summaryrefslogblamecommitdiff
path: root/Drivers/CMSIS/NN/Examples/IAR/iar_nn_examples/NN-example-gru/arm_nnexamples_gru.cpp
blob: efb32570e8fd7aceb57f59ee246acd4ccada8725 (plain) (tree)




























































































































































































































                                                                                                                                                                        
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
*
*
* Project:       CMSIS NN Library
* Title:         arm_nnexamples_gru.cpp
*
* Description:   Gated Recurrent Unit Example
*
* Target Processor: Cortex-M4/Cortex-M7
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the
*     distribution.
*   - Neither the name of Arm LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */

/**
 * @ingroup groupExamples
 */

/**
 * @defgroup GRUExample Gated Recurrent Unit Example
 *
 * \par Description:
 * \par
 * Demonstrates a gated recurrent unit (GRU) example with the use of fully-connected,
 * Tanh/Sigmoid activation functions.
 *
 * \par Model definition:
 * \par
 * GRU is a type of recurrent neural network (RNN). It contains two sigmoid gates and one hidden
 * state. 
 * \par
 * The computation can be summarized as:
 * <pre>z[t] = sigmoid( W_z &sdot; {h[t-1],x[t]} )
 * r[t] = sigmoid( W_r &sdot; {h[t-1],x[t]} ) 
 * n[t] = tanh( W_n &sdot; [r[t] &times; {h[t-1], x[t]} ) 
 * h[t] = (1 - z[t]) &times; h[t-1] + z[t] &times; n[t] </pre>
 * \image html GRU.gif "Gate Recurrent Unit Diagram"
 *
 * \par Variables Description:
 * \par
 * \li \c update_gate_weights, \c reset_gate_weights, \c hidden_state_weights are weights corresponding to update gate (W_z), reset gate (W_r), and hidden state (W_n).
 * \li \c update_gate_bias, \c reset_gate_bias, \c hidden_state_bias are layer bias arrays
 * \li \c test_input1, \c test_input2, \c test_history are the inputs and initial history
 *
 * \par
 * The buffer is allocated as:
 * \par
 * | reset | input | history | update | hidden_state |
 * \par
 * In this way, the concatination is automatically done since (reset, input) and (input, history)
 * are physically concatinated in memory.
 * \par
 *  The ordering of the weight matrix should be adjusted accordingly.
 *
  *
 * 
 * \par CMSIS DSP Software Library Functions Used:
 * \par
 * - arm_fully_connected_mat_q7_vec_q15_opt()
 * - arm_nn_activations_direct_q15()
 * - arm_mult_q15()
 * - arm_offset_q15()
 * - arm_sub_q15()
 * - arm_copy_q15()
 *
 * <b> Refer  </b>
 * \link arm_nnexamples_gru.cpp \endlink
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "arm_nnexamples_gru_test_data.h"
#include "arm_math.h"
#include "arm_nnfunctions.h"

#ifdef _RTE_
#include "RTE_Components.h"
#ifdef RTE_Compiler_EventRecorder
#include "EventRecorder.h"
#endif
#endif

#define DIM_HISTORY 32
#define DIM_INPUT 32
#define DIM_VEC 64

#define USE_X4

#ifndef USE_X4
static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X2;
static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X2;
static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X2;
#else
static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X4;
static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X4;
static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X4;
#endif

static q7_t update_gate_bias[DIM_HISTORY] = UPDATE_GATE_BIAS;
static q7_t reset_gate_bias[DIM_HISTORY] = RESET_GATE_BIAS;
static q7_t hidden_state_bias[DIM_HISTORY] = HIDDEN_STATE_BIAS;

static q15_t test_input1[DIM_INPUT] = INPUT_DATA1;
static q15_t test_input2[DIM_INPUT] = INPUT_DATA2;
static q15_t test_history[DIM_HISTORY] = HISTORY_DATA;

q15_t     scratch_buffer[DIM_HISTORY * 4 + DIM_INPUT];

