/**
******************************************************************************
* @file stm32h7xx_hal_dts.c
* @author MCD Application Team
* @brief DTS HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the DTS peripheral:
* + Initialization and de-initialization functions
* + Start/Stop operation functions in polling mode.
* + Start/Stop operation functions in interrupt mode.
* + Peripheral Control functions
* + Peripheral State functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
================================================================================
##### DTS Peripheral features #####
================================================================================
[..]
The STM32h7xx device family integrate one DTS sensor interface :
##### How to use this driver #####
================================================================================
[..]
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
#ifdef HAL_DTS_MODULE_ENABLED
#if defined(DTS)
/** @defgroup DTS DTS
* @brief DTS HAL module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup DTS_Private_Constants
* @{
*/
/* @brief Delay for DTS startup time
* @note Delay required to get ready for DTS Block.
* @note Unit: ms
*/
#define DTS_DELAY_STARTUP (1UL)
/* @brief DTS measure ready flag time out value.
* @note Maximal measurement time is when LSE is selected as ref_clock and
* maximal sampling time is used, taking calibration into account this
* is equivalent to ~620 us. Use 5 ms as arbitrary timeout
* @note Unit: ms
*/
#define TS_TIMEOUT_MS (5UL)
/* @brief DTS factory temperatures
* @note Unit: degree Celsius
*/
#define DTS_FACTORY_TEMPERATURE1 (30UL)
#define DTS_FACTORY_TEMPERATURE2 (130UL)
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup DTS_Exported_Functions DTS Exported Functions
* @{
*/
/** @defgroup DTS_Exported_Functions_Group1 Initialization/de-initialization functions
* @brief Initialization and de-initialization functions.
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions to initialize and de-initialize comparators
@endverbatim
* @{
*/
/**
* @brief Initialize the DTS according to the specified
* parameters in the DTS_InitTypeDef and initialize the associated handle.
* @param hdts DTS handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DTS_Init(DTS_HandleTypeDef *hdts)
{
/* Check the DTS handle allocation */
if (hdts == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_DTS_ALL_INSTANCE(hdts->Instance));
assert_param(IS_DTS_QUICKMEAS(hdts->Init.QuickMeasure));
assert_param(IS_DTS_REFCLK(hdts->Init.RefClock));
assert_param(IS_DTS_TRIGGERINPUT(hdts->Init.TriggerInput));
assert_param(IS_DTS_SAMPLINGTIME(hdts->Init.SamplingTime));
assert_param(IS_DTS_THRESHOLD(hdts->Init.HighThreshold));
assert_param(IS_DTS_THRESHOLD(hdts->Init.LowThreshold));
if (hdts->State == HAL_DTS_STATE_RESET)
{
#if (USE_HAL_DTS_REGISTER_CALLBACKS == 1)
/* Reset the DTS callback to the legacy weak callbacks */
hdts->EndCallback = HAL_DTS_EndCallback; /* End measure Callback */
hdts->LowCallback = HAL_DTS_LowCallback; /* low threshold Callback */
hdts->HighCallback = HAL_DTS_HighCallback; /* high threshold Callback */
hdts->AsyncEndCallback = HAL_DTS_AsyncEndCallback; /* Asynchronous end of measure Callback */
hdts->AsyncLowCallback = HAL_DTS_AsyncLowCallback; /* Asynchronous low threshold Callback */
hdts->AsyncHighCallback = HAL_DTS_AsyncHighCallback; /* Asynchronous high threshold Callback */
if (hdts->MspInitCallback == NULL)
{
hdts->MspInitCallback = HAL_DTS_MspInit;
