/**
******************************************************************************
* @file stm32h7xx_hal_i2s.c
* @author MCD Application Team
* @brief I2S HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Integrated Interchip Sound (I2S) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral State and Errors functions
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
The I2S HAL driver can be used as follow:
(#) Declare a I2S_HandleTypeDef handle structure.
(#) Initialize the I2S low level resources by implement the HAL_I2S_MspInit() API:
(##) Enable the SPIx interface clock.
(##) I2S pins configuration:
(+++) Enable the clock for the I2S GPIOs.
(+++) Configure these I2S pins as alternate function pull-up.
(##) NVIC configuration if you need to use interrupt process (HAL_I2S_Transmit_IT()
and HAL_I2S_Receive_IT() APIs).
(+++) Configure the I2Sx interrupt priority.
(+++) Enable the NVIC I2S IRQ handle.
(##) DMA Configuration if you need to use DMA process (HAL_I2S_Transmit_DMA()
and HAL_I2S_Receive_DMA() APIs:
(+++) Declare a DMA handle structure for the Tx/Rx Stream/Channel.
(+++) Enable the DMAx interface clock.
(+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
(+++) Configure the DMA Tx/Rx Stream/Channel.
(+++) Associate the initialized DMA handle to the I2S DMA Tx/Rx handle.
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the
DMA Tx/Rx Stream/Channel.
(#) Program the Mode, Standard, Data Format, MCLK Output, Audio frequency and Polarity
using HAL_I2S_Init() function.
-@- The specific I2S interrupts (Transmission complete interrupt,
RXNE interrupt and Error Interrupts) will be managed using the macros
__HAL_I2S_ENABLE_IT() and __HAL_I2S_DISABLE_IT() inside the transmit and receive process.
(+@) External clock source is configured after setting correctly
the define constant EXTERNAL_CLOCK_VALUE in the stm32h7xx_hal_conf.h file.
(#) Three mode of operations are available within this driver :
*** Polling mode IO operation ***
=================================
[..]
(+) Send an amount of data in blocking mode using HAL_I2S_Transmit()
(+) Receive an amount of data in blocking mode using HAL_I2S_Receive()
*** Interrupt mode IO operation ***
===================================
[..]
(+) Send an amount of data in non blocking mode using HAL_I2S_Transmit_IT()
(+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback
(+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2S_TxCpltCallback
(+) Receive an amount of data in non blocking mode using HAL_I2S_Receive_IT()
(+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback
(+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2S_RxCpltCallback
(+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_I2S_ErrorCallback
*** DMA mode IO operation ***
==============================
[..]
(+) Send an amount of data in non blocking mode (DMA) using HAL_I2S_Transmit_DMA()
(+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback
(+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2S_TxCpltCallback
(+) Receive an amount of data in non blocking mode (DMA) using HAL_I2S_Receive_DMA()
(+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback
(+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can
add his own code by customization of function pointer HAL_I2S_RxCpltCallback
(+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_I2S_ErrorCallback
(+) Pause the DMA Transfer using HAL_I2S_DMAPause()
(+) Resume the DMA Transfer using HAL_I2S_DMAResume()
(+) Stop the DMA Transfer using HAL_I2S_DMAStop()
*** I2S HAL driver macros list ***
===================================
[..]
Below the list of most used macros in I2S HAL driver.
(+) __HAL_I2S_ENABLE: Enable the specified SPI peripheral (in I2S mode)
(+) __HAL_I2S_DISABLE: Disable the specified SPI peripheral (in I2S mode)
(+) __HAL_I2S_ENABLE_IT : Enable the specified I2S interrupts
(+) __HAL_I2S_DISABLE_IT : Disable the specified I2S interrupts
(+) __HAL_I2S_GET_FLAG: Check whether the specified I2S flag is set or not
[..]
(@) You can refer to the I2S HAL driver header file for more useful macros
*** I2S HAL driver macros list ***
===================================
[..]
Callback registration:
(#) The compilation flag USE_HAL_I2S_REGISTER_CALLBACKS when set to 1UL
allows the user to configure dynamically the driver callbacks.
Use Functions HAL_I2S_RegisterCallback() to register an interrupt callback.
Function HAL_I2S_RegisterCallback() allows to register following callbacks:
(+) TxCpltCallback : I2S Tx Completed callback
(+) RxCpltCallback : I2S Rx Completed callback
(+) TxRxCpltCallback : I2S TxRx Completed callback
(+) TxHalfCpltCallback : I2S Tx Half Completed callback
(+) RxHalfCpltCallback : I2S Rx Half Completed callback
(+) TxRxHalfCpltCallback : I2S TxRx Half Completed callback
(+) ErrorCallback : I2S Error callback
(+) MspInitCallback : I2S Msp Init callback
(+) MspDeInitCallback : I2S Msp DeInit callback
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
(#) Use function HAL_I2S_UnRegisterCallback to reset a callback to the default
weak function.
HAL_I2S_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) TxCpltCallback : I2S Tx Completed callback
(+) RxCpltCallback : I2S Rx Completed callback
(+) TxRxCpltCallback : I2S TxRx Completed callback
(+) TxHalfCpltCallback : I2S Tx Half Completed callback
(+) RxHalfCpltCallback : I2S Rx Half Completed callback
(+) TxRxHalfCpltCallback : I2S TxRx Half Completed callback
(+) ErrorCallback : I2S Error callback
(+) MspInitCallback : I2S Msp Init callback
(+) MspDeInitCallback : I2S Msp DeInit callback
By default, after the HAL_I2S_Init() and when the state is HAL_I2S_STATE_RESET
all callbacks are set to the corresponding weak functions:
examples HAL_I2S_MasterTxCpltCallback(), HAL_I2S_MasterRxCpltCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak functions in the HAL_I2S_Init()/ HAL_I2S_DeInit() only when
these callbacks are null (not registered beforehand).
