multipe of 2 ( bacause 2x2 mat_mult kernel )
*
* The im2col converts the Q7 tensor input into Q15 column, which is stored in
* bufferA. There is reordering happenning during this im2col process with
* arm_q7_to_q15_reordered_no_shift. For every four elements, the second and
* third elements are swapped.
*
* The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the
* GEMM computation with the reordered columns.
*
* To speed-up the determination of the padding condition, we split the
* computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}.
* This reduces the total number of boundary condition checks and improves
* the data copying performance.
*/
arm_status
arm_convolve_HWC_q7_fast(const q7_t * Im_in,
const uint16_t dim_im_in,
const uint16_t ch_im_in,
const q7_t * wt,
const uint16_t ch_im_out,
const uint16_t dim_kernel,
const uint16_t padding,
const uint16_t stride,
const q7_t * bias,
const uint16_t bias_shift,
const uint16_t out_shift,
q7_t * Im_out,
const uint16_t dim_im_out,
q15_t * bufferA,
q7_t * bufferB)
{
#if defined (ARM_MATH_DSP)
/* Run the following code for Cortex-M4 and Cortex-M7 */
int16_t i_out_y, i_out_x, i_ker_y, i_ker_x;
/*
* Here we use bufferA as q15_t internally as computation are done with q15_t level
* im2col are done to output in q15_t format from q7_t input
*/
q15_t *pBuffer = bufferA;
q7_t *pOut = Im_out;
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
{
/* check if the input dimension meets the constraints */
return ARM_MATH_SIZE_MISMATCH;
}
/*
* Here we split the entire matrix into three regions depending on the padding situation
* Top: i_out_y from 0 to padding - 1
* Middle: i_out_y from padding to dim_im_out-padding-1
* Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
*/
/* top part */
for (i_out_y = 0; i_out_y < padding; i_out_y++)
{
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
{
/* This part implements the im2col function */
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
{
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
{
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
{
/* arm_fill_q15(0, pBuffer, ch_im_in); */
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
} else
{
arm_q7_to_q15_reordered_no_shift
((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
}
pBuffer += ch_im_in;
}
}
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
{
pOut =
arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
bufferA,
ch_im_out,
ch_im_in
*
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
/* counter reset */
pBuffer = bufferA;
}
}
}
/* middle part, here we also divide the x into left, mid and right */
for (; i_out_y < dim_im_out - padding; i_out_y++)
{
/* left part */
for (i_out_x = 0; i_out_x < padding; i_out_x++)
{
/* This part implements the im2col function */
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
{
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
{
if (i_ker_x < 0 || i_ker_x >= dim_im_in)
{
/* arm_fill_q15(0, pBuffer, ch_im_in); */
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
} else
{
arm_q7_to_q15_reordered_no_shift
((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
}
pBuffer += ch_im_in;
}
}
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
{
pOut =
arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
bufferA,
ch_im_out,
ch_im_in
*
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
/* counter reset */
pBuffer = bufferA;
}
}
/* mid part */
for (; i_out_x < dim_im_out - padding; i_out_x++)
{
/* This part implements the im2col function */
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
{
arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in
+
(i_ker_y *
dim_im_in +
i_out_x *
stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel);
pBuffer += ch_im_in * dim_kernel;
}
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
{
pOut =
arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
bufferA,
ch_im_out,
ch_im_in
*
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
/* counter reset */
pBuffer = bufferA;
}
}
/* right part */
for (; i_out_x < dim_im_out; i_out_x++)
{
/* This part implements the im2col function */
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
{
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
{
if (i_ker_x < 0 || i_ker_x >= dim_im_in)
{
/* arm_fill_q15(0, pBuffer, ch_im_in); */
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
} else
{
arm_q7_to_q15_reordered_no_shift
((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
}
pBuffer += ch_im_in;
}
}
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
{
pOut =
arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
bufferA,
ch_im_out,
ch_im_in
*
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
/* counter reset */
pBuffer = bufferA;
}
}
}
for (; i_out_y < dim_im_out; i_out_y++)
{
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
{
/* This part implements the im2col function */
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
{
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
{
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
{
/* arm_fill_q15(0, pBuffer, ch_im_in); */
memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
} else
{
arm_q7_to_q15_reordered_no_shift
((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in);
}
pBuffer += ch_im_in;
}
}
if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel)
{
pOut =
arm_nn_mat_mult_kernel_q7_q15_reordered(wt,
bufferA,
ch_im_out,
ch_im_in
*
dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut);
/* counter reset */
pBuffer = bufferA;
}
}
}
/* check if there is left-over for compute */
if (pBuffer != bufferA)
{
const q7_t *pA = wt;
int i;
for (i = 0; i < ch_im_out; i++)
{
q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
q15_t *pB = bufferA;
/* each time it process 4 entries */
uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2;
while (colCnt)
{
q31_t inA1, inA2;
q31_t inB1, inB2;
pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA1, &inA2);
inB1 = *__SIMD32(pB)++;
sum = __SMLAD(inA1, inB1, sum);
inB2 = *__SIMD32(pB)++;
sum = __SMLAD(inA2, inB2, sum);
colCnt--;
}
colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3;
while (colCnt)
{
q7_t inA1 = *pA++;
q15_t inB1 = *pB++;
sum += inA1 * inB1;
colCnt--;
}
*pOut = (q7_t) __SSAT((sum >> out_shift), 8);
pOut++;
}
}
#else
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
uint16_t i, j, k, l, m, n;
int conv_out;
signed char in_row, in_col;
if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
{
/* check if the input dimension meets the constraints */
return ARM_MATH_SIZE_MISMATCH;
}
for (i = 0; i < ch_im_out; i++)
{
for (j = 0; j < dim_im_out; j++)
{
for (k = 0; k < dim_im_out; k++)
{
conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift);
for (m = 0; m < dim_kernel; m++)
{
for (n = 0; n < dim_kernel; n++)
{
// if-for implementation
in_row = stride * j + m - padding;
in_col = stride * k + n - padding;
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
{
for (l = 0; l < ch_im_in; l++)
{
conv_out +=
Im_in[(in_row * dim_im_in + in_col) * ch_im_in +
l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel +
n) * ch_im_in + l];
}
}
}
}
Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
}
}
}
#endif /* ARM_MATH_DSP */
/* Return to application */
return ARM_MATH_SUCCESS;
}
/**
* @} end of NNConv group
*/
|