}
/* Init the low level hardware : GPIO, CLOCK, NVIC */
hdts->MspInitCallback(hdts);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC */
HAL_DTS_MspInit(hdts);
#endif /* USE_HAL_DTS_REGISTER_CALLBACKS */
}
/* Change the DTS state */
hdts->State = HAL_DTS_STATE_BUSY;
/* Check ramp coefficient */
if (hdts->Instance->RAMPVALR == 0UL)
{
return HAL_ERROR;
}
/* Check factory calibration temperature */
if (hdts->Instance->T0VALR1 == 0UL)
{
return HAL_ERROR;
}
/* Check Quick Measure option is enabled or disabled */
if (hdts->Init.QuickMeasure == DTS_QUICKMEAS_DISABLE)
{
/* Check Reference clock selection */
if (hdts->Init.RefClock == DTS_REFCLKSEL_PCLK)
{
assert_param(IS_DTS_DIVIDER_RATIO_NUMBER(hdts->Init.Divider));
}
/* Quick measurement mode disabled */
CLEAR_BIT(hdts->Instance->CFGR1, DTS_CFGR1_Q_MEAS_OPT);
}
else
{
/* DTS_QUICKMEAS_ENABLE shall be used only when the LSE clock is
selected as reference clock */
if (hdts->Init.RefClock != DTS_REFCLKSEL_LSE)
{
return HAL_ERROR;
}
/* Quick measurement mode enabled - no calibration needed */
SET_BIT(hdts->Instance->CFGR1, DTS_CFGR1_Q_MEAS_OPT);
}
/* set the DTS clk source */
if (hdts->Init.RefClock == DTS_REFCLKSEL_LSE)
{
SET_BIT(hdts->Instance->CFGR1, DTS_CFGR1_REFCLK_SEL);
}
else
{
CLEAR_BIT(hdts->Instance->CFGR1, DTS_CFGR1_REFCLK_SEL);
}
MODIFY_REG(hdts->Instance->CFGR1, DTS_CFGR1_HSREF_CLK_DIV, (hdts->Init.Divider << DTS_CFGR1_HSREF_CLK_DIV_Pos));
MODIFY_REG(hdts->Instance->CFGR1, DTS_CFGR1_TS1_SMP_TIME, hdts->Init.SamplingTime);
MODIFY_REG(hdts->Instance->CFGR1, DTS_CFGR1_TS1_INTRIG_SEL, hdts->Init.TriggerInput);
MODIFY_REG(hdts->Instance->ITR1, DTS_ITR1_TS1_HITTHD, (hdts->Init.HighThreshold << DTS_ITR1_TS1_HITTHD_Pos));
MODIFY_REG(hdts->Instance->ITR1, DTS_ITR1_TS1_LITTHD, hdts->Init.LowThreshold);
/* Change the DTS state */
hdts->State = HAL_DTS_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitialize the DTS peripheral.
* @note Deinitialization cannot be performed if the DTS configuration is locked.
* To unlock the configuration, perform a system reset.
* @param hdts DTS handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DTS_DeInit(DTS_HandleTypeDef *hdts)
{
/* Check the DTS handle allocation */
if (hdts == NULL)
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_DTS_ALL_INSTANCE(hdts->Instance));
/* Set DTS_CFGR register to reset value */
CLEAR_REG(hdts->Instance->CFGR1);
#if (USE_HAL_DTS_REGISTER_CALLBACKS == 1)
if (hdts->MspDeInitCallback == NULL)
{
hdts->MspDeInitCallback = HAL_DTS_MspDeInit;
}
/* DeInit the low level hardware: CLOCK, NVIC.*/
hdts->MspDeInitCallback(hdts);
#else
/* DeInit the low level hardware: CLOCK, NVIC.*/
HAL_DTS_MspDeInit(hdts);
#endif /* USE_HAL_DTS_REGISTER_CALLBACKS */
hdts->State = HAL_DTS_STATE_RESET;
return HAL_OK;
}
/**
* @brief Initialize the DTS MSP.
* @param hdts DTS handle
* @retval None
*/
__weak void HAL_DTS_MspInit(DTS_HandleTypeDef *hdts)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdts);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DTS_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitialize the DTS MSP.
* @param hdts DTS handle
* @retval None
*/
__weak void HAL_DTS_MspDeInit(DTS_HandleTypeDef *hdts)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdts);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DTS_MspDeInit could be implemented in the user file
*/
}
#if (USE_HAL_DTS_REGISTER_CALLBACKS == 1)
/**
* @brief Register a user DTS callback to be used instead of the weak predefined callback.
* @param hdts DTS handle.