void gru_example(q15_t * scratch_input, uint16_t input_size, uint16_t history_size,
                 q7_t * weights_update, q7_t * weights_reset, q7_t * weights_hidden_state,
                 q7_t * bias_update, q7_t * bias_reset, q7_t * bias_hidden_state)
{
  q15_t    *reset = scratch_input;
  q15_t    *input = scratch_input + history_size;
  q15_t    *history = scratch_input + history_size + input_size;
  q15_t    *update = scratch_input + 2 * history_size + input_size;
  q15_t    *hidden_state = scratch_input + 3 * history_size + input_size;

  // reset gate calculation
  // the range of the output can be adjusted with bias_shift and output_shift
#ifndef USE_X4
  arm_fully_connected_mat_q7_vec_q15(input, weights_reset, input_size + history_size, history_size, 0, 15, bias_reset,
                                     reset, NULL);
#else
  arm_fully_connected_mat_q7_vec_q15_opt(input, weights_reset, input_size + history_size, history_size, 0, 15,
                                         bias_reset, reset, NULL);
#endif
  // sigmoid function, the size of the integer bit-width should be consistent with out_shift
  arm_nn_activations_direct_q15(reset, history_size, 0, ARM_SIGMOID);
  arm_mult_q15(history, reset, reset, history_size);

  // update gate calculation
  // the range of the output can be adjusted with bias_shift and output_shift
#ifndef USE_X4
  arm_fully_connected_mat_q7_vec_q15(input, weights_update, input_size + history_size, history_size, 0, 15,
                                     bias_update, update, NULL);
#else
  arm_fully_connected_mat_q7_vec_q15_opt(input, weights_update, input_size + history_size, history_size, 0, 15,
                                         bias_update, update, NULL);
#endif

  // sigmoid function, the size of the integer bit-width should be consistent with out_shift
  arm_nn_activations_direct_q15(update, history_size, 0, ARM_SIGMOID);

  // hidden state calculation
#ifndef USE_X4
  arm_fully_connected_mat_q7_vec_q15(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
                                     bias_hidden_state, hidden_state, NULL);
#else
  arm_fully_connected_mat_q7_vec_q15_opt(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
                                         bias_hidden_state, hidden_state, NULL);
#endif

  // tanh function, the size of the integer bit-width should be consistent with out_shift
  arm_nn_activations_direct_q15(hidden_state, history_size, 0, ARM_TANH);
  arm_mult_q15(update, hidden_state, hidden_state, history_size);

  // we calculate z - 1 here
  // so final addition becomes substraction
  arm_offset_q15(update, 0x8000, update, history_size);
  // multiply history
  arm_mult_q15(history, update, update, history_size);
  // calculate history_out
  arm_sub_q15(hidden_state, update, history, history_size);

  return;
}

int main()
{
  #ifdef RTE_Compiler_EventRecorder
  EventRecorderInitialize (EventRecordAll, 1);  // initialize and start Event Recorder
  #endif

  printf("Start GRU execution\n");
  int       input_size = DIM_INPUT;
  int       history_size = DIM_HISTORY;

  // copy over the input data 
  arm_copy_q15(test_input1, scratch_buffer + history_size, input_size);
  arm_copy_q15(test_history, scratch_buffer + history_size + input_size, history_size);

  gru_example(scratch_buffer, input_size, history_size,
              update_gate_weights, reset_gate_weights, hidden_state_weights,
              update_gate_bias, reset_gate_bias, hidden_state_bias);
  printf("Complete first iteration on GRU\n");

  arm_copy_q15(test_input2, scratch_buffer + history_size, input_size);
  gru_example(scratch_buffer, input_size, history_size,
              update_gate_weights, reset_gate_weights, hidden_state_weights,
              update_gate_bias, reset_gate_bias, hidden_state_bias);
  printf("Complete second iteration on GRU\n");

  return 0;
}