/**
******************************************************************************
* @file stm32h7xx_hal_flash_ex.c
* @author MCD Application Team
* @brief Extended FLASH HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the FLASH extension peripheral:
* + Extended programming operations functions
*
@verbatim
==============================================================================
##### Flash Extension features #####
==============================================================================
[..] Comparing to other previous devices, the FLASH interface for STM32H7xx
devices contains the following additional features
(+) Capacity up to 2 Mbyte with dual bank architecture supporting read-while-write
capability (RWW)
(+) Dual bank memory organization
(+) PCROP protection for all banks
(+) Global readout protection (RDP)
(+) Write protection
(+) Secure access only protection
(+) Bank / register swapping (when Dual-Bank)
(+) Cyclic Redundancy Check (CRC)
##### How to use this driver #####
==============================================================================
[..] This driver provides functions to configure and program the FLASH memory
of all STM32H7xx devices. It includes
(#) FLASH Memory Erase functions:
(++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and
HAL_FLASH_Lock() functions
(++) Erase function: Sector erase, bank erase and dual-bank mass erase
(++) There are two modes of erase :
(+++) Polling Mode using HAL_FLASHEx_Erase()
(+++) Interrupt Mode using HAL_FLASHEx_Erase_IT()
(#) Option Bytes Programming functions: Use HAL_FLASHEx_OBProgram() to:
(++) Set/Reset the write protection per bank
(++) Set the Read protection Level
(++) Set the BOR level
(++) Program the user Option Bytes
(++) PCROP protection configuration and control per bank
(++) Secure area configuration and control per bank
(++) Core Boot address configuration
(++) TCM / AXI shared RAM configuration
(++) CPU Frequency Boost configuration
(#) FLASH Memory Lock and unlock per Bank: HAL_FLASHEx_Lock_Bank1(), HAL_FLASHEx_Unlock_Bank1(),
HAL_FLASHEx_Lock_Bank2() and HAL_FLASHEx_Unlock_Bank2() functions
(#) FLASH CRC computation function: Use HAL_FLASHEx_ComputeCRC() to:
(++) Enable CRC feature
(++) Program the desired burst size
(++) Define the user Flash Area on which the CRC has be computed
(++) Perform the CRC computation
(++) Disable CRC feature
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
/** @defgroup FLASHEx FLASHEx
* @brief FLASH HAL Extension module driver
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup FLASHEx_Private_Constants
* @{
*/
#define FLASH_TIMEOUT_VALUE 50000U /* 50 s */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions
* @{
*/
static void FLASH_MassErase(uint32_t VoltageRange, uint32_t Banks);
static void FLASH_OB_EnableWRP(uint32_t WRPSector, uint32_t Banks);
static void FLASH_OB_DisableWRP(uint32_t WRPSector, uint32_t Bank);
static void FLASH_OB_GetWRP(uint32_t *WRPState, uint32_t *WRPSector, uint32_t Bank);
static void FLASH_OB_RDPConfig(uint32_t RDPLevel);
static uint32_t FLASH_OB_GetRDP(void);
static void FLASH_OB_PCROPConfig(uint32_t PCROConfigRDP, uint32_t PCROPStartAddr, uint32_t PCROPEndAddr, uint32_t Banks);
static void FLASH_OB_GetPCROP(uint32_t *PCROPConfig, uint32_t *PCROPStartAddr,uint32_t *PCROPEndAddr, uint32_t Bank);
static void FLASH_OB_BOR_LevelConfig(uint32_t Level);
static uint32_t FLASH_OB_GetBOR(void);
static void FLASH_OB_UserConfig(uint32_t UserType, uint32_t UserConfig);
static uint32_t FLASH_OB_GetUser(void);
static void FLASH_OB_BootAddConfig(uint32_t BootOption, uint32_t BootAddress0, uint32_t BootAddress1);
static void FLASH_OB_GetBootAdd(uint32_t *BootAddress0, uint32_t *BootAddress1);
static void FLASH_OB_SecureAreaConfig(uint32_t SecureAreaConfig, uint32_t SecureAreaStartAddr, uint32_t SecureAreaEndAddr, uint32_t Banks);
static void FLASH_OB_GetSecureArea(uint32_t *SecureAreaConfig, uint32_t *SecureAreaStartAddr, uint32_t *SecureAreaEndAddr, uint32_t Bank);
static void FLASH_CRC_AddSector(uint32_t Sector, uint32_t Bank);
static void FLASH_CRC_SelectAddress(uint32_t CRCStartAddr, uint32_t CRCEndAddr, uint32_t Bank);
#if defined (DUAL_CORE)
static void FLASH_OB_CM4BootAddConfig(uint32_t BootOption, uint32_t BootAddress0, uint32_t BootAddress1);
static void FLASH_OB_GetCM4BootAdd(uint32_t *BootAddress0, uint32_t *BootAddress1);
#endif /*DUAL_CORE*/
#if defined (FLASH_OTPBL_LOCKBL)
static void FLASH_OB_OTP_LockConfig(uint32_t OTP_Block);
static uint32_t FLASH_OB_OTP_GetLock(void);
#endif /* FLASH_OTPBL_LOCKBL */
#if defined (FLASH_OPTSR2_TCM_AXI_SHARED)
static void FLASH_OB_SharedRAM_Config(uint32_t SharedRamConfig);
static uint32_t FLASH_OB_SharedRAM_GetConfig(void);
#endif /* FLASH_OPTSR2_TCM_AXI_SHARED */
#if defined (FLASH_OPTSR2_CPUFREQ_BOOST)
static void FLASH_OB_CPUFreq_BoostConfig(uint32_t FreqBoost);
static uint32_t FLASH_OB_CPUFreq_GetBoost(void);
#endif /* FLASH_OPTSR2_CPUFREQ_BOOST */
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions
* @{
*/
/** @defgroup FLASHEx_Exported_Functions_Group1 Extended IO operation functions
* @brief Extended IO operation functions
*
@verbatim
===============================================================================
##### Extended programming operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the Extension FLASH
programming operations Operations.
@endverbatim
* @{
*/
/**
* @brief Perform a mass erase or erase the specified FLASH memory sectors
* @param[in] pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
* contains the configuration information for the erasing.
*
* @param[out] SectorError pointer to variable that contains the configuration
* information on faulty sector in case of error (0xFFFFFFFF means that all
* the sectors have been correctly erased)
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *SectorError)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t sector_index;
/* Check the parameters */
assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
assert_param(IS_FLASH_BANK(pEraseInit->Banks));
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Reset error code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Wait for last operation to be completed on Bank1 */
if((pEraseInit->Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1) != HAL_OK)
{
status = HAL_ERROR;
}
}
#if defined (DUAL_BANK)
/* Wait for last operation to be completed on Bank2 */
if((pEraseInit->Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2) != HAL_OK)
{
status = HAL_ERROR;
}
}
#endif /* DUAL_BANK */
if(status == HAL_OK)
{
if(pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
{
/* Mass erase to be done */
FLASH_MassErase(pEraseInit->VoltageRange, pEraseInit->Banks);
/* Wait for last operation to be completed on Bank 1 */
if((pEraseInit->Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1) != HAL_OK)
{
status = HAL_ERROR;
}
/* if the erase operation is completed, disable the Bank1 BER Bit */
FLASH->CR1 &= (~FLASH_CR_BER);
}
#if defined (DUAL_BANK)
/* Wait for last operation to be completed on Bank 2 */
if((pEraseInit->Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2) != HAL_OK)
{
status = HAL_ERROR;
}
/* if the erase operation is completed, disable the Bank2 BER Bit */
FLASH->CR2 &= (~FLASH_CR_BER);
}
#endif /* DUAL_BANK */
}
else
{
/*Initialization of SectorError variable*/
*SectorError = 0xFFFFFFFFU;
/* Erase by sector by sector to be done*/
for(sector_index = pEraseInit->Sector; sector_index < (pEraseInit->NbSectors + pEraseInit->Sector); sector_index++)
{
FLASH_Erase_Sector(sector_index, pEraseInit->Banks, pEraseInit->VoltageRange);
if((pEraseInit->Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1);
/* If the erase operation is completed, disable the SER Bit */
FLASH->CR1 &= (~(FLASH_CR_SER | FLASH_CR_SNB));
}
#if defined (DUAL_BANK)
if((pEraseInit->Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2);
/* If the erase operation is completed, disable the SER Bit */
FLASH->CR2 &= (~(FLASH_CR_SER | FLASH_CR_SNB));
}
#endif /* DUAL_BANK */
if(status != HAL_OK)
{
/* In case of error, stop erase procedure and return the faulty sector */
*SectorError = sector_index;
break;
}
}
}
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Perform a mass erase or erase the specified FLASH memory sectors with interrupt enabled
* @param pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
* contains the configuration information for the erasing.