* @param CallbackID ID of the callback to be registered.
* This parameter can be one of the following values:
* @arg @ref HAL_DTS_MEAS_COMPLETE_CB_ID measure complete callback ID.
* @arg @ref HAL_DTS_ASYNC_MEAS_COMPLETE_CB_ID asynchronous measure complete callback ID.
* @arg @ref HAL_DTS_LOW_THRESHOLD_CB_ID low threshold detection callback ID.
* @arg @ref HAL_DTS_ASYNC_LOW_THRESHOLD_CB_ID asynchronous low threshold detection callback ID.
* @arg @ref HAL_DTS_HIGH_THRESHOLD_CB_ID high threshold detection callback ID.
* @arg @ref HAL_DTS_ASYNC_HIGH_THRESHOLD_CB_ID asynchronous high threshold detection callback ID.
* @arg @ref HAL_DTS_MSPINIT_CB_ID MSP init callback ID.
* @arg @ref HAL_DTS_MSPDEINIT_CB_ID MSP de-init callback ID.
* @param pCallback pointer to the callback function.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_DTS_RegisterCallback(DTS_HandleTypeDef *hdts,
HAL_DTS_CallbackIDTypeDef CallbackID,
pDTS_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check parameters */
if (pCallback == NULL)
{
/* Update status */
status = HAL_ERROR;
}
else
{
if (hdts->State == HAL_DTS_STATE_READY)
{
switch (CallbackID)
{
case HAL_DTS_MEAS_COMPLETE_CB_ID :
hdts->EndCallback = pCallback;
break;
case HAL_DTS_ASYNC_MEAS_COMPLETE_CB_ID :
hdts->AsyncEndCallback = pCallback;
break;
case HAL_DTS_LOW_THRESHOLD_CB_ID :
hdts->LowCallback = pCallback;
break;
case HAL_DTS_ASYNC_LOW_THRESHOLD_CB_ID :
hdts->AsyncLowCallback = pCallback;
break;
case HAL_DTS_HIGH_THRESHOLD_CB_ID :
hdts->HighCallback = pCallback;
break;
case HAL_DTS_ASYNC_HIGH_THRESHOLD_CB_ID :
hdts->AsyncHighCallback = pCallback;
break;
case HAL_DTS_MSPINIT_CB_ID :
hdts->MspInitCallback = pCallback;
break;
case HAL_DTS_MSPDEINIT_CB_ID :
hdts->MspDeInitCallback = pCallback;
break;
default :
/* Update status */
status = HAL_ERROR;
break;
}
}
else if (hdts->State == HAL_DTS_STATE_RESET)
{
switch (CallbackID)
{
case HAL_DTS_MSPINIT_CB_ID :
hdts->MspInitCallback = pCallback;
break;
case HAL_DTS_MSPDEINIT_CB_ID :
hdts->MspDeInitCallback = pCallback;
break;
default :
/* Update status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update status */
status = HAL_ERROR;
}
}
/* Return function status */
return status;
}
/**
* @brief Unregister a user DTS callback.
* DTS callback is redirected to the weak predefined callback.
* @param hdts DTS handle.
* @param CallbackID ID of the callback to be unregistered.
* This parameter can be one of the following values:
* @arg @ref HAL_DTS_MEAS_COMPLETE_CB_ID measure complete callback ID.
* @arg @ref HAL_DTS_ASYNC_MEAS_COMPLETE_CB_ID asynchronous measure complete callback ID.
* @arg @ref HAL_DTS_LOW_THRESHOLD_CB_ID low threshold detection callback ID.
* @arg @ref HAL_DTS_ASYNC_LOW_THRESHOLD_CB_ID asynchronous low threshold detection callback ID.
* @arg @ref HAL_DTS_HIGH_THRESHOLD_CB_ID high threshold detection callback ID.
* @arg @ref HAL_DTS_ASYNC_HIGH_THRESHOLD_CB_ID asynchronous high threshold detection callback ID.
* @arg @ref HAL_DTS_MSPINIT_CB_ID MSP init callback ID.