If MspInit or MspDeInit are not null, the HAL_I2S_Init()/ HAL_I2S_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
Callbacks can be registered/unregistered in HAL_I2S_STATE_READY state only.
Exception done MspInit/MspDeInit functions that can be registered/unregistered
in HAL_I2S_STATE_READY or HAL_I2S_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
Then, the user first registers the MspInit/MspDeInit user callbacks
using HAL_I2S_RegisterCallback() before calling HAL_I2S_DeInit()
or HAL_I2S_Init() function.
When The compilation define USE_HAL_I2S_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
#ifdef HAL_I2S_MODULE_ENABLED
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
/** @defgroup I2S I2S
* @brief I2S HAL module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup I2S_Private_Define I2S Private Define
* @{
*/
#define I2S_TIMEOUT 0xFFFFUL
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup I2S_Private_Functions I2S Private Functions
* @{
*/
static void I2S_DMATxCplt(DMA_HandleTypeDef *hdma);
static void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
static void I2S_DMARxCplt(DMA_HandleTypeDef *hdma);
static void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
static void I2SEx_DMATxRxCplt(DMA_HandleTypeDef *hdma);
static void I2SEx_DMATxRxHalfCplt(DMA_HandleTypeDef *hdma);
static void I2S_DMAError(DMA_HandleTypeDef *hdma);
static void I2S_Transmit_16Bit_IT(I2S_HandleTypeDef *hi2s);
static void I2S_Transmit_32Bit_IT(I2S_HandleTypeDef *hi2s);
static void I2S_Receive_16Bit_IT(I2S_HandleTypeDef *hi2s);
static void I2S_Receive_32Bit_IT(I2S_HandleTypeDef *hi2s);
static HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, FlagStatus State,
uint32_t Tickstart, uint32_t Timeout);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup I2S_Exported_Functions I2S Exported Functions
* @{
*/
/** @defgroup I2S_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This subsection provides a set of functions allowing to initialize and
de-initialize the I2Sx peripheral in simplex mode:
(+) User must Implement HAL_I2S_MspInit() function in which he configures
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
(+) Call the function HAL_I2S_Init() to configure the selected device with
the selected configuration:
(++) Mode
(++) Standard
(++) Data Format
(++) MCLK Output
(++) Audio frequency
(++) Polarity
(+) Call the function HAL_I2S_DeInit() to restore the default configuration
of the selected I2Sx peripheral.
@endverbatim
* @{
*/
/**
* @brief Initializes the I2S according to the specified parameters
* in the I2S_InitTypeDef and create the associated handle.
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s)
{
uint32_t i2sdiv;
uint32_t i2sodd;
uint32_t packetlength;
uint32_t tmp;
uint32_t i2sclk;
uint32_t ispcm;
/* Check the I2S handle allocation */
if (hi2s == NULL)
{
return HAL_ERROR;
}
/* Check the I2S parameters */
assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance));
assert_param(IS_I2S_MODE(hi2s->Init.Mode));
assert_param(IS_I2S_STANDARD(hi2s->Init.Standard));
assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat));
assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput));
assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq));
assert_param(IS_I2S_CPOL(hi2s->Init.CPOL));
assert_param(IS_I2S_FIRST_BIT(hi2s->Init.FirstBit));
assert_param(IS_I2S_WS_INVERSION(hi2s->Init.WSInversion));
assert_param(IS_I2S_DATA_24BIT_ALIGNMENT(hi2s->Init.Data24BitAlignment));
assert_param(IS_I2S_MASTER_KEEP_IO_STATE(hi2s->Init.MasterKeepIOState));
if (hi2s->State == HAL_I2S_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hi2s->Lock = HAL_UNLOCKED;
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
/* Init the I2S Callback settings */
hi2s->TxCpltCallback = HAL_I2S_TxCpltCallback; /* Legacy weak TxCpltCallback */
hi2s->RxCpltCallback = HAL_I2S_RxCpltCallback; /* Legacy weak RxCpltCallback */
hi2s->TxRxCpltCallback = HAL_I2SEx_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */
hi2s->TxHalfCpltCallback = HAL_I2S_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
hi2s->RxHalfCpltCallback = HAL_I2S_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
hi2s->TxRxHalfCpltCallback = HAL_I2SEx_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */
hi2s->ErrorCallback = HAL_I2S_ErrorCallback; /* Legacy weak ErrorCallback */
if (hi2s->MspInitCallback == NULL)
{
hi2s->MspInitCallback = HAL_I2S_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware : GPIO, CLOCK, NVIC... */
hi2s->MspInitCallback(hi2s);
#else
/* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
HAL_I2S_MspInit(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
hi2s->State = HAL_I2S_STATE_BUSY;
/* Disable the selected I2S peripheral */
if ((hi2s->Instance->CR1 & SPI_CR1_SPE) == SPI_CR1_SPE)
{
/* Disable I2S peripheral */
__HAL_I2S_DISABLE(hi2s);
}
/* Clear I2S configuration register */
CLEAR_REG(hi2s->Instance->I2SCFGR);
if (IS_I2S_MASTER(hi2s->Init.Mode))
{
/*------------------------- I2SDIV and ODD Calculation ---------------------*/