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
assert_param(IS_FLASH_BANK(pEraseInit->Banks));
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Reset error code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Wait for last operation to be completed on Bank 1 */
if((pEraseInit->Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1) != HAL_OK)
{
status = HAL_ERROR;
}
}
#if defined (DUAL_BANK)
/* Wait for last operation to be completed on Bank 2 */
if((pEraseInit->Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2) != HAL_OK)
{
status = HAL_ERROR;
}
}
#endif /* DUAL_BANK */
if (status != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
}
else
{
if((pEraseInit->Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
/* Enable End of Operation and Error interrupts for Bank 1 */
#if defined (FLASH_CR_OPERRIE)
__HAL_FLASH_ENABLE_IT_BANK1(FLASH_IT_EOP_BANK1 | FLASH_IT_WRPERR_BANK1 | FLASH_IT_PGSERR_BANK1 | \
FLASH_IT_STRBERR_BANK1 | FLASH_IT_INCERR_BANK1 | FLASH_IT_OPERR_BANK1);
#else
__HAL_FLASH_ENABLE_IT_BANK1(FLASH_IT_EOP_BANK1 | FLASH_IT_WRPERR_BANK1 | FLASH_IT_PGSERR_BANK1 | \
FLASH_IT_STRBERR_BANK1 | FLASH_IT_INCERR_BANK1);
#endif /* FLASH_CR_OPERRIE */
}
#if defined (DUAL_BANK)
if((pEraseInit->Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
/* Enable End of Operation and Error interrupts for Bank 2 */
#if defined (FLASH_CR_OPERRIE)
__HAL_FLASH_ENABLE_IT_BANK2(FLASH_IT_EOP_BANK2 | FLASH_IT_WRPERR_BANK2 | FLASH_IT_PGSERR_BANK2 | \
FLASH_IT_STRBERR_BANK2 | FLASH_IT_INCERR_BANK2 | FLASH_IT_OPERR_BANK2);
#else
__HAL_FLASH_ENABLE_IT_BANK2(FLASH_IT_EOP_BANK2 | FLASH_IT_WRPERR_BANK2 | FLASH_IT_PGSERR_BANK2 | \
FLASH_IT_STRBERR_BANK2 | FLASH_IT_INCERR_BANK2);
#endif /* FLASH_CR_OPERRIE */
}
#endif /* DUAL_BANK */
if(pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
{
/*Mass erase to be done*/
if(pEraseInit->Banks == FLASH_BANK_1)
{
pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE_BANK1;
}
#if defined (DUAL_BANK)
else if(pEraseInit->Banks == FLASH_BANK_2)
{
pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE_BANK2;
}
#endif /* DUAL_BANK */
else
{
pFlash.ProcedureOnGoing = FLASH_PROC_ALLBANK_MASSERASE;
}
FLASH_MassErase(pEraseInit->VoltageRange, pEraseInit->Banks);
}
else
{
/* Erase by sector to be done */
#if defined (DUAL_BANK)
if(pEraseInit->Banks == FLASH_BANK_1)
{
pFlash.ProcedureOnGoing = FLASH_PROC_SECTERASE_BANK1;
}
else
{
pFlash.ProcedureOnGoing = FLASH_PROC_SECTERASE_BANK2;
}
#else
pFlash.ProcedureOnGoing = FLASH_PROC_SECTERASE_BANK1;
#endif /* DUAL_BANK */
pFlash.NbSectorsToErase = pEraseInit->NbSectors;
pFlash.Sector = pEraseInit->Sector;
pFlash.VoltageForErase = pEraseInit->VoltageRange;
/* Erase first sector and wait for IT */
FLASH_Erase_Sector(pEraseInit->Sector, pEraseInit->Banks, pEraseInit->VoltageRange);
}
}
return status;
}
/**
* @brief Program option bytes
* @param pOBInit pointer to an FLASH_OBProgramInitTypeDef structure that
* contains the configuration information for the programming.
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit)
{
HAL_StatusTypeDef status;
/* Check the parameters */
assert_param(IS_OPTIONBYTE(pOBInit->OptionType));
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Reset Error Code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Wait for last operation to be completed */
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1) != HAL_OK)
{
status = HAL_ERROR;
}
#if defined (DUAL_BANK)
else if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2) != HAL_OK)
{
status = HAL_ERROR;
}
#endif /* DUAL_BANK */
else
{
status = HAL_OK;
}
if(status == HAL_OK)
{
/*Write protection configuration*/
if((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP)
{
assert_param(IS_WRPSTATE(pOBInit->WRPState));
if(pOBInit->WRPState == OB_WRPSTATE_ENABLE)
{
/*Enable of Write protection on the selected Sector*/
FLASH_OB_EnableWRP(pOBInit->WRPSector,pOBInit->Banks);
}
else
{
/*Disable of Write protection on the selected Sector*/
FLASH_OB_DisableWRP(pOBInit->WRPSector, pOBInit->Banks);
}
}
/* Read protection configuration */
if((pOBInit->OptionType & OPTIONBYTE_RDP) != 0U)
{
/* Configure the Read protection level */
FLASH_OB_RDPConfig(pOBInit->RDPLevel);
}
/* User Configuration */
if((pOBInit->OptionType & OPTIONBYTE_USER) != 0U)
{
/* Configure the user option bytes */
FLASH_OB_UserConfig(pOBInit->USERType, pOBInit->USERConfig);
}
/* PCROP Configuration */
if((pOBInit->OptionType & OPTIONBYTE_PCROP) != 0U)
{
assert_param(IS_FLASH_BANK(pOBInit->Banks));
/*Configure the Proprietary code readout protection */
FLASH_OB_PCROPConfig(pOBInit->PCROPConfig, pOBInit->PCROPStartAddr, pOBInit->PCROPEndAddr, pOBInit->Banks);
}
/* BOR Level configuration */
if((pOBInit->OptionType & OPTIONBYTE_BOR) == OPTIONBYTE_BOR)
{
FLASH_OB_BOR_LevelConfig(pOBInit->BORLevel);
}
#if defined(DUAL_CORE)
/* CM7 Boot Address configuration */
if((pOBInit->OptionType & OPTIONBYTE_CM7_BOOTADD) == OPTIONBYTE_CM7_BOOTADD)
{
FLASH_OB_BootAddConfig(pOBInit->BootConfig, pOBInit->BootAddr0, pOBInit->BootAddr1);
}
/* CM4 Boot Address configuration */
if((pOBInit->OptionType & OPTIONBYTE_CM4_BOOTADD) == OPTIONBYTE_CM4_BOOTADD)
{
FLASH_OB_CM4BootAddConfig(pOBInit->CM4BootConfig, pOBInit->CM4BootAddr0, pOBInit->CM4BootAddr1);
}
#else /* Single Core*/
/* Boot Address configuration */
if((pOBInit->OptionType & OPTIONBYTE_BOOTADD) == OPTIONBYTE_BOOTADD)
{
FLASH_OB_BootAddConfig(pOBInit->BootConfig, pOBInit->BootAddr0, pOBInit->BootAddr1);
}
#endif /*DUAL_CORE*/
/* Secure area configuration */
if((pOBInit->OptionType & OPTIONBYTE_SECURE_AREA) == OPTIONBYTE_SECURE_AREA)
{
FLASH_OB_SecureAreaConfig(pOBInit->SecureAreaConfig, pOBInit->SecureAreaStartAddr, pOBInit->SecureAreaEndAddr,pOBInit->Banks);
}
#if defined(FLASH_OTPBL_LOCKBL)
/* OTP Block Lock configuration */
if((pOBInit->OptionType & OPTIONBYTE_OTP_LOCK) == OPTIONBYTE_OTP_LOCK)
{
FLASH_OB_OTP_LockConfig(pOBInit->OTPBlockLock);
}
#endif /* FLASH_OTPBL_LOCKBL */
#if defined(FLASH_OPTSR2_TCM_AXI_SHARED)
/* TCM / AXI Shared RAM configuration */
if((pOBInit->OptionType & OPTIONBYTE_SHARED_RAM) == OPTIONBYTE_SHARED_RAM)
{
FLASH_OB_SharedRAM_Config(pOBInit->SharedRamConfig);
}
#endif /* FLASH_OPTSR2_TCM_AXI_SHARED */
#if defined(FLASH_OPTSR2_CPUFREQ_BOOST)
/* CPU Frequency Boost configuration */
if((pOBInit->OptionType & OPTIONBYTE_FREQ_BOOST) == OPTIONBYTE_FREQ_BOOST)
{
FLASH_OB_CPUFreq_BoostConfig(pOBInit->FreqBoostState);
}
#endif /* FLASH_OPTSR2_CPUFREQ_BOOST */
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Get the Option byte configuration
* @param pOBInit pointer to an FLASH_OBProgramInitTypeDef structure that
* contains the configuration information for the programming.
* @note The parameter Banks of the pOBInit structure must be set exclusively to FLASH_BANK_1 or FLASH_BANK_2,
* as this parameter is use to get the given Bank WRP, PCROP and secured area configuration.
*
* @retval None
*/
void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit)
{
pOBInit->OptionType = (OPTIONBYTE_USER | OPTIONBYTE_RDP | OPTIONBYTE_BOR);
/* Get Read protection level */
pOBInit->RDPLevel = FLASH_OB_GetRDP();
/* Get the user option bytes */
pOBInit->USERConfig = FLASH_OB_GetUser();
/*Get BOR Level*/
pOBInit->BORLevel = FLASH_OB_GetBOR();
#if defined (DUAL_BANK)
if ((pOBInit->Banks == FLASH_BANK_1) || (pOBInit->Banks == FLASH_BANK_2))
#else
if (pOBInit->Banks == FLASH_BANK_1)
#endif /* DUAL_BANK */
{
pOBInit->OptionType |= (OPTIONBYTE_WRP | OPTIONBYTE_PCROP | OPTIONBYTE_SECURE_AREA);
/* Get write protection on the selected area */
FLASH_OB_GetWRP(&(pOBInit->WRPState), &(pOBInit->WRPSector), pOBInit->Banks);
/* Get the Proprietary code readout protection */
FLASH_OB_GetPCROP(&(pOBInit->PCROPConfig), &(pOBInit->PCROPStartAddr), &(pOBInit->PCROPEndAddr), pOBInit->Banks);
/*Get Bank Secure area*/
FLASH_OB_GetSecureArea(&(pOBInit->SecureAreaConfig), &(pOBInit->SecureAreaStartAddr), &(pOBInit->SecureAreaEndAddr), pOBInit->Banks);
}
/*Get Boot Address*/
FLASH_OB_GetBootAdd(&(pOBInit->BootAddr0), &(pOBInit->BootAddr1));
#if defined(DUAL_CORE)
pOBInit->OptionType |= OPTIONBYTE_CM7_BOOTADD | OPTIONBYTE_CM4_BOOTADD;
/*Get CM4 Boot Address*/
FLASH_OB_GetCM4BootAdd(&(pOBInit->CM4BootAddr0), &(pOBInit->CM4BootAddr1));
#else
pOBInit->OptionType |= OPTIONBYTE_BOOTADD;
#endif /*DUAL_CORE*/
#if defined (FLASH_OTPBL_LOCKBL)
pOBInit->OptionType |= OPTIONBYTE_OTP_LOCK;
/* Get OTP Block Lock */
pOBInit->OTPBlockLock = FLASH_OB_OTP_GetLock();
#endif /* FLASH_OTPBL_LOCKBL */
#if defined (FLASH_OPTSR2_TCM_AXI_SHARED)
pOBInit->OptionType |= OPTIONBYTE_SHARED_RAM;
/* Get TCM / AXI Shared RAM */
pOBInit->SharedRamConfig = FLASH_OB_SharedRAM_GetConfig();
#endif /* FLASH_OPTSR2_TCM_AXI_SHARED */
#if defined (FLASH_OPTSR2_CPUFREQ_BOOST)
pOBInit->OptionType |= OPTIONBYTE_FREQ_BOOST;
/* Get CPU Frequency Boost */
pOBInit->FreqBoostState = FLASH_OB_CPUFreq_GetBoost();
#endif /* FLASH_OPTSR2_CPUFREQ_BOOST */
}
/**
* @brief Unlock the FLASH Bank1 control registers access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Unlock_Bank1(void)
{
if(READ_BIT(FLASH->CR1, FLASH_CR_LOCK) != 0U)
{
/* Authorize the FLASH Bank1 Registers access */
WRITE_REG(FLASH->KEYR1, FLASH_KEY1);
WRITE_REG(FLASH->KEYR1, FLASH_KEY2);
/* Verify Flash Bank1 is unlocked */
if (READ_BIT(FLASH->CR1, FLASH_CR_LOCK) != 0U)
{
return HAL_ERROR;
}
}
return HAL_OK;
}
/**
* @brief Locks the FLASH Bank1 control registers access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Lock_Bank1(void)
{
/* Set the LOCK Bit to lock the FLASH Bank1 Registers access */
SET_BIT(FLASH->CR1, FLASH_CR_LOCK);
return HAL_OK;
}
#if defined (DUAL_BANK)
/**
* @brief Unlock the FLASH Bank2 control registers access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Unlock_Bank2(void)
{
if(READ_BIT(FLASH->CR2, FLASH_CR_LOCK) != 0U)
{
/* Authorize the FLASH Bank2 Registers access */
WRITE_REG(FLASH->KEYR2, FLASH_KEY1);
WRITE_REG(FLASH->KEYR2, FLASH_KEY2);
/* Verify Flash Bank1 is unlocked */
if (READ_BIT(FLASH->CR2, FLASH_CR_LOCK) != 0U)
{
return HAL_ERROR;
}
}
return HAL_OK;
}
/**
* @brief Locks the FLASH Bank2 control registers access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Lock_Bank2(void)
{
/* Set the LOCK Bit to lock the FLASH Bank2 Registers access */
SET_BIT(FLASH->CR2, FLASH_CR_LOCK);
return HAL_OK;
}
#endif /* DUAL_BANK */
/*
* @brief Perform a CRC computation on the specified FLASH memory area
* @param pCRCInit pointer to an FLASH_CRCInitTypeDef structure that
* contains the configuration information for the CRC computation.
* @note CRC computation uses CRC-32 (Ethernet) polynomial 0x4C11DB7
* @note The application should avoid running a CRC on PCROP or secure-only
* user Flash memory area since it may alter the expected CRC value.
* A special error flag (CRC read error: CRCRDERR) can be used to
* detect such a case.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_ComputeCRC(FLASH_CRCInitTypeDef *pCRCInit, uint32_t *CRC_Result)
{
HAL_StatusTypeDef status;
uint32_t sector_index;
/* Check the parameters */
assert_param(IS_FLASH_BANK_EXCLUSIVE(pCRCInit->Bank));
assert_param(IS_FLASH_TYPECRC(pCRCInit->TypeCRC));
/* Wait for OB change operation to be completed */
status = FLASH_OB_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if (status == HAL_OK)
{
if (pCRCInit->Bank == FLASH_BANK_1)
{
/* Enable CRC feature */
FLASH->CR1 |= FLASH_CR_CRC_EN;
/* Clear CRC flags in Status Register: CRC end of calculation and CRC read error */
FLASH->CCR1 |= (FLASH_CCR_CLR_CRCEND | FLASH_CCR_CLR_CRCRDERR);
/* Clear current CRC result, program burst size and define memory area on which CRC has to be computed */
FLASH->CRCCR1 |= FLASH_CRCCR_CLEAN_CRC | pCRCInit->BurstSize | pCRCInit->TypeCRC;
if (pCRCInit->TypeCRC == FLASH_CRC_SECTORS)
{
/* Clear sectors list */
FLASH->CRCCR1 |= FLASH_CRCCR_CLEAN_SECT;
/* Select CRC sectors */
for(sector_index = pCRCInit->Sector; sector_index < (pCRCInit->NbSectors + pCRCInit->Sector); sector_index++)
{
FLASH_CRC_AddSector(sector_index, FLASH_BANK_1);
}
}
else if (pCRCInit->TypeCRC == FLASH_CRC_BANK)
{
/* Enable Bank 1 CRC select bit */
FLASH->CRCCR1 |= FLASH_CRCCR_ALL_BANK;
}
else
{
/* Select CRC start and end addresses */
FLASH_CRC_SelectAddress(pCRCInit->CRCStartAddr, pCRCInit->CRCEndAddr, FLASH_BANK_1);
}
/* Start the CRC calculation */
FLASH->CRCCR1 |= FLASH_CRCCR_START_CRC;
/* Wait on CRC busy flag */
status = FLASH_CRC_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1);
/* Return CRC result */
(*CRC_Result) = FLASH->CRCDATA;
/* Disable CRC feature */
FLASH->CR1 &= (~FLASH_CR_CRC_EN);
/* Clear CRC flags */
__HAL_FLASH_CLEAR_FLAG_BANK1(FLASH_FLAG_CRCEND_BANK1 | FLASH_FLAG_CRCRDERR_BANK1);
}
#if defined (DUAL_BANK)
else
{
/* Enable CRC feature */
FLASH->CR2 |= FLASH_CR_CRC_EN;
/* Clear CRC flags in Status Register: CRC end of calculation and CRC read error */
FLASH->CCR2 |= (FLASH_CCR_CLR_CRCEND | FLASH_CCR_CLR_CRCRDERR);
/* Clear current CRC result, program burst size and define memory area on which CRC has to be computed */
FLASH->CRCCR2 |= FLASH_CRCCR_CLEAN_CRC | pCRCInit->BurstSize | pCRCInit->TypeCRC;
if (pCRCInit->TypeCRC == FLASH_CRC_SECTORS)
{
/* Clear sectors list */
FLASH->CRCCR2 |= FLASH_CRCCR_CLEAN_SECT;
/* Add CRC sectors */
for(sector_index = pCRCInit->Sector; sector_index < (pCRCInit->NbSectors + pCRCInit->Sector); sector_index++)
{
FLASH_CRC_AddSector(sector_index, FLASH_BANK_2);
}
}
else if (pCRCInit->TypeCRC == FLASH_CRC_BANK)
{
/* Enable Bank 2 CRC select bit */
FLASH->CRCCR2 |= FLASH_CRCCR_ALL_BANK;
}
else
{
/* Select CRC start and end addresses */
FLASH_CRC_SelectAddress(pCRCInit->CRCStartAddr, pCRCInit->CRCEndAddr, FLASH_BANK_2);
}
/* Start the CRC calculation */
FLASH->CRCCR2 |= FLASH_CRCCR_START_CRC;
/* Wait on CRC busy flag */
status = FLASH_CRC_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2);
/* Return CRC result */
(*CRC_Result) = FLASH->CRCDATA;
/* Disable CRC feature */
FLASH->CR2 &= (~FLASH_CR_CRC_EN);
/* Clear CRC flags */
__HAL_FLASH_CLEAR_FLAG_BANK2(FLASH_FLAG_CRCEND_BANK2 | FLASH_FLAG_CRCRDERR_BANK2);
}
#endif /* DUAL_BANK */
}
return status;
}
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup FLASHEx_Private_Functions
* @{
*/
/**
* @brief Mass erase of FLASH memory
* @param VoltageRange The device program/erase parallelism.
* This parameter can be one of the following values:
* @arg FLASH_VOLTAGE_RANGE_1 : Flash program/erase by 8 bits
* @arg FLASH_VOLTAGE_RANGE_2 : Flash program/erase by 16 bits
* @arg FLASH_VOLTAGE_RANGE_3 : Flash program/erase by 32 bits
* @arg FLASH_VOLTAGE_RANGE_4 : Flash program/erase by 64 bits
*
* @param Banks Banks to be erased
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: Bank1 to be erased
* @arg FLASH_BANK_2: Bank2 to be erased
* @arg FLASH_BANK_BOTH: Bank1 and Bank2 to be erased
*
* @retval HAL Status
*/
static void FLASH_MassErase(uint32_t VoltageRange, uint32_t Banks)
{
/* Check the parameters */
#if defined (FLASH_CR_PSIZE)
assert_param(IS_VOLTAGERANGE(VoltageRange));
#else
UNUSED(VoltageRange);
#endif /* FLASH_CR_PSIZE */
assert_param(IS_FLASH_BANK(Banks));
#if defined (DUAL_BANK)
/* Flash Mass Erase */
if((Banks & FLASH_BANK_BOTH) == FLASH_BANK_BOTH)
{
#if defined (FLASH_CR_PSIZE)
/* Reset Program/erase VoltageRange for Bank1 and Bank2 */
FLASH->CR1 &= (~FLASH_CR_PSIZE);
FLASH->CR2 &= (~FLASH_CR_PSIZE);
/* Set voltage range */
FLASH->CR1 |= VoltageRange;
FLASH->CR2 |= VoltageRange;
#endif /* FLASH_CR_PSIZE */
/* Set Mass Erase Bit */
FLASH->OPTCR |= FLASH_OPTCR_MER;
}
else
#endif /* DUAL_BANK */
{
/* Proceed to erase Flash Bank */
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
#if defined (FLASH_CR_PSIZE)
/* Set Program/erase VoltageRange for Bank1 */
FLASH->CR1 &= (~FLASH_CR_PSIZE);
FLASH->CR1 |= VoltageRange;
#endif /* FLASH_CR_PSIZE */
/* Erase Bank1 */
FLASH->CR1 |= (FLASH_CR_BER | FLASH_CR_START);
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
#if defined (FLASH_CR_PSIZE)
/* Set Program/erase VoltageRange for Bank2 */
FLASH->CR2 &= (~FLASH_CR_PSIZE);
FLASH->CR2 |= VoltageRange;
#endif /* FLASH_CR_PSIZE */
/* Erase Bank2 */
FLASH->CR2 |= (FLASH_CR_BER | FLASH_CR_START);
}
#endif /* DUAL_BANK */
}
}
/**
* @brief Erase the specified FLASH memory sector
* @param Sector FLASH sector to erase
* This parameter can be a value of @ref FLASH_Sectors
* @param Banks Banks to be erased
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: Bank1 to be erased
* @arg FLASH_BANK_2: Bank2 to be erased
* @arg FLASH_BANK_BOTH: Bank1 and Bank2 to be erased
* @param VoltageRange The device program/erase parallelism.
* This parameter can be one of the following values:
* @arg FLASH_VOLTAGE_RANGE_1 : Flash program/erase by 8 bits
* @arg FLASH_VOLTAGE_RANGE_2 : Flash program/erase by 16 bits
* @arg FLASH_VOLTAGE_RANGE_3 : Flash program/erase by 32 bits
* @arg FLASH_VOLTAGE_RANGE_4 : Flash program/erase by 64 bits
*
* @retval None
*/
void FLASH_Erase_Sector(uint32_t Sector, uint32_t Banks, uint32_t VoltageRange)
{
assert_param(IS_FLASH_SECTOR(Sector));
assert_param(IS_FLASH_BANK_EXCLUSIVE(Banks));
#if defined (FLASH_CR_PSIZE)
assert_param(IS_VOLTAGERANGE(VoltageRange));
#else
UNUSED(VoltageRange);
#endif /* FLASH_CR_PSIZE */
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
#if defined (FLASH_CR_PSIZE)
/* Reset Program/erase VoltageRange and Sector Number for Bank1 */
FLASH->CR1 &= ~(FLASH_CR_PSIZE | FLASH_CR_SNB);
FLASH->CR1 |= (FLASH_CR_SER | VoltageRange | (Sector << FLASH_CR_SNB_Pos) | FLASH_CR_START);
#else
/* Reset Sector Number for Bank1 */
FLASH->CR1 &= ~(FLASH_CR_SNB);
FLASH->CR1 |= (FLASH_CR_SER | (Sector << FLASH_CR_SNB_Pos) | FLASH_CR_START);
#endif /* FLASH_CR_PSIZE */
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
#if defined (FLASH_CR_PSIZE)
/* Reset Program/erase VoltageRange and Sector Number for Bank2 */
FLASH->CR2 &= ~(FLASH_CR_PSIZE | FLASH_CR_SNB);
FLASH->CR2 |= (FLASH_CR_SER | VoltageRange | (Sector << FLASH_CR_SNB_Pos) | FLASH_CR_START);
#else
/* Reset Sector Number for Bank2 */
FLASH->CR2 &= ~(FLASH_CR_SNB);
FLASH->CR2 |= (FLASH_CR_SER | (Sector << FLASH_CR_SNB_Pos) | FLASH_CR_START);
#endif /* FLASH_CR_PSIZE */
}
#endif /* DUAL_BANK */
}
/**
* @brief Enable the write protection of the desired bank1 or bank 2 sectors
* @param WRPSector specifies the sector(s) to be write protected.
* This parameter can be one of the following values:
* @arg WRPSector: A combination of OB_WRP_SECTOR_0 to OB_WRP_SECTOR_7 or OB_WRP_SECTOR_ALL
*
* @param Banks the specific bank to apply WRP sectors
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: enable WRP on specified bank1 sectors
* @arg FLASH_BANK_2: enable WRP on specified bank2 sectors
* @arg FLASH_BANK_BOTH: enable WRP on both bank1 and bank2 specified sectors
*
* @retval HAL FLASH State
*/
static void FLASH_OB_EnableWRP(uint32_t WRPSector, uint32_t Banks)
{
/* Check the parameters */
assert_param(IS_OB_WRP_SECTOR(WRPSector));
assert_param(IS_FLASH_BANK(Banks));
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
/* Enable Write Protection for bank 1 */
FLASH->WPSN_PRG1 &= (~(WRPSector & FLASH_WPSN_WRPSN));
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
/* Enable Write Protection for bank 2 */
FLASH->WPSN_PRG2 &= (~(WRPSector & FLASH_WPSN_WRPSN));
}
#endif /* DUAL_BANK */
}
/**
* @brief Disable the write protection of the desired bank1 or bank 2 sectors
* @param WRPSector specifies the sector(s) to disable write protection.
* This parameter can be one of the following values:
* @arg WRPSector: A combination of FLASH_OB_WRP_SECTOR_0 to FLASH_OB_WRP_SECTOR_7 or FLASH_OB_WRP_SECTOR_ALL
*
* @param Banks the specific bank to apply WRP sectors
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: disable WRP on specified bank1 sectors
* @arg FLASH_BANK_2: disable WRP on specified bank2 sectors
* @arg FLASH_BANK_BOTH: disable WRP on both bank1 and bank2 specified sectors
*
* @retval HAL FLASH State
*/
static void FLASH_OB_DisableWRP(uint32_t WRPSector, uint32_t Banks)
{
/* Check the parameters */
assert_param(IS_OB_WRP_SECTOR(WRPSector));
assert_param(IS_FLASH_BANK(Banks));
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
/* Disable Write Protection for bank 1 */
FLASH->WPSN_PRG1 |= (WRPSector & FLASH_WPSN_WRPSN);
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
/* Disable Write Protection for bank 2 */
FLASH->WPSN_PRG2 |= (WRPSector & FLASH_WPSN_WRPSN);
}
#endif /* DUAL_BANK */
}
/**
* @brief Get the write protection of the given bank 1 or bank 2 sectors
* @param WRPState gives the write protection state on the given bank.
* This parameter can be one of the following values:
* @arg WRPState: OB_WRPSTATE_DISABLE or OB_WRPSTATE_ENABLE
* @param WRPSector gives the write protected sector(s) on the given bank .
* This parameter can be one of the following values:
* @arg WRPSector: A combination of FLASH_OB_WRP_SECTOR_0 to FLASH_OB_WRP_SECTOR_7 or FLASH_OB_WRP_SECTOR_ALL
*
* @param Bank the specific bank to apply WRP sectors
* This parameter can be exclusively one of the following values:
* @arg FLASH_BANK_1: Get bank1 WRP sectors
* @arg FLASH_BANK_2: Get bank2 WRP sectors
* @arg FLASH_BANK_BOTH: note allowed in this functions
*
* @retval HAL FLASH State
*/
static void FLASH_OB_GetWRP(uint32_t *WRPState, uint32_t *WRPSector, uint32_t Bank)
{
uint32_t regvalue = 0U;
if(Bank == FLASH_BANK_1)
{
regvalue = FLASH->WPSN_CUR1;
}
#if defined (DUAL_BANK)
if(Bank == FLASH_BANK_2)
{
regvalue = FLASH->WPSN_CUR2;
}
#endif /* DUAL_BANK */
(*WRPSector) = (~regvalue) & FLASH_WPSN_WRPSN;
if(*WRPSector == 0U)
{
(*WRPState) = OB_WRPSTATE_DISABLE;
}
else
{
(*WRPState) = OB_WRPSTATE_ENABLE;
}
}
/**
* @brief Set the read protection level.
*
* @note To configure the RDP level, the option lock bit OPTLOCK must be
* cleared with the call of the HAL_FLASH_OB_Unlock() function.
* @note To validate the RDP level, the option bytes must be reloaded
* through the call of the HAL_FLASH_OB_Launch() function.
* @note !!! Warning : When enabling OB_RDP level 2 it's no more possible
* to go back to level 1 or 0 !!!
*
* @param RDPLevel specifies the read protection level.
* This parameter can be one of the following values:
* @arg OB_RDP_LEVEL_0: No protection
* @arg OB_RDP_LEVEL_1: Read protection of the memory
* @arg OB_RDP_LEVEL_2: Full chip protection
*
* @retval HAL status
*/
static void FLASH_OB_RDPConfig(uint32_t RDPLevel)
{
/* Check the parameters */
assert_param(IS_OB_RDP_LEVEL(RDPLevel));
/* Configure the RDP level in the option bytes register */
MODIFY_REG(FLASH->OPTSR_PRG, FLASH_OPTSR_RDP, RDPLevel);
}
/**
* @brief Get the read protection level.
* @retval RDPLevel specifies the read protection level.
* This return value can be one of the following values:
* @arg OB_RDP_LEVEL_0: No protection
* @arg OB_RDP_LEVEL_1: Read protection of the memory
* @arg OB_RDP_LEVEL_2: Full chip protection
*/
static uint32_t FLASH_OB_GetRDP(void)
{
uint32_t rdp_level = READ_BIT(FLASH->OPTSR_CUR, FLASH_OPTSR_RDP);
if ((rdp_level != OB_RDP_LEVEL_0) && (rdp_level != OB_RDP_LEVEL_2))
{
return (OB_RDP_LEVEL_1);
}
else
{
return rdp_level;
}
}
#if defined(DUAL_CORE)
/**
* @brief Program the FLASH User Option Byte.
*
* @note To configure the user option bytes, the option lock bit OPTLOCK must
* be cleared with the call of the HAL_FLASH_OB_Unlock() function.
*
* @note To validate the user option bytes, the option bytes must be reloaded
* through the call of the HAL_FLASH_OB_Launch() function.
*
* @param UserType The FLASH User Option Bytes to be modified :
* a combination of @ref FLASHEx_OB_USER_Type
*
* @param UserConfig The FLASH User Option Bytes values:
* IWDG1_SW(Bit4), IWDG2_SW(Bit 5), nRST_STOP_D1(Bit 6), nRST_STDY_D1(Bit 7),
* FZ_IWDG_STOP(Bit 17), FZ_IWDG_SDBY(Bit 18), ST_RAM_SIZE(Bit[19:20]),
* SECURITY(Bit 21), BCM4(Bit 22), BCM7(Bit 23), nRST_STOP_D2(Bit 24),
* nRST_STDY_D2(Bit 25), IO_HSLV (Bit 29) and SWAP_BANK_OPT(Bit 31).
*
* @retval HAL status
*/
#else
/**
* @brief Program the FLASH User Option Byte.
*
* @note To configure the user option bytes, the option lock bit OPTLOCK must
* be cleared with the call of the HAL_FLASH_OB_Unlock() function.
*
* @note To validate the user option bytes, the option bytes must be reloaded
* through the call of the HAL_FLASH_OB_Launch() function.
*
* @param UserType The FLASH User Option Bytes to be modified :
* a combination of @arg FLASHEx_OB_USER_Type
*
* @param UserConfig The FLASH User Option Bytes values:
* IWDG_SW(Bit4), nRST_STOP_D1(Bit 6), nRST_STDY_D1(Bit 7),
* FZ_IWDG_STOP(Bit 17), FZ_IWDG_SDBY(Bit 18), ST_RAM_SIZE(Bit[19:20]),
* SECURITY(Bit 21), IO_HSLV (Bit 29) and SWAP_BANK_OPT(Bit 31).
*
* @retval HAL status
*/
#endif /*DUAL_CORE*/
static void FLASH_OB_UserConfig(uint32_t UserType, uint32_t UserConfig)
{
uint32_t optr_reg_val = 0;
uint32_t optr_reg_mask = 0;
/* Check the parameters */
assert_param(IS_OB_USER_TYPE(UserType));
if((UserType & OB_USER_IWDG1_SW) != 0U)
{
/* IWDG_HW option byte should be modified */
assert_param(IS_OB_IWDG1_SOURCE(UserConfig & FLASH_OPTSR_IWDG1_SW));
/* Set value and mask for IWDG_HW option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_IWDG1_SW);
optr_reg_mask |= FLASH_OPTSR_IWDG1_SW;
}
#if defined(DUAL_CORE)
if((UserType & OB_USER_IWDG2_SW) != 0U)
{
/* IWDG2_SW option byte should be modified */
assert_param(IS_OB_IWDG2_SOURCE(UserConfig & FLASH_OPTSR_IWDG2_SW));
/* Set value and mask for IWDG2_SW option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_IWDG2_SW);
optr_reg_mask |= FLASH_OPTSR_IWDG2_SW;
}
#endif /*DUAL_CORE*/
if((UserType & OB_USER_NRST_STOP_D1) != 0U)
{
/* NRST_STOP option byte should be modified */
assert_param(IS_OB_STOP_D1_RESET(UserConfig & FLASH_OPTSR_NRST_STOP_D1));
/* Set value and mask for NRST_STOP option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_NRST_STOP_D1);
optr_reg_mask |= FLASH_OPTSR_NRST_STOP_D1;
}
if((UserType & OB_USER_NRST_STDBY_D1) != 0U)
{
/* NRST_STDBY option byte should be modified */
assert_param(IS_OB_STDBY_D1_RESET(UserConfig & FLASH_OPTSR_NRST_STBY_D1));
/* Set value and mask for NRST_STDBY option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_NRST_STBY_D1);
optr_reg_mask |= FLASH_OPTSR_NRST_STBY_D1;
}
if((UserType & OB_USER_IWDG_STOP) != 0U)
{
/* IWDG_STOP option byte should be modified */
assert_param(IS_OB_USER_IWDG_STOP(UserConfig & FLASH_OPTSR_FZ_IWDG_STOP));
/* Set value and mask for IWDG_STOP option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_FZ_IWDG_STOP);
optr_reg_mask |= FLASH_OPTSR_FZ_IWDG_STOP;
}
if((UserType & OB_USER_IWDG_STDBY) != 0U)
{
/* IWDG_STDBY option byte should be modified */
assert_param(IS_OB_USER_IWDG_STDBY(UserConfig & FLASH_OPTSR_FZ_IWDG_SDBY));
/* Set value and mask for IWDG_STDBY option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_FZ_IWDG_SDBY);
optr_reg_mask |= FLASH_OPTSR_FZ_IWDG_SDBY;
}
if((UserType & OB_USER_ST_RAM_SIZE) != 0U)
{
/* ST_RAM_SIZE option byte should be modified */
assert_param(IS_OB_USER_ST_RAM_SIZE(UserConfig & FLASH_OPTSR_ST_RAM_SIZE));
/* Set value and mask for ST_RAM_SIZE option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_ST_RAM_SIZE);
optr_reg_mask |= FLASH_OPTSR_ST_RAM_SIZE;
}
if((UserType & OB_USER_SECURITY) != 0U)
{
/* SECURITY option byte should be modified */
assert_param(IS_OB_USER_SECURITY(UserConfig & FLASH_OPTSR_SECURITY));
/* Set value and mask for SECURITY option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_SECURITY);
optr_reg_mask |= FLASH_OPTSR_SECURITY;
}
#if defined(DUAL_CORE)
if((UserType & OB_USER_BCM4) != 0U)
{
/* BCM4 option byte should be modified */
assert_param(IS_OB_USER_BCM4(UserConfig & FLASH_OPTSR_BCM4));
/* Set value and mask for BCM4 option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_BCM4);
optr_reg_mask |= FLASH_OPTSR_BCM4;
}
if((UserType & OB_USER_BCM7) != 0U)
{
/* BCM7 option byte should be modified */
assert_param(IS_OB_USER_BCM7(UserConfig & FLASH_OPTSR_BCM7));
/* Set value and mask for BCM7 option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_BCM7);
optr_reg_mask |= FLASH_OPTSR_BCM7;
}
#endif /* DUAL_CORE */
#if defined (FLASH_OPTSR_NRST_STOP_D2)
if((UserType & OB_USER_NRST_STOP_D2) != 0U)
{
/* NRST_STOP option byte should be modified */
assert_param(IS_OB_STOP_D2_RESET(UserConfig & FLASH_OPTSR_NRST_STOP_D2));
/* Set value and mask for NRST_STOP option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_NRST_STOP_D2);
optr_reg_mask |= FLASH_OPTSR_NRST_STOP_D2;
}
if((UserType & OB_USER_NRST_STDBY_D2) != 0U)
{
/* NRST_STDBY option byte should be modified */
assert_param(IS_OB_STDBY_D2_RESET(UserConfig & FLASH_OPTSR_NRST_STBY_D2));
/* Set value and mask for NRST_STDBY option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_NRST_STBY_D2);
optr_reg_mask |= FLASH_OPTSR_NRST_STBY_D2;
}
#endif /* FLASH_OPTSR_NRST_STOP_D2 */
#if defined (DUAL_BANK)
if((UserType & OB_USER_SWAP_BANK) != 0U)
{
/* SWAP_BANK_OPT option byte should be modified */
assert_param(IS_OB_USER_SWAP_BANK(UserConfig & FLASH_OPTSR_SWAP_BANK_OPT));
/* Set value and mask for SWAP_BANK_OPT option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_SWAP_BANK_OPT);
optr_reg_mask |= FLASH_OPTSR_SWAP_BANK_OPT;
}
#endif /* DUAL_BANK */
if((UserType & OB_USER_IOHSLV) != 0U)
{
/* IOHSLV_OPT option byte should be modified */
assert_param(IS_OB_USER_IOHSLV(UserConfig & FLASH_OPTSR_IO_HSLV));
/* Set value and mask for IOHSLV_OPT option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_IO_HSLV);
optr_reg_mask |= FLASH_OPTSR_IO_HSLV;
}
#if defined (FLASH_OPTSR_VDDMMC_HSLV)
if((UserType & OB_USER_VDDMMC_HSLV) != 0U)
{
/* VDDMMC_HSLV option byte should be modified */
assert_param(IS_OB_USER_VDDMMC_HSLV(UserConfig & FLASH_OPTSR_VDDMMC_HSLV));
/* Set value and mask for VDDMMC_HSLV option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_VDDMMC_HSLV);
optr_reg_mask |= FLASH_OPTSR_VDDMMC_HSLV;
}
#endif /* FLASH_OPTSR_VDDMMC_HSLV */
/* Configure the option bytes register */
MODIFY_REG(FLASH->OPTSR_PRG, optr_reg_mask, optr_reg_val);
}
#if defined(DUAL_CORE)
/**
* @brief Return the FLASH User Option Byte value.
* @retval The FLASH User Option Bytes values
* IWDG1_SW(Bit4), IWDG2_SW(Bit 5), nRST_STOP_D1(Bit 6), nRST_STDY_D1(Bit 7),
* FZ_IWDG_STOP(Bit 17), FZ_IWDG_SDBY(Bit 18), ST_RAM_SIZE(Bit[19:20]),
* SECURITY(Bit 21), BCM4(Bit 22), BCM7(Bit 23), nRST_STOP_D2(Bit 24),
* nRST_STDY_D2(Bit 25), IO_HSLV (Bit 29) and SWAP_BANK_OPT(Bit 31).
*/
#else
/**
* @brief Return the FLASH User Option Byte value.
* @retval The FLASH User Option Bytes values
* IWDG_SW(Bit4), nRST_STOP_D1(Bit 6), nRST_STDY_D1(Bit 7),
* FZ_IWDG_STOP(Bit 17), FZ_IWDG_SDBY(Bit 18), ST_RAM_SIZE(Bit[19:20]),
* SECURITY(Bit 21), IO_HSLV (Bit 29) and SWAP_BANK_OPT(Bit 31).
*/
#endif /*DUAL_CORE*/
static uint32_t FLASH_OB_GetUser(void)
{
uint32_t userConfig = READ_REG(FLASH->OPTSR_CUR);
userConfig &= (~(FLASH_OPTSR_BOR_LEV | FLASH_OPTSR_RDP));
return userConfig;
}
/**
* @brief Configure the Proprietary code readout protection of the desired addresses
*
* @note To configure the PCROP options, the option lock bit OPTLOCK must be
* cleared with the call of the HAL_FLASH_OB_Unlock() function.
* @note To validate the PCROP options, the option bytes must be reloaded
* through the call of the HAL_FLASH_OB_Launch() function.
*
* @param PCROPConfig specifies if the PCROP area for the given Bank shall be erased or not
* when RDP level decreased from Level 1 to Level 0, or after a bank erase with protection removal
* This parameter must be a value of @arg FLASHEx_OB_PCROP_RDP enumeration
*
* @param PCROPStartAddr specifies the start address of the Proprietary code readout protection
* This parameter can be an address between begin and end of the bank
*
* @param PCROPEndAddr specifies the end address of the Proprietary code readout protection
* This parameter can be an address between PCROPStartAddr and end of the bank
*
* @param Banks the specific bank to apply PCROP protection
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: PCROP on specified bank1 area
* @arg FLASH_BANK_2: PCROP on specified bank2 area
* @arg FLASH_BANK_BOTH: PCROP on specified bank1 and bank2 area (same config will be applied on both banks)
*
* @retval None
*/
static void FLASH_OB_PCROPConfig(uint32_t PCROPConfig, uint32_t PCROPStartAddr, uint32_t PCROPEndAddr, uint32_t Banks)
{
/* Check the parameters */
assert_param(IS_FLASH_BANK(Banks));
assert_param(IS_OB_PCROP_RDP(PCROPConfig));
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(PCROPStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(PCROPEndAddr));
/* Configure the Proprietary code readout protection */
FLASH->PRAR_PRG1 = ((PCROPStartAddr - FLASH_BANK1_BASE) >> 8) | \
(((PCROPEndAddr - FLASH_BANK1_BASE) >> 8) << FLASH_PRAR_PROT_AREA_END_Pos) | \
PCROPConfig;
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(PCROPStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(PCROPEndAddr));
/* Configure the Proprietary code readout protection */
FLASH->PRAR_PRG2 = ((PCROPStartAddr - FLASH_BANK2_BASE) >> 8) | \
(((PCROPEndAddr - FLASH_BANK2_BASE) >> 8) << FLASH_PRAR_PROT_AREA_END_Pos) | \
PCROPConfig;
}
#endif /* DUAL_BANK */
}
/**
* @brief Get the Proprietary code readout protection configuration on a given Bank
*
* @param PCROPConfig indicates if the PCROP area for the given Bank shall be erased or not
* when RDP level decreased from Level 1 to Level 0 or after a bank erase with protection removal
*
* @param PCROPStartAddr gives the start address of the Proprietary code readout protection of the bank
*
* @param PCROPEndAddr gives the end address of the Proprietary code readout protection of the bank
*
* @param Bank the specific bank to apply PCROP protection
* This parameter can be exclusively one of the following values:
* @arg FLASH_BANK_1: PCROP on specified bank1 area
* @arg FLASH_BANK_2: PCROP on specified bank2 area
* @arg FLASH_BANK_BOTH: is not allowed here
*
* @retval None
*/
static void FLASH_OB_GetPCROP(uint32_t *PCROPConfig, uint32_t *PCROPStartAddr, uint32_t *PCROPEndAddr, uint32_t Bank)
{
uint32_t regvalue = 0;
uint32_t bankBase = 0;
if(Bank == FLASH_BANK_1)
{
regvalue = FLASH->PRAR_CUR1;
bankBase = FLASH_BANK1_BASE;
}
#if defined (DUAL_BANK)
if(Bank == FLASH_BANK_2)
{
regvalue = FLASH->PRAR_CUR2;
bankBase = FLASH_BANK2_BASE;
}
#endif /* DUAL_BANK */
(*PCROPConfig) = (regvalue & FLASH_PRAR_DMEP);
(*PCROPStartAddr) = ((regvalue & FLASH_PRAR_PROT_AREA_START) << 8) + bankBase;
(*PCROPEndAddr) = (regvalue & FLASH_PRAR_PROT_AREA_END) >> FLASH_PRAR_PROT_AREA_END_Pos;
(*PCROPEndAddr) = ((*PCROPEndAddr) << 8) + bankBase;
}
/**
* @brief Set the BOR Level.
* @param Level specifies the Option Bytes BOR Reset Level.
* This parameter can be one of the following values:
* @arg OB_BOR_LEVEL0: Reset level threshold is set to 1.6V
* @arg OB_BOR_LEVEL1: Reset level threshold is set to 2.1V
* @arg OB_BOR_LEVEL2: Reset level threshold is set to 2.4V
* @arg OB_BOR_LEVEL3: Reset level threshold is set to 2.7V
* @retval None
*/
static void FLASH_OB_BOR_LevelConfig(uint32_t Level)
{
assert_param(IS_OB_BOR_LEVEL(Level));
/* Configure BOR_LEV option byte */
MODIFY_REG(FLASH->OPTSR_PRG, FLASH_OPTSR_BOR_LEV, Level);
}
/**
* @brief Get the BOR Level.
* @retval The Option Bytes BOR Reset Level.
* This parameter can be one of the following values:
* @arg OB_BOR_LEVEL0: Reset level threshold is set to 1.6V
* @arg OB_BOR_LEVEL1: Reset level threshold is set to 2.1V
* @arg OB_BOR_LEVEL2: Reset level threshold is set to 2.4V
* @arg OB_BOR_LEVEL3: Reset level threshold is set to 2.7V
*/
static uint32_t FLASH_OB_GetBOR(void)
{
return (FLASH->OPTSR_CUR & FLASH_OPTSR_BOR_LEV);
}
/**
* @brief Set Boot address
* @param BootOption Boot address option byte to be programmed,
* This parameter must be a value of @ref FLASHEx_OB_BOOT_OPTION
(OB_BOOT_ADD0, OB_BOOT_ADD1 or OB_BOOT_ADD_BOTH)
*
* @param BootAddress0 Specifies the Boot Address 0
* @param BootAddress1 Specifies the Boot Address 1
* @retval HAL Status
*/
static void FLASH_OB_BootAddConfig(uint32_t BootOption, uint32_t BootAddress0, uint32_t BootAddress1)
{
/* Check the parameters */
assert_param(IS_OB_BOOT_ADD_OPTION(BootOption));
if((BootOption & OB_BOOT_ADD0) == OB_BOOT_ADD0)
{
/* Check the parameters */
assert_param(IS_BOOT_ADDRESS(BootAddress0));
/* Configure CM7 BOOT ADD0 */
#if defined(DUAL_CORE)
MODIFY_REG(FLASH->BOOT7_PRG, FLASH_BOOT7_BCM7_ADD0, (BootAddress0 >> 16));
#else /* Single Core*/
MODIFY_REG(FLASH->BOOT_PRG, FLASH_BOOT_ADD0, (BootAddress0 >> 16));
#endif /* DUAL_CORE */
}
if((BootOption & OB_BOOT_ADD1) == OB_BOOT_ADD1)
{
/* Check the parameters */
assert_param(IS_BOOT_ADDRESS(BootAddress1));
/* Configure CM7 BOOT ADD1 */
#if defined(DUAL_CORE)
MODIFY_REG(FLASH->BOOT7_PRG, FLASH_BOOT7_BCM7_ADD1, BootAddress1);
#else /* Single Core*/
MODIFY_REG(FLASH->BOOT_PRG, FLASH_BOOT_ADD1, BootAddress1);
#endif /* DUAL_CORE */
}
}
/**
* @brief Get Boot address
* @param BootAddress0 Specifies the Boot Address 0.
* @param BootAddress1 Specifies the Boot Address 1.
* @retval HAL Status
*/
static void FLASH_OB_GetBootAdd(uint32_t *BootAddress0, uint32_t *BootAddress1)
{
uint32_t regvalue;
#if defined(DUAL_CORE)
regvalue = FLASH->BOOT7_CUR;
(*BootAddress0) = (regvalue & FLASH_BOOT7_BCM7_ADD0) << 16;
(*BootAddress1) = (regvalue & FLASH_BOOT7_BCM7_ADD1);
#else /* Single Core */
regvalue = FLASH->BOOT_CUR;
(*BootAddress0) = (regvalue & FLASH_BOOT_ADD0) << 16;
(*BootAddress1) = (regvalue & FLASH_BOOT_ADD1);
#endif /* DUAL_CORE */
}
#if defined(DUAL_CORE)
/**
* @brief Set CM4 Boot address
* @param BootOption Boot address option byte to be programmed,
* This parameter must be a value of @ref FLASHEx_OB_BOOT_OPTION
(OB_BOOT_ADD0, OB_BOOT_ADD1 or OB_BOOT_ADD_BOTH)
*
* @param BootAddress0 Specifies the CM4 Boot Address 0.
* @param BootAddress1 Specifies the CM4 Boot Address 1.
* @retval HAL Status
*/
static void FLASH_OB_CM4BootAddConfig(uint32_t BootOption, uint32_t BootAddress0, uint32_t BootAddress1)
{
/* Check the parameters */
assert_param(IS_OB_BOOT_ADD_OPTION(BootOption));
if((BootOption & OB_BOOT_ADD0) == OB_BOOT_ADD0)
{
/* Check the parameters */
assert_param(IS_BOOT_ADDRESS(BootAddress0));
/* Configure CM4 BOOT ADD0 */
MODIFY_REG(FLASH->BOOT4_PRG, FLASH_BOOT4_BCM4_ADD0, (BootAddress0 >> 16));
}
if((BootOption & OB_BOOT_ADD1) == OB_BOOT_ADD1)
{
/* Check the parameters */
assert_param(IS_BOOT_ADDRESS(BootAddress1));
/* Configure CM4 BOOT ADD1 */
MODIFY_REG(FLASH->BOOT4_PRG, FLASH_BOOT4_BCM4_ADD1, BootAddress1);
}
}
/**
* @brief Get CM4 Boot address
* @param BootAddress0 Specifies the CM4 Boot Address 0.
* @param BootAddress1 Specifies the CM4 Boot Address 1.
* @retval HAL Status
*/
static void FLASH_OB_GetCM4BootAdd(uint32_t *BootAddress0, uint32_t *BootAddress1)
{
uint32_t regvalue;
regvalue = FLASH->BOOT4_CUR;
(*BootAddress0) = (regvalue & FLASH_BOOT4_BCM4_ADD0) << 16;
(*BootAddress1) = (regvalue & FLASH_BOOT4_BCM4_ADD1);
}
#endif /*DUAL_CORE*/
/**
* @brief Set secure area configuration
* @param SecureAreaConfig specify if the secure area will be deleted or not
* when RDP level decreased from Level 1 to Level 0 or during a mass erase.
*
* @param SecureAreaStartAddr Specifies the secure area start address
* @param SecureAreaEndAddr Specifies the secure area end address
* @param Banks the specific bank to apply Security protection
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: Secure area on specified bank1 area
* @arg FLASH_BANK_2: Secure area on specified bank2 area
* @arg FLASH_BANK_BOTH: Secure area on specified bank1 and bank2 area (same config will be applied on both banks)
* @retval None
*/
static void FLASH_OB_SecureAreaConfig(uint32_t SecureAreaConfig, uint32_t SecureAreaStartAddr, uint32_t SecureAreaEndAddr, uint32_t Banks)
{
/* Check the parameters */
assert_param(IS_FLASH_BANK(Banks));
assert_param(IS_OB_SECURE_RDP(SecureAreaConfig));
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
/* Check the parameters */
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(SecureAreaStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(SecureAreaEndAddr));
/* Configure the secure area */
FLASH->SCAR_PRG1 = ((SecureAreaStartAddr - FLASH_BANK1_BASE) >> 8) | \
(((SecureAreaEndAddr - FLASH_BANK1_BASE) >> 8) << FLASH_SCAR_SEC_AREA_END_Pos) | \
(SecureAreaConfig & FLASH_SCAR_DMES);
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
/* Check the parameters */
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(SecureAreaStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(SecureAreaEndAddr));
/* Configure the secure area */
FLASH->SCAR_PRG2 = ((SecureAreaStartAddr - FLASH_BANK2_BASE) >> 8) | \
(((SecureAreaEndAddr - FLASH_BANK2_BASE) >> 8) << FLASH_SCAR_SEC_AREA_END_Pos) | \
(SecureAreaConfig & FLASH_SCAR_DMES);
}
#endif /* DUAL_BANK */
}
/**
* @brief Get secure area configuration
* @param SecureAreaConfig indicates if the secure area will be deleted or not
* when RDP level decreased from Level 1 to Level 0 or during a mass erase.
* @param SecureAreaStartAddr gives the secure area start address
* @param SecureAreaEndAddr gives the secure area end address
* @param Bank Specifies the Bank
* @retval None
*/
static void FLASH_OB_GetSecureArea(uint32_t *SecureAreaConfig, uint32_t *SecureAreaStartAddr, uint32_t *SecureAreaEndAddr, uint32_t Bank)
{
uint32_t regvalue = 0;
uint32_t bankBase = 0;
/* Check Bank parameter value */
if(Bank == FLASH_BANK_1)
{
regvalue = FLASH->SCAR_CUR1;
bankBase = FLASH_BANK1_BASE;
}
#if defined (DUAL_BANK)
if(Bank == FLASH_BANK_2)
{
regvalue = FLASH->SCAR_CUR2;
bankBase = FLASH_BANK2_BASE;
}
#endif /* DUAL_BANK */
/* Get the secure area settings */
(*SecureAreaConfig) = (regvalue & FLASH_SCAR_DMES);
(*SecureAreaStartAddr) = ((regvalue & FLASH_SCAR_SEC_AREA_START) << 8) + bankBase;
(*SecureAreaEndAddr) = (regvalue & FLASH_SCAR_SEC_AREA_END) >> FLASH_SCAR_SEC_AREA_END_Pos;
(*SecureAreaEndAddr) = ((*SecureAreaEndAddr) << 8) + bankBase;
}
/**
* @brief Add a CRC sector to the list of sectors on which the CRC will be calculated
* @param Sector Specifies the CRC sector number
* @param Bank Specifies the Bank
* @retval None
*/
static void FLASH_CRC_AddSector(uint32_t Sector, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FLASH_SECTOR(Sector));
if (Bank == FLASH_BANK_1)
{
/* Clear CRC sector */
FLASH->CRCCR1 &= (~FLASH_CRCCR_CRC_SECT);
/* Select CRC Sector and activate ADD_SECT bit */
FLASH->CRCCR1 |= Sector | FLASH_CRCCR_ADD_SECT;
}
#if defined (DUAL_BANK)
else
{
/* Clear CRC sector */
FLASH->CRCCR2 &= (~FLASH_CRCCR_CRC_SECT);
/* Select CRC Sector and activate ADD_SECT bit */
FLASH->CRCCR2 |= Sector | FLASH_CRCCR_ADD_SECT;
}
#endif /* DUAL_BANK */
}
/**
* @brief Select CRC start and end memory addresses on which the CRC will be calculated
* @param CRCStartAddr Specifies the CRC start address
* @param CRCEndAddr Specifies the CRC end address
* @param Bank Specifies the Bank
* @retval None
*/
static void FLASH_CRC_SelectAddress(uint32_t CRCStartAddr, uint32_t CRCEndAddr, uint32_t Bank)
{
if (Bank == FLASH_BANK_1)
{
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(CRCStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(CRCEndAddr));
/* Write CRC Start and End addresses */
FLASH->CRCSADD1 = CRCStartAddr;
FLASH->CRCEADD1 = CRCEndAddr;
}
#if defined (DUAL_BANK)
else
{
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(CRCStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(CRCEndAddr));
/* Write CRC Start and End addresses */
FLASH->CRCSADD2 = CRCStartAddr;
FLASH->CRCEADD2 = CRCEndAddr;
}
#endif /* DUAL_BANK */
}
/**
* @}
*/
#if defined (FLASH_OTPBL_LOCKBL)
/**
* @brief Configure the OTP Block Lock.
* @param OTP_Block specifies the OTP Block to lock.
* This parameter can be a value of @ref FLASHEx_OTP_Blocks
* @retval None
*/
static void FLASH_OB_OTP_LockConfig(uint32_t OTP_Block)
{
/* Check the parameters */
assert_param(IS_OTP_BLOCK(OTP_Block));
/* Configure the OTP Block lock in the option bytes register */
FLASH->OTPBL_PRG |= (OTP_Block & FLASH_OTPBL_LOCKBL);
}
/**
* @brief Get the OTP Block Lock.
* @retval OTP_Block specifies the OTP Block to lock.
* This return value can be a value of @ref FLASHEx_OTP_Blocks
*/
static uint32_t FLASH_OB_OTP_GetLock(void)
{
return (FLASH->OTPBL_CUR);
}
#endif /* FLASH_OTPBL_LOCKBL */
#if defined (FLASH_OPTSR2_TCM_AXI_SHARED)
/**
* @brief Configure the TCM / AXI Shared RAM.
* @param SharedRamConfig specifies the Shared RAM configuration.
* This parameter can be a value of @ref FLASHEx_OB_TCM_AXI_SHARED
* @retval None
*/
static void FLASH_OB_SharedRAM_Config(uint32_t SharedRamConfig)
{
/* Check the parameters */
assert_param(IS_OB_USER_TCM_AXI_SHARED(SharedRamConfig));
/* Configure the TCM / AXI Shared RAM in the option bytes register */
MODIFY_REG(FLASH->OPTSR2_PRG, FLASH_OPTSR2_TCM_AXI_SHARED, SharedRamConfig);
}
/**
* @brief Get the TCM / AXI Shared RAM configuration.
* @retval SharedRamConfig returns the TCM / AXI Shared RAM configuration.
* This return value can be a value of @ref FLASHEx_OB_TCM_AXI_SHARED
*/
static uint32_t FLASH_OB_SharedRAM_GetConfig(void)
{
return (FLASH->OPTSR2_CUR & FLASH_OPTSR2_TCM_AXI_SHARED);
}
#endif /* FLASH_OPTSR2_TCM_AXI_SHARED */
#if defined (FLASH_OPTSR2_CPUFREQ_BOOST)
/**
* @brief Configure the CPU Frequency Boost.
* @param FreqBoost specifies the CPU Frequency Boost state.
* This parameter can be a value of @ref FLASHEx_OB_CPUFREQ_BOOST
* @retval None
*/
static void FLASH_OB_CPUFreq_BoostConfig(uint32_t FreqBoost)
{
/* Check the parameters */
assert_param(IS_OB_USER_CPUFREQ_BOOST(FreqBoost));
/* Configure the CPU Frequency Boost in the option bytes register */
MODIFY_REG(FLASH->OPTSR2_PRG, FLASH_OPTSR2_CPUFREQ_BOOST, FreqBoost);
}
/**
* @brief Get the CPU Frequency Boost state.
* @retval FreqBoost returns the CPU Frequency Boost state.
* This return value can be a value of @ref FLASHEx_OB_CPUFREQ_BOOST
*/
static uint32_t FLASH_OB_CPUFreq_GetBoost(void)
{
return (FLASH->OPTSR2_CUR & FLASH_OPTSR2_CPUFREQ_BOOST);
}
#endif /* FLASH_OPTSR2_CPUFREQ_BOOST */
#endif /* HAL_FLASH_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/