* @arg @ref HAL_DTS_MSPDEINIT_CB_ID MSP de-init callback ID.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_DTS_UnRegisterCallback(DTS_HandleTypeDef *hdts,
HAL_DTS_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (hdts->State == HAL_DTS_STATE_READY)
{
switch (CallbackID)
{
case HAL_DTS_MEAS_COMPLETE_CB_ID :
hdts->EndCallback = HAL_DTS_EndCallback;
break;
case HAL_DTS_ASYNC_MEAS_COMPLETE_CB_ID :
hdts->AsyncEndCallback = HAL_DTS_AsyncEndCallback;
break;
case HAL_DTS_LOW_THRESHOLD_CB_ID :
hdts->LowCallback = HAL_DTS_LowCallback;
break;
case HAL_DTS_ASYNC_LOW_THRESHOLD_CB_ID :
hdts->AsyncLowCallback = HAL_DTS_AsyncLowCallback;
break;
case HAL_DTS_HIGH_THRESHOLD_CB_ID :
hdts->HighCallback = HAL_DTS_HighCallback;
break;
case HAL_DTS_ASYNC_HIGH_THRESHOLD_CB_ID :
hdts->AsyncHighCallback = HAL_DTS_AsyncHighCallback;
break;
case HAL_DTS_MSPINIT_CB_ID :
hdts->MspInitCallback = HAL_DTS_MspInit;
break;
case HAL_DTS_MSPDEINIT_CB_ID :
hdts->MspDeInitCallback = HAL_DTS_MspDeInit;
break;
default :
/* Update status */
status = HAL_ERROR;
break;
}
}
else if (hdts->State == HAL_DTS_STATE_RESET)
{
switch (CallbackID)
{
case HAL_DTS_MSPINIT_CB_ID :
hdts->MspInitCallback = HAL_DTS_MspInit;
break;
case HAL_DTS_MSPDEINIT_CB_ID :
hdts->MspDeInitCallback = HAL_DTS_MspDeInit;
break;
default :
/* Update status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update status */
status = HAL_ERROR;
}
/* Return function status */
return status;
}
#endif /* USE_HAL_DTS_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup DTS_Exported_Functions_Group2 Start-Stop operation functions
* @brief Start-Stop operation functions.
*
@verbatim
===============================================================================
##### DTS Start Stop operation functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Start a DTS Sensor without interrupt.
(+) Stop a DTS Sensor without interrupt.
(+) Start a DTS Sensor with interrupt generation.
(+) Stop a DTS Sensor with interrupt generation.
@endverbatim
* @{
*/
/**
* @brief Start the DTS sensor.
* @param hdts DTS handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DTS_Start(DTS_HandleTypeDef *hdts)
{
uint32_t Ref_Time;
/* Check the DTS handle allocation */
if (hdts == NULL)
{
return HAL_ERROR;
}
if (hdts->State == HAL_DTS_STATE_READY)
{
hdts->State = HAL_DTS_STATE_BUSY;
/* Enable DTS sensor */
__HAL_DTS_ENABLE(hdts);
/* Get Start Tick*/
Ref_Time = HAL_GetTick();
/* Wait till TS1_RDY flag is set */
while (__HAL_DTS_GET_FLAG(hdts, DTS_FLAG_TS1_RDY) == RESET)
{
if ((HAL_GetTick() - Ref_Time) > DTS_DELAY_STARTUP)
{
return HAL_TIMEOUT;
}
}
if (__HAL_DTS_GET_TRIGGER(hdts) == DTS_TRIGGER_HW_NONE)
{
/* Start continuous measures */
SET_BIT(hdts->Instance->CFGR1, DTS_CFGR1_TS1_START);
/* Ensure start is taken into account */
HAL_Delay(TS_TIMEOUT_MS);
}
hdts->State = HAL_DTS_STATE_READY;
}
else
{
return HAL_BUSY;
}
return HAL_OK;
}
/**
* @brief Stop the DTS Sensor.
* @param hdts DTS handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DTS_Stop(DTS_HandleTypeDef *hdts)
{
/* Check the DTS handle allocation */
if (hdts == NULL)
{
return HAL_ERROR;
}
if (hdts->State == HAL_DTS_STATE_READY)
{
hdts->State = HAL_DTS_STATE_BUSY;
if (__HAL_DTS_GET_TRIGGER(hdts) == DTS_TRIGGER_HW_NONE)
{
CLEAR_BIT(hdts->Instance->CFGR1, DTS_CFGR1_TS1_START);
}
/* Disable the selected DTS sensor */
__HAL_DTS_DISABLE(hdts);
hdts->State = HAL_DTS_STATE_READY;
}
else
{
return HAL_BUSY;
}
return HAL_OK;
}
/**
* @brief Enable the interrupt(s) and start the DTS sensor
* @param hdts DTS handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DTS_Start_IT(DTS_HandleTypeDef *hdts)
{
uint32_t Ref_Time;
/* Check the DTS handle allocation */
if (hdts == NULL)
{
return HAL_ERROR;
}
if (hdts->State == HAL_DTS_STATE_READY)
{
hdts->State = HAL_DTS_STATE_BUSY;
/* On Asynchronous mode enable the asynchronous IT */
if (hdts->Init.RefClock == DTS_REFCLKSEL_LSE)
{
__HAL_DTS_ENABLE_IT(hdts, DTS_IT_TS1_AITE | DTS_IT_TS1_AITL | DTS_IT_TS1_AITH);
}
else
{
/* Enable the IT(s) */
__HAL_DTS_ENABLE_IT(hdts, DTS_IT_TS1_ITE | DTS_IT_TS1_ITL | DTS_IT_TS1_ITH);
}
/* Enable the selected DTS sensor */
__HAL_DTS_ENABLE(hdts);
/* Get Start Tick*/
Ref_Time = HAL_GetTick();
/* Wait till TS1_RDY flag is set */
while (__HAL_DTS_GET_FLAG(hdts, DTS_FLAG_TS1_RDY) == RESET)
{
if ((HAL_GetTick() - Ref_Time) > DTS_DELAY_STARTUP)
{
return HAL_TIMEOUT;
}
}
if (__HAL_DTS_GET_TRIGGER(hdts) == DTS_TRIGGER_HW_NONE)
{
/* Start continuous measures */
SET_BIT(hdts->Instance->CFGR1, DTS_CFGR1_TS1_START);
/* Ensure start is taken into account */
HAL_Delay(TS_TIMEOUT_MS);
}
hdts->State = HAL_DTS_STATE_READY;
}
else
{
return HAL_BUSY;
}
return HAL_OK;
}
/**
* @brief Disable the interrupt(s) and stop the DTS sensor.
* @param hdts DTS handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DTS_Stop_IT(DTS_HandleTypeDef *hdts)
{
/* Check the DTS handle allocation */
if (hdts == NULL)
{
return HAL_ERROR;
}
if (hdts->State == HAL_DTS_STATE_READY)
{
hdts->State = HAL_DTS_STATE_BUSY;
/* On Asynchronous mode disable the asynchronous IT */
if (hdts->Init.RefClock == DTS_REFCLKSEL_LSE)
{
__HAL_DTS_DISABLE_IT(hdts, DTS_IT_TS1_AITE | DTS_IT_TS1_AITL | DTS_IT_TS1_AITH);
}
else
{
/* Disable the IT(s) */
__HAL_DTS_DISABLE_IT(hdts, DTS_IT_TS1_ITE | DTS_IT_TS1_ITL | DTS_IT_TS1_ITH);
}
if (__HAL_DTS_GET_TRIGGER(hdts) == DTS_TRIGGER_HW_NONE)
{
CLEAR_BIT(hdts->Instance->CFGR1, DTS_CFGR1_TS1_START);
}
/* Disable the selected DTS sensor */
__HAL_DTS_DISABLE(hdts);
hdts->State = HAL_DTS_STATE_READY;
}
else
{
return HAL_BUSY;
}
return HAL_OK;
}
/**
* @brief Get temperature from DTS
* @param hdts DTS handle
* @param Temperature Temperature in deg C
* @note This function retrieves latest available measure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DTS_GetTemperature(DTS_HandleTypeDef *hdts, int32_t *Temperature)
{
uint32_t freq_meas;
uint32_t samples;
uint32_t t0_temp;
uint32_t t0_freq;
uint32_t ramp_coeff;
if (hdts->State == HAL_DTS_STATE_READY)
{
hdts->State = HAL_DTS_STATE_BUSY;
/* Get the total number of samples */
samples = (hdts->Instance->DR & DTS_DR_TS1_MFREQ);
if ((hdts->Init.SamplingTime == 0UL) || (samples == 0UL))
{
hdts->State = HAL_DTS_STATE_READY;
return HAL_ERROR;
}
if ((hdts->Init.RefClock) == DTS_REFCLKSEL_LSE)
{
freq_meas = (LSE_VALUE * samples) / (hdts->Init.SamplingTime >> DTS_CFGR1_TS1_SMP_TIME_Pos); /* On Hz */
}
else
{
freq_meas = (HAL_RCCEx_GetD3PCLK1Freq() * (hdts->Init.SamplingTime >> DTS_CFGR1_TS1_SMP_TIME_Pos)) / samples; /* On Hz */
}
/* Read factory settings */
t0_temp = hdts->Instance->T0VALR1 >> DTS_T0VALR1_TS1_T0_Pos;
if (t0_temp == 0UL)
{
t0_temp = DTS_FACTORY_TEMPERATURE1; /* 30 deg C */
}
else if (t0_temp == 1UL)
{
t0_temp = DTS_FACTORY_TEMPERATURE2; /* 130 deg C */
}
else
{
hdts->State = HAL_DTS_STATE_READY;
return HAL_ERROR;
}
t0_freq = (hdts->Instance->T0VALR1 & DTS_T0VALR1_TS1_FMT0) * 100UL; /* Hz */
ramp_coeff = hdts->Instance->RAMPVALR & DTS_RAMPVALR_TS1_RAMP_COEFF; /* deg C/Hz */
if (ramp_coeff == 0UL)
{
hdts->State = HAL_DTS_STATE_READY;
return HAL_ERROR;
}
/* Figure out the temperature deg C */
*Temperature = (int32_t)t0_temp + (((int32_t)freq_meas - (int32_t)t0_freq) / (int32_t)ramp_coeff);
hdts->State = HAL_DTS_STATE_READY;
}
else
{
return HAL_BUSY;
}
return HAL_OK;
}
/**
* @brief DTS sensor IRQ Handler.
* @param hdts DTS handle
* @retval None
*/
void HAL_DTS_IRQHandler(DTS_HandleTypeDef *hdts)
{
/* Check end of measure Asynchronous IT */
if ((__HAL_DTS_GET_FLAG(hdts, DTS_FLAG_TS1_AITE)) != RESET)
{
__HAL_DTS_CLEAR_FLAG(hdts, DTS_FLAG_TS1_AITE);
#if (USE_HAL_DTS_REGISTER_CALLBACKS == 1)
hdts->AsyncEndCallback(hdts);
#else
HAL_DTS_AsyncEndCallback(hdts);
#endif /* USE_HAL_DTS_REGISTER_CALLBACKS */
}
/* Check low threshold Asynchronous IT */
if ((__HAL_DTS_GET_FLAG(hdts, DTS_FLAG_TS1_AITL)) != RESET)
{
__HAL_DTS_CLEAR_FLAG(hdts, DTS_FLAG_TS1_AITL);
#if (USE_HAL_DTS_REGISTER_CALLBACKS == 1)
hdts->AsyncLowCallback(hdts);
#else
HAL_DTS_AsyncLowCallback(hdts);
#endif /* USE_HAL_DTS_REGISTER_CALLBACKS */
}
/* Check high threshold Asynchronous IT */
if ((__HAL_DTS_GET_FLAG(hdts, DTS_FLAG_TS1_AITH)) != RESET)
{
__HAL_DTS_CLEAR_FLAG(hdts, DTS_FLAG_TS1_AITH);
#if (USE_HAL_DTS_REGISTER_CALLBACKS == 1)
hdts->AsyncHighCallback(hdts);
#else
HAL_DTS_AsyncHighCallback(hdts);
#endif /* USE_HAL_DTS_REGISTER_CALLBACKS */
}
/* Check end of measure IT */
if ((__HAL_DTS_GET_FLAG(hdts, DTS_FLAG_TS1_ITE)) != RESET)
{
__HAL_DTS_CLEAR_FLAG(hdts, DTS_FLAG_TS1_ITE);
#if (USE_HAL_DTS_REGISTER_CALLBACKS == 1)
hdts->EndCallback(hdts);
#else
HAL_DTS_EndCallback(hdts);
#endif /* USE_HAL_DTS_REGISTER_CALLBACKS */
}
/* Check low threshold IT */
if ((__HAL_DTS_GET_FLAG(hdts, DTS_FLAG_TS1_ITL)) != RESET)
{
__HAL_DTS_CLEAR_FLAG(hdts, DTS_FLAG_TS1_ITL);
#if (USE_HAL_DTS_REGISTER_CALLBACKS == 1)
hdts->LowCallback(hdts);
#else
HAL_DTS_LowCallback(hdts);
#endif /* USE_HAL_DTS_REGISTER_CALLBACKS */
}
/* Check high threshold IT */
if ((__HAL_DTS_GET_FLAG(hdts, DTS_FLAG_TS1_ITH)) != RESET)
{
