#include "ref.h"
#include "arm_const_structs.h"
void ref_rfft_f32(
arm_rfft_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst)
{
uint32_t i;
if (S->ifftFlagR)
{
for(i=0;i<S->fftLenReal*2;i++)
{
pDst[i] = pSrc[i];
}
}
else
{
for(i=0;i<S->fftLenReal;i++)
{
pDst[2*i+0] = pSrc[i];
pDst[2*i+1] = 0.0f;
}
}
switch(S->fftLenReal)
{
case 128:
ref_cfft_f32(&arm_cfft_sR_f32_len128, pDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 512:
ref_cfft_f32(&arm_cfft_sR_f32_len512, pDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 2048:
ref_cfft_f32(&arm_cfft_sR_f32_len2048, pDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 8192:
ref_cfft_f32(&ref_cfft_sR_f32_len8192, pDst, S->ifftFlagR, S->bitReverseFlagR);
break;
}
if (S->ifftFlagR)
{
//throw away the imaginary part which should be all zeros
for(i=0;i<S->fftLenReal;i++)
{
pDst[i] = pDst[2*i];
}
}
}
void ref_rfft_fast_f32(
arm_rfft_fast_instance_f32 * S,
float32_t * p, float32_t * pOut,
uint8_t ifftFlag)
{
uint32_t i,j;
if (ifftFlag)
{
for(i=0;i<S->fftLenRFFT;i++)
{
pOut[i] = p[i];
}
//unpack first sample's complex part into middle sample's real part
pOut[S->fftLenRFFT] = pOut[1];
pOut[S->fftLenRFFT+1] = 0;
pOut[1] = 0;
j=4;
for(i = S->fftLenRFFT / 2 + 1;i < S->fftLenRFFT;i++)
{
pOut[2*i+0] = p[2*i+0 - j];
pOut[2*i+1] = -p[2*i+1 - j];
j+=4;
}
}
else
{
for(i=0;i<S->fftLenRFFT;i++)
{
pOut[2*i+0] = p[i];
pOut[2*i+1] = 0.0f;
}
}
switch(S->fftLenRFFT)
{
case 32:
ref_cfft_f32(&arm_cfft_sR_f32_len32, pOut, ifftFlag, 1);
break;
case 64:
ref_cfft_f32(&arm_cfft_sR_f32_len64, pOut, ifftFlag, 1);
break;
case 128:
ref_cfft_f32(&arm_cfft_sR_f32_len128, pOut, ifftFlag, 1);
break;
case 256:
ref_cfft_f32(&arm_cfft_sR_f32_len256, pOut, ifftFlag, 1);
break;
case 512:
ref_cfft_f32(&arm_cfft_sR_f32_len512, pOut, ifftFlag, 1);
break;
case 1024:
ref_cfft_f32(&arm_cfft_sR_f32_len1024, pOut, ifftFlag, 1);
break;
case 2048:
ref_cfft_f32(&arm_cfft_sR_f32_len2048, pOut, ifftFlag, 1);
break;
case 4096:
ref_cfft_f32(&arm_cfft_sR_f32_len4096, pOut, ifftFlag, 1);
break;
}
if (ifftFlag)
{
//throw away the imaginary part which should be all zeros
for(i=0;i<S->fftLenRFFT;i++)
{
pOut[i] = pOut[2*i];
}
}
else
{
//pack last sample's real part into first sample's complex part
pOut[1] = pOut[S->fftLenRFFT];
}
}
void ref_rfft_q31(
const arm_rfft_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst)
{
uint32_t i;
float32_t *fDst = (float32_t*)pDst;
if (S->ifftFlagR)
{
for(i=0;i<S->fftLenReal*2;i++)
{
fDst[i] = (float32_t)pSrc[i] / 2147483648.0f;
}
}
else
{
for(i=0;i<S->fftLenReal;i++)
{
fDst[2*i+0] = (float32_t)pSrc[i] / 2147483648.0f;
fDst[2*i+1] = 0.0f;
}
}
switch(S->fftLenReal)
{
case 32:
ref_cfft_f32(&arm_cfft_sR_f32_len32, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 64:
ref_cfft_f32(&arm_cfft_sR_f32_len64, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 128:
ref_cfft_f32(&arm_cfft_sR_f32_len128, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 256:
ref_cfft_f32(&arm_cfft_sR_f32_len256, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 512:
ref_cfft_f32(&arm_cfft_sR_f32_len512, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 1024:
ref_cfft_f32(&arm_cfft_sR_f32_len1024, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 2048:
ref_cfft_f32(&arm_cfft_sR_f32_len2048, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 4096:
ref_cfft_f32(&arm_cfft_sR_f32_len4096, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 8192:
ref_cfft_f32(&ref_cfft_sR_f32_len8192, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
}
if (S->ifftFlagR)
{
//throw away the imaginary part which should be all zeros
for(i=0;i<S->fftLenReal;i++)
{
//read the float data, scale up for q31, cast to q31
pDst[i] = (q31_t)( fDst[2*i] * 2147483648.0f);
}
}
else
{
for(i=0;i<S->fftLenReal;i++)
{
//read the float data, scale up for q31, cast to q31
pDst[i] = (q31_t)( fDst[i] * 2147483648.0f / (float32_t)S->fftLenReal);
}
}
}
void ref_rfft_q15(
const arm_rfft_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst)
{
uint32_t i;
float32_t *fDst = (float32_t*)pDst;
if (S->ifftFlagR)
{
for(i=0;i<S->fftLenReal*2;i++)
{
fDst[i] = (float32_t)pSrc[i] / 32768.0f;
}
}
else
{
for(i=0;i<S->fftLenReal;i++)
{
//read the q15 data, cast to float, scale down for float
fDst[2*i+0] = (float32_t)pSrc[i] / 32768.0f;
fDst[2*i+1] = 0.0f;
}
}
switch(S->fftLenReal)
{
case 32:
ref_cfft_f32(&arm_cfft_sR_f32_len32, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 64:
ref_cfft_f32(&arm_cfft_sR_f32_len64, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 128:
ref_cfft_f32(&arm_cfft_sR_f32_len128, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 256:
ref_cfft_f32(&arm_cfft_sR_f32_len256, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 512:
ref_cfft_f32(&arm_cfft_sR_f32_len512, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 1024:
ref_cfft_f32(&arm_cfft_sR_f32_len1024, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 2048:
ref_cfft_f32(&arm_cfft_sR_f32_len2048, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 4096:
ref_cfft_f32(&arm_cfft_sR_f32_len4096, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
case 8192:
ref_cfft_f32(&ref_cfft_sR_f32_len8192, fDst, S->ifftFlagR, S->bitReverseFlagR);
break;
}
if (S->ifftFlagR)
{
//throw away the imaginary part which should be all zeros
for(i=0;i<S->fftLenReal;i++)
{
pDst[i] = (q15_t)( fDst[2*i] * 32768.0f);
}
}
else
{
for(i=0;i<S->fftLenReal;i++)
{
pDst[i] = (q15_t)( fDst[i] * 32768.0f / (float32_t)S->fftLenReal);
}
}
}