/* If the requested audio frequency is not the default, compute the prescaler */
if (hi2s->Init.AudioFreq != I2S_AUDIOFREQ_DEFAULT)
{
/* Check the frame length (For the Prescaler computing) ********************/
if (hi2s->Init.DataFormat != I2S_DATAFORMAT_16B)
{
/* Channel length is 32 bits */
packetlength = 2UL;
}
else
{
/* Channel length is 16 bits */
packetlength = 1UL;
}
/* Check if PCM standard is used */
if ((hi2s->Init.Standard == I2S_STANDARD_PCM_SHORT) ||
(hi2s->Init.Standard == I2S_STANDARD_PCM_LONG))
{
ispcm = 1UL;
}
else
{
ispcm = 0UL;
}
/* Get the source clock value: based on System Clock value */
#if defined (SPI_SPI6I2S_SUPPORT)
if (hi2s->Instance == SPI6)
{
/* SPI6 source clock */
i2sclk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI6);
}
else
{
/* SPI1,SPI2 and SPI3 share the same source clock */
i2sclk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123);
}
#else
/* SPI1,SPI2 and SPI3 share the same source clock */
i2sclk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123);
#endif /* SPI_SPI6I2S_SUPPORT */
/* Compute the Real divider depending on the MCLK output state, with a floating point */
if (hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE)
{
/* MCLK output is enabled */
tmp = (uint32_t)((((i2sclk / (256UL >> ispcm)) * 10UL) / hi2s->Init.AudioFreq) + 5UL);
}
else
{
/* MCLK output is disabled */
tmp = (uint32_t)((((i2sclk / ((32UL >> ispcm) * packetlength)) * 10UL) / hi2s->Init.AudioFreq) + 5UL);
}
/* Remove the flatting point */
tmp = tmp / 10UL;
/* Check the parity of the divider */
i2sodd = (uint32_t)(tmp & (uint32_t)1UL);
/* Compute the i2sdiv prescaler */
i2sdiv = (uint32_t)((tmp - i2sodd) / 2UL);
}
else
{
/* Set the default values */
i2sdiv = 2UL;
i2sodd = 0UL;
}
/* Test if the obtain values are forbidden or out of range */
if (((i2sodd == 1UL) && (i2sdiv == 1UL)) || (i2sdiv > 0xFFUL))
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_PRESCALER);
return HAL_ERROR;
}
/* Force i2smod to 1 just to be sure that (2xi2sdiv + i2sodd) is always higher than 0 */
if (i2sdiv == 0UL)
{
i2sodd = 1UL;
}
MODIFY_REG(hi2s->Instance->I2SCFGR, (SPI_I2SCFGR_I2SDIV | SPI_I2SCFGR_ODD),
((i2sdiv << SPI_I2SCFGR_I2SDIV_Pos) | (i2sodd << SPI_I2SCFGR_ODD_Pos)));
}
/*-------------------------- I2Sx I2SCFGR Configuration --------------------*/
/* Configure I2SMOD, I2SCFG, I2SSTD, PCMSYNC, DATLEN ,CHLEN ,CKPOL, WSINV, DATAFMT, I2SDIV, ODD and MCKOE bits bits */
/* And configure the I2S with the I2S_InitStruct values */
MODIFY_REG(hi2s->Instance->I2SCFGR, (SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SCFG | \
SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | \
SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN | \
SPI_I2SCFGR_CKPOL | SPI_I2SCFGR_WSINV | \
SPI_I2SCFGR_DATFMT | SPI_I2SCFGR_MCKOE),
(SPI_I2SCFGR_I2SMOD | hi2s->Init.Mode | \
hi2s->Init.Standard | hi2s->Init.DataFormat | \
hi2s->Init.CPOL | hi2s->Init.WSInversion | \
hi2s->Init.Data24BitAlignment | hi2s->Init.MCLKOutput));
/*Clear status register*/
WRITE_REG(hi2s->Instance->IFCR, 0x0FF8);
/*---------------------------- I2Sx CFG2 Configuration ----------------------*/
/* Unlock the AF configuration to configure CFG2 register*/
CLEAR_BIT(hi2s->Instance->CR1, SPI_CR1_IOLOCK);
MODIFY_REG(hi2s->Instance->CFG2, SPI_CFG2_LSBFRST, hi2s->Init.FirstBit);
/* Insure that AFCNTR is managed only by Master */
if (IS_I2S_MASTER(hi2s->Init.Mode))
{
/* Alternate function GPIOs control */
MODIFY_REG(hi2s->Instance->CFG2, SPI_CFG2_AFCNTR, (hi2s->Init.MasterKeepIOState));
}
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->State = HAL_I2S_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitializes the I2S peripheral
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_DeInit(I2S_HandleTypeDef *hi2s)
{
/* Check the I2S handle allocation */
if (hi2s == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance));
hi2s->State = HAL_I2S_STATE_BUSY;
/* Disable the I2S Peripheral Clock */
__HAL_I2S_DISABLE(hi2s);
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
if (hi2s->MspDeInitCallback == NULL)
{
hi2s->MspDeInitCallback = HAL_I2S_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
hi2s->MspDeInitCallback(hi2s);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
HAL_I2S_MspDeInit(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->State = HAL_I2S_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
/**
* @brief I2S MSP Init
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
__weak void HAL_I2S_MspInit(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2S_MspInit could be implemented in the user file
*/
}
/**
* @brief I2S MSP DeInit
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
__weak void HAL_I2S_MspDeInit(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2S_MspDeInit could be implemented in the user file
*/
}
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
/**
* @brief Register a User I2S Callback
* To be used instead of the weak predefined callback
* @param hi2s Pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for the specified I2S.
* @param CallbackID ID of the callback to be registered
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_RegisterCallback(I2S_HandleTypeDef *hi2s, HAL_I2S_CallbackIDTypeDef CallbackID,
pI2S_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hi2s->ErrorCode |= HAL_I2S_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hi2s);
if (HAL_I2S_STATE_READY == hi2s->State)
{
switch (CallbackID)
{
case HAL_I2S_TX_COMPLETE_CB_ID :
hi2s->TxCpltCallback = pCallback;
break;
case HAL_I2S_RX_COMPLETE_CB_ID :
hi2s->RxCpltCallback = pCallback;
break;
case HAL_I2S_TX_RX_COMPLETE_CB_ID :
hi2s->TxRxCpltCallback = pCallback;
break;
case HAL_I2S_TX_HALF_COMPLETE_CB_ID :
hi2s->TxHalfCpltCallback = pCallback;
break;
case HAL_I2S_RX_HALF_COMPLETE_CB_ID :
hi2s->RxHalfCpltCallback = pCallback;
break;
case HAL_I2S_TX_RX_HALF_COMPLETE_CB_ID :
hi2s->TxRxHalfCpltCallback = pCallback;
break;
case HAL_I2S_ERROR_CB_ID :
hi2s->ErrorCallback = pCallback;
break;
case HAL_I2S_MSPINIT_CB_ID :
hi2s->MspInitCallback = pCallback;
break;
case HAL_I2S_MSPDEINIT_CB_ID :
hi2s->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_I2S_STATE_RESET == hi2s->State)
{
switch (CallbackID)
{
case HAL_I2S_MSPINIT_CB_ID :
hi2s->MspInitCallback = pCallback;
break;
case HAL_I2S_MSPDEINIT_CB_ID :
hi2s->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hi2s);
return status;
}
/**
* @brief Unregister an I2S Callback
* I2S callback is redirected to the weak predefined callback
* @param hi2s Pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for the specified I2S.
* @param CallbackID ID of the callback to be unregistered
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_UnRegisterCallback(I2S_HandleTypeDef *hi2s, HAL_I2S_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hi2s);
if (HAL_I2S_STATE_READY == hi2s->State)
{
switch (CallbackID)
{
case HAL_I2S_TX_COMPLETE_CB_ID :
hi2s->TxCpltCallback = HAL_I2S_TxCpltCallback; /* Legacy weak TxCpltCallback */
break;
case HAL_I2S_RX_COMPLETE_CB_ID :
hi2s->RxCpltCallback = HAL_I2S_RxCpltCallback; /* Legacy weak RxCpltCallback */
break;
case HAL_I2S_TX_RX_COMPLETE_CB_ID :
hi2s->TxRxCpltCallback = HAL_I2SEx_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */
break;
case HAL_I2S_TX_HALF_COMPLETE_CB_ID :
hi2s->TxHalfCpltCallback = HAL_I2S_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
break;
case HAL_I2S_RX_HALF_COMPLETE_CB_ID :
hi2s->RxHalfCpltCallback = HAL_I2S_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
break;
case HAL_I2S_TX_RX_HALF_COMPLETE_CB_ID :
hi2s->TxRxHalfCpltCallback = HAL_I2SEx_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */
break;
case HAL_I2S_ERROR_CB_ID :
hi2s->ErrorCallback = HAL_I2S_ErrorCallback; /* Legacy weak ErrorCallback */
break;
case HAL_I2S_MSPINIT_CB_ID :
hi2s->MspInitCallback = HAL_I2S_MspInit; /* Legacy weak MspInit */
break;
case HAL_I2S_MSPDEINIT_CB_ID :
hi2s->MspDeInitCallback = HAL_I2S_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_I2S_STATE_RESET == hi2s->State)
{
switch (CallbackID)
{
case HAL_I2S_MSPINIT_CB_ID :
hi2s->MspInitCallback = HAL_I2S_MspInit; /* Legacy weak MspInit */
break;
case HAL_I2S_MSPDEINIT_CB_ID :
hi2s->MspDeInitCallback = HAL_I2S_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hi2s);
return status;
}
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup I2S_Exported_Functions_Group2 IO operation functions
* @brief Data transfers functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the I2S data
transfers.
(#) There are two modes of transfer:
(++) Blocking mode : The communication is performed in the polling mode.
The status of all data processing is returned by the same function
after finishing transfer.
(++) No-Blocking mode : The communication is performed using Interrupts
or DMA. These functions return the status of the transfer startup.
The end of the data processing will be indicated through the
dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when
using DMA mode.
(#) Blocking mode functions are :
(++) HAL_I2S_Transmit()
(++) HAL_I2S_Receive()
(++) HAL_I2SEx_TransmitReceive()
(#) No-Blocking mode functions with Interrupt are :
(++) HAL_I2S_Transmit_IT()
(++) HAL_I2S_Receive_IT()
(++) HAL_I2SEx_TransmitReceive_IT()
(#) No-Blocking mode functions with DMA are :
(++) HAL_I2S_Transmit_DMA()
(++) HAL_I2S_Receive_DMA()
(++) HAL_I2SEx_TransmitReceive_DMA()
(#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
(++) HAL_I2S_TxCpltCallback()
(++) HAL_I2S_RxCpltCallback()
(++) HAL_I2SEx_TxRxCpltCallback()
(++) HAL_I2S_ErrorCallback()
@endverbatim
* @{
*/
/**
* @brief Transmit an amount of data in blocking mode
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pData a 16-bit pointer to data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @param Timeout Timeout duration
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, const uint16_t *pData, uint16_t Size, uint32_t Timeout)
{
#if defined (__GNUC__)
__IO uint16_t *ptxdr_16bits = (__IO uint16_t *)(&(hi2s->Instance->TXDR));
#endif /* __GNUC__ */
uint32_t tickstart;
if ((pData == NULL) || (Size == 0UL))
{
return HAL_ERROR;
}
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_TX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->pTxBuffPtr = (const uint16_t *)pData;
hi2s->TxXferSize = Size;
hi2s->TxXferCount = Size;
/* Initialize fields not used in handle to zero */
hi2s->pRxBuffPtr = NULL;
hi2s->RxXferSize = (uint16_t) 0UL;
hi2s->RxXferCount = (uint16_t) 0UL;
/* Check if the I2S is already enabled */
if ((hi2s->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
/* Start the transfer */
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSTART);
/* Wait until TXP flag is set */
if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXP, SET, tickstart, Timeout) != HAL_OK)
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
return HAL_TIMEOUT;
}
while (hi2s->TxXferCount > 0UL)
{
if ((hi2s->Init.DataFormat == I2S_DATAFORMAT_24B) || (hi2s->Init.DataFormat == I2S_DATAFORMAT_32B))
{
/* Transmit data in 32 Bit mode */
hi2s->Instance->TXDR = *((const uint32_t *)hi2s->pTxBuffPtr);
hi2s->pTxBuffPtr += 2;
hi2s->TxXferCount--;
}
else
{
/* Transmit data in 16 Bit mode */
#if defined (__GNUC__)
*ptxdr_16bits = *((const uint16_t *)hi2s->pTxBuffPtr);
#else
*((__IO uint16_t *)&hi2s->Instance->TXDR) = *((const uint16_t *)hi2s->pTxBuffPtr);
#endif /* __GNUC__ */
hi2s->pTxBuffPtr++;
hi2s->TxXferCount--;
}
/* Wait until TXP flag is set */
if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXP, SET, tickstart, Timeout) != HAL_OK)
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
return HAL_TIMEOUT;
}
/* Check if an underrun occurs */
if (__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR) == SET)
{
/* Clear underrun flag */
__HAL_I2S_CLEAR_UDRFLAG(hi2s);
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR);
}
}
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
/**
* @brief Receive an amount of data in blocking mode
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pData a 16-bit pointer to data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @param Timeout Timeout duration
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @note In I2S Master Receiver mode, just after enabling the peripheral the clock will be generate
* in continuous way and as the I2S is not disabled at the end of the I2S transaction.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout)
{
#if defined (__GNUC__)
__IO uint16_t *prxdr_16bits = (__IO uint16_t *)(&(hi2s->Instance->RXDR));
#endif /* __GNUC__ */
uint32_t tickstart;
if ((pData == NULL) || (Size == 0UL))
{
return HAL_ERROR;
}
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_RX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->pRxBuffPtr = pData;
hi2s->RxXferSize = Size;
hi2s->RxXferCount = Size;
/* Initialize fields not used in handle to zero */
hi2s->pTxBuffPtr = NULL;
hi2s->TxXferSize = (uint16_t) 0UL;
hi2s->TxXferCount = (uint16_t) 0UL;
/* Check if the I2S is already enabled */
if ((hi2s->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
/* Start the transfer */
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSTART);
/* Receive data */
while (hi2s->RxXferCount > 0UL)
{
/* Wait until RXP flag is set */
if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXP, SET, tickstart, Timeout) != HAL_OK)
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
return HAL_TIMEOUT;
}
if ((hi2s->Init.DataFormat == I2S_DATAFORMAT_24B) || (hi2s->Init.DataFormat == I2S_DATAFORMAT_32B))
{
/* Receive data in 32 Bit mode */
*((uint32_t *)hi2s->pRxBuffPtr) = hi2s->Instance->RXDR;
hi2s->pRxBuffPtr += 2;
hi2s->RxXferCount--;
}
else
{
/* Receive data in 16 Bit mode */
#if defined (__GNUC__)
*((uint16_t *)hi2s->pRxBuffPtr) = *prxdr_16bits;
#else
*((uint16_t *)hi2s->pRxBuffPtr) = *((__IO uint16_t *)&hi2s->Instance->RXDR);
#endif /* __GNUC__ */
hi2s->pRxBuffPtr++;
hi2s->RxXferCount--;
}
/* Check if an overrun occurs */
if (__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR) == SET)
{
/* Clear overrun flag */
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR);
}
}
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
/**
* @brief Full-Duplex Transmit/Receive data in blocking mode.
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pTxData a 16-bit pointer to the Transmit data buffer.
* @param pRxData a 16-bit pointer to the Receive data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @param Timeout Timeout duration
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s, const uint16_t *pTxData, uint16_t *pRxData,
uint16_t Size, uint32_t Timeout)
{
uint32_t tmp_TxXferCount;
uint32_t tmp_RxXferCount;
uint32_t tickstart;
#if defined (__GNUC__)
__IO uint16_t *ptxdr_16bits = (__IO uint16_t *)(&(hi2s->Instance->TXDR));
__IO uint16_t *prxdr_16bits = (__IO uint16_t *)(&(hi2s->Instance->RXDR));
#endif /* __GNUC__ */
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
hi2s->TxXferSize = Size;
hi2s->TxXferCount = Size;
hi2s->pTxBuffPtr = (const uint16_t *)pTxData;
hi2s->RxXferSize = Size;
hi2s->RxXferCount = Size;
hi2s->pRxBuffPtr = pRxData;
tmp_TxXferCount = hi2s->TxXferCount;
tmp_RxXferCount = hi2s->RxXferCount;
/* Set state and reset error code */
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
/* Check if the I2S is already enabled */
if ((hi2s->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
/* Start the transfer */
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSTART);
while ((tmp_TxXferCount > 0UL) || (tmp_RxXferCount > 0UL))
{
if ((__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXP) == SET) && (tmp_TxXferCount != 0UL))
{
if ((hi2s->Init.DataFormat == I2S_DATAFORMAT_24B) || (hi2s->Init.DataFormat == I2S_DATAFORMAT_32B))
{
/* Transmit data in 32 Bit mode */
hi2s->Instance->TXDR = *((const uint32_t *)hi2s->pTxBuffPtr);
hi2s->pTxBuffPtr += 2;
tmp_TxXferCount--;
}
else
{
/* Transmit data in 16 Bit mode */
#if defined (__GNUC__)
*ptxdr_16bits = *((const uint16_t *)hi2s->pTxBuffPtr);
#else
*((__IO uint16_t *)&hi2s->Instance->TXDR) = *((const uint16_t *)hi2s->pTxBuffPtr);
#endif /* __GNUC__ */
hi2s->pTxBuffPtr++;
tmp_TxXferCount--;
}
/* Check if an underrun occurs */
if (__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR) == SET)
{
/* Clear underrun flag */
__HAL_I2S_CLEAR_UDRFLAG(hi2s);
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR);
}
}
if ((__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXP) == SET) && (tmp_RxXferCount != 0UL))
{
if ((hi2s->Init.DataFormat == I2S_DATAFORMAT_24B) || (hi2s->Init.DataFormat == I2S_DATAFORMAT_32B))
{
/* Receive data in 32 Bit mode */
*((uint32_t *)hi2s->pRxBuffPtr) = hi2s->Instance->RXDR;
hi2s->pRxBuffPtr += 2;
tmp_RxXferCount--;
}
else
{
/* Receive data in 16 Bit mode */
#if defined (__GNUC__)
*((uint16_t *)hi2s->pRxBuffPtr) = *prxdr_16bits;
#else
*((uint16_t *)hi2s->pRxBuffPtr) = *((__IO uint16_t *)&hi2s->Instance->RXDR);
#endif /* __GNUC__ */
hi2s->pRxBuffPtr++;
tmp_RxXferCount--;
}
/* Check if an overrun occurs */
if (__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR) == SET)
{
/* Clear overrun flag */
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR);
}
}
/* Timeout management */
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
{
/* Set the error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
return HAL_TIMEOUT;
}
}
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
/**
* @brief Transmit an amount of data in non-blocking mode with Interrupt
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pData a 16-bit pointer to data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, const uint16_t *pData, uint16_t Size)
{
if ((pData == NULL) || (Size == 0UL))
{
return HAL_ERROR;
}
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_TX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->pTxBuffPtr = (const uint16_t *)pData;
hi2s->TxXferSize = Size;
hi2s->TxXferCount = Size;
/* Initialize fields not used in handle to zero */
hi2s->pRxBuffPtr = NULL;
hi2s->RxXferSize = (uint16_t) 0UL;
hi2s->RxXferCount = (uint16_t) 0UL;
/* Set the function for IT treatment */
if ((hi2s->Init.DataFormat == I2S_DATAFORMAT_24B) || (hi2s->Init.DataFormat == I2S_DATAFORMAT_32B))
{
hi2s->TxISR = I2S_Transmit_32Bit_IT;
}
else
{
hi2s->TxISR = I2S_Transmit_16Bit_IT;
}
/* Check if the I2S is already enabled */
if ((hi2s->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
/* Enable TXP and UDR interrupt */
__HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXP | I2S_IT_UDR));
/* Enable TIFRE interrupt if the mode is Slave */
if (hi2s->Init.Mode == I2S_MODE_SLAVE_TX)
{
__HAL_I2S_ENABLE_IT(hi2s, I2S_IT_FRE);
}
/* Start the transfer */
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSTART);
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
/**
* @brief Receive an amount of data in non-blocking mode with Interrupt
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pData a 16-bit pointer to the Receive data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @note It is recommended to use DMA for the I2S receiver to avoid de-synchronization
* between Master and Slave otherwise the I2S interrupt should be optimized.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
{
if ((pData == NULL) || (Size == 0UL))
{
return HAL_ERROR;
}
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_RX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->pRxBuffPtr = pData;
hi2s->RxXferSize = Size;
hi2s->RxXferCount = Size;
/* Initialize fields not used in handle to zero */
hi2s->pTxBuffPtr = NULL;
hi2s->TxXferSize = (uint16_t) 0UL;
hi2s->TxXferCount = (uint16_t) 0UL;
/* Set the function for IT treatment */
if ((hi2s->Init.DataFormat == I2S_DATAFORMAT_24B) || (hi2s->Init.DataFormat == I2S_DATAFORMAT_32B))
{
hi2s->RxISR = I2S_Receive_32Bit_IT;
}
else
{
hi2s->RxISR = I2S_Receive_16Bit_IT;
}
/* Check if the I2S is already enabled */
if ((hi2s->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
/* Enable RXP and ERR interrupt */
__HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXP | I2S_IT_OVR));
/* Enable TIFRE interrupt if the mode is Slave */
if (hi2s->Init.Mode == I2S_MODE_SLAVE_RX)
{
__HAL_I2S_ENABLE_IT(hi2s, I2S_IT_FRE);
}
/* Start the transfer */
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSTART);
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
/**
* @brief Full-Duplex Transmit/Receive data in non-blocking mode using Interrupt
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pTxData a 16-bit pointer to the Transmit data buffer.
* @param pRxData a 16-bit pointer to the Receive data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_IT(I2S_HandleTypeDef *hi2s, const uint16_t *pTxData, uint16_t *pRxData,
uint16_t Size)
{
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
hi2s->pTxBuffPtr = (const uint16_t *)pTxData;
hi2s->pRxBuffPtr = pRxData;
hi2s->TxXferSize = Size;
hi2s->TxXferCount = Size;
hi2s->RxXferSize = Size;
hi2s->RxXferCount = Size;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
/* Set the function for IT treatment */
if ((hi2s->Init.DataFormat == I2S_DATAFORMAT_24B) || (hi2s->Init.DataFormat == I2S_DATAFORMAT_32B))
{
hi2s->TxISR = I2S_Transmit_32Bit_IT;
hi2s->RxISR = I2S_Receive_32Bit_IT;
}
else
{
hi2s->TxISR = I2S_Transmit_16Bit_IT;
hi2s->RxISR = I2S_Receive_16Bit_IT;
}
/* Check if the I2S is already enabled */
if ((hi2s->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
/* Enable TXP, RXP, DXP, UDR, OVR interrupts */
__HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXP | I2S_IT_RXP | I2S_IT_DXP | I2S_IT_UDR | I2S_IT_OVR));
/* Enable TIFRE interrupt if the mode is Slave */
if (hi2s->Init.Mode == I2S_MODE_SLAVE_FULLDUPLEX)
{
__HAL_I2S_ENABLE_IT(hi2s, I2S_IT_FRE);
}
/* Start the transfer */
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSTART);
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
/**
* @brief Transmit an amount of data in non-blocking mode with DMA
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pData a 16-bit pointer to the Transmit data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, const uint16_t *pData, uint16_t Size)
{
HAL_StatusTypeDef errorcode = HAL_OK;
if ((pData == NULL) || (Size == 0UL))
{
return HAL_ERROR;
}
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_TX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->pTxBuffPtr = (const uint16_t *)pData;
hi2s->TxXferSize = Size;
hi2s->TxXferCount = Size;
/* Init field not used in handle to zero */
hi2s->pRxBuffPtr = NULL;
hi2s->RxXferSize = (uint16_t)0UL;
hi2s->RxXferCount = (uint16_t)0UL;
/* Set the I2S Tx DMA Half transfer complete callback */
hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt;
/* Set the I2S Tx DMA transfer complete callback */
hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt;
/* Set the DMA error callback */
hi2s->hdmatx->XferErrorCallback = I2S_DMAError;
/* Enable the Tx DMA Stream/Channel */
if (HAL_OK != HAL_DMA_Start_IT(hi2s->hdmatx, (uint32_t)hi2s->pTxBuffPtr, (uint32_t)&hi2s->Instance->TXDR,
hi2s->TxXferCount))
{
/* Update I2S error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA);
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
errorcode = HAL_ERROR;
return errorcode;
}
/* Check if the I2S Tx request is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->CFG1, SPI_CFG1_TXDMAEN))
{
/* Enable Tx DMA Request */
SET_BIT(hi2s->Instance->CFG1, SPI_CFG1_TXDMAEN);
}
/* Check if the I2S is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->CR1, SPI_CR1_SPE))
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
/* Start the transfer */
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSTART);
__HAL_UNLOCK(hi2s);
return errorcode;
}
/**
* @brief Receive an amount of data in non-blocking mode with DMA
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pData a 16-bit pointer to the Receive data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size)
{
HAL_StatusTypeDef errorcode = HAL_OK;
if ((pData == NULL) || (Size == 0UL))
{
return HAL_ERROR;
}
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY_RX;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->pRxBuffPtr = pData;
hi2s->RxXferSize = Size;
hi2s->RxXferCount = Size;
/* Init field not used in handle to zero */
hi2s->pTxBuffPtr = NULL;
hi2s->TxXferSize = (uint16_t)0UL;
hi2s->TxXferCount = (uint16_t)0UL;
/* Set the I2S Rx DMA Half transfer complete callback */
hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt;
/* Set the I2S Rx DMA transfer complete callback */
hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt;
/* Set the DMA error callback */
hi2s->hdmarx->XferErrorCallback = I2S_DMAError;
/* Enable the Rx DMA Stream/Channel */
if (HAL_OK != HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->RXDR, (uint32_t)hi2s->pRxBuffPtr,
hi2s->RxXferCount))
{
/* Update I2S error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA);
hi2s->State = HAL_I2S_STATE_READY;
errorcode = HAL_ERROR;
__HAL_UNLOCK(hi2s);
return errorcode;
}
/* Check if the I2S Rx request is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->CFG1, SPI_CFG1_RXDMAEN))
{
/* Enable Rx DMA Request */
SET_BIT(hi2s->Instance->CFG1, SPI_CFG1_RXDMAEN);
}
/* Check if the I2S is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->CR1, SPI_CR1_SPE))
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
/* Start the transfer */
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSTART);
__HAL_UNLOCK(hi2s);
return errorcode;
}
/**
* @brief Full-Duplex Transmit/Receive data in non-blocking mode using DMA
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param pTxData a 16-bit pointer to the Transmit data buffer.
* @param pRxData a 16-bit pointer to the Receive data buffer.
* @param Size number of data sample to be sent:
* @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S
* configuration phase, the Size parameter means the number of 16-bit data length
* in the transaction and when a 24-bit data frame or a 32-bit data frame is selected
* the Size parameter means the number of 16-bit data length.
* @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization
* between Master and Slave(example: audio streaming).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_DMA(I2S_HandleTypeDef *hi2s, const uint16_t *pTxData, uint16_t *pRxData,
uint16_t Size)
{
HAL_StatusTypeDef errorcode = HAL_OK;
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
if (hi2s->State != HAL_I2S_STATE_READY)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hi2s);
hi2s->pTxBuffPtr = (const uint16_t *)pTxData;
hi2s->pRxBuffPtr = pRxData;
hi2s->TxXferSize = Size;
hi2s->TxXferCount = Size;
hi2s->RxXferSize = Size;
hi2s->RxXferCount = Size;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
hi2s->State = HAL_I2S_STATE_BUSY_TX_RX;
/* Reset the Tx/Rx DMA bits */
CLEAR_BIT(hi2s->Instance->CFG1, SPI_CFG1_TXDMAEN | SPI_CFG1_RXDMAEN);
/* Set the I2S Rx DMA Half transfer complete callback */
hi2s->hdmarx->XferHalfCpltCallback = I2SEx_DMATxRxHalfCplt;
/* Set the I2S Rx DMA transfer complete callback */
hi2s->hdmarx->XferCpltCallback = I2SEx_DMATxRxCplt;
/* Set the I2S Rx DMA error callback */
hi2s->hdmarx->XferErrorCallback = I2S_DMAError;
/* Enable the Tx DMA Stream/Channel */
if (HAL_OK != HAL_DMA_Start_IT(hi2s->hdmatx, (uint32_t)hi2s->pTxBuffPtr, (uint32_t)&hi2s->Instance->TXDR,
hi2s->TxXferCount))
{
/* Update I2S error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA);
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
errorcode = HAL_ERROR;
return errorcode;
}
/* Check if the I2S Tx request is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->CFG1, SPI_CFG1_TXDMAEN))
{
/* Enable Tx DMA Request */
SET_BIT(hi2s->Instance->CFG1, SPI_CFG1_TXDMAEN);
}
/* Enable the Rx DMA Stream/Channel */
if (HAL_OK != HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->RXDR, (uint32_t)hi2s->pRxBuffPtr,
hi2s->RxXferCount))
{
/* Update I2S error code */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA);
hi2s->State = HAL_I2S_STATE_READY;
errorcode = HAL_ERROR;
__HAL_UNLOCK(hi2s);
return errorcode;
}
/* Check if the I2S Rx request is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->CFG1, SPI_CFG1_RXDMAEN))
{
/* Enable Rx DMA Request */
SET_BIT(hi2s->Instance->CFG1, SPI_CFG1_RXDMAEN);
}
/* Check if the I2S is already enabled */
if (HAL_IS_BIT_CLR(hi2s->Instance->CR1, SPI_CR1_SPE))
{
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
}
/* Start the transfer */
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSTART);
__HAL_UNLOCK(hi2s);
return errorcode;
}
/**
* @brief Pauses the audio DMA Stream/Channel playing from the Media.
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s)
{
/* Process Locked */
__HAL_LOCK(hi2s);
uint32_t tickstart;
/* Get tick */
tickstart = HAL_GetTick();
/* Check if the I2S peripheral is in master mode */
if (IS_I2S_MASTER(hi2s->Init.Mode))
{
/* Check if there is a transfer on-going */
if (HAL_IS_BIT_SET(hi2s->Instance->CR1, SPI_CR1_CSTART) == 0UL)
{
/* Set error code to no on going transfer */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_NO_OGT);
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSUSP);
while (HAL_IS_BIT_SET(hi2s->Instance->CR1, SPI_CR1_CSTART) != 0UL)
{
if ((((HAL_GetTick() - tickstart) >= I2S_TIMEOUT) && (I2S_TIMEOUT != HAL_MAX_DELAY)) || (I2S_TIMEOUT == 0U))
{
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2s);
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_TIMEOUT);
hi2s->State = HAL_I2S_STATE_READY;
return HAL_TIMEOUT;
}
}
/* Disable I2S peripheral */
__HAL_I2S_DISABLE(hi2s);
hi2s->State = HAL_I2S_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
else
{
/* Set error code to not supported */
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_NOT_SUPPORTED);
hi2s->State = HAL_I2S_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
}
/**
* @brief Resumes the audio DMA Stream/Channel playing from the Media.
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s)
{
/* Process Locked */
__HAL_LOCK(hi2s);
if (hi2s->State != HAL_I2S_STATE_READY)
{
hi2s->State = HAL_I2S_STATE_READY;
__HAL_UNLOCK(