__HAL_DTS_CLEAR_FLAG(hdts, DTS_FLAG_TS1_ITH);
#if (USE_HAL_DTS_REGISTER_CALLBACKS == 1)
hdts->HighCallback(hdts);
#else
HAL_DTS_HighCallback(hdts);
#endif /* USE_HAL_DTS_REGISTER_CALLBACKS */
}
}
/**
* @brief DTS Sensor End measure callback.
* @param hdts DTS handle
* @retval None
*/
__weak void HAL_DTS_EndCallback(DTS_HandleTypeDef *hdts)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdts);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DTS_EndCallback should be implemented in the user file
*/
}
/**
* @brief DTS Sensor low threshold measure callback.
* @param hdts DTS handle
* @retval None
*/
__weak void HAL_DTS_LowCallback(DTS_HandleTypeDef *hdts)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdts);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DTS_LowCallback should be implemented in the user file
*/
}
/**
* @brief DTS Sensor high threshold measure callback.
* @param hdts DTS handle
* @retval None
*/
__weak void HAL_DTS_HighCallback(DTS_HandleTypeDef *hdts)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdts);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DTS_HighCallback should be implemented in the user file
*/
}
/**
* @brief DTS Sensor asynchronous end measure callback.
* @param hdts DTS handle
* @retval None
*/
__weak void HAL_DTS_AsyncEndCallback(DTS_HandleTypeDef *hdts)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdts);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DTS_AsyncEndCallback should be implemented in the user file
*/
}
/**
* @brief DTS Sensor asynchronous low threshold measure callback.
* @param hdts DTS handle
* @retval None
*/
__weak void HAL_DTS_AsyncLowCallback(DTS_HandleTypeDef *hdts)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdts);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DTS_AsyncLowCallback should be implemented in the user file
*/
}
/**
* @brief DTS Sensor asynchronous high threshold measure callback.
* @param hdts DTS handle
* @retval None
*/
__weak void HAL_DTS_AsyncHighCallback(DTS_HandleTypeDef *hdts)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdts);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_DTS_AsyncHighCallback should be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup DTS_Exported_Functions_Group3 Peripheral State functions
* @brief Peripheral State functions.
*
@verbatim
===============================================================================
##### Peripheral State functions #####
===============================================================================
[..]
This subsection permits to get in run-time the status of the peripheral.
@endverbatim
* @{
*/
/**
* @brief Return the DTS handle state.
* @param hdts DTS handle
* @retval HAL state
*/
HAL_DTS_StateTypeDef HAL_DTS_GetState(DTS_HandleTypeDef *hdts)
{
/* Check the DTS handle allocation */
if (hdts == NULL)
{
return HAL_DTS_STATE_RESET;
}
/* Return DTS handle state */
return hdts->State;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* DTS */
#endif /* HAL_DTS_MODULE_ENABLED */
/**
* @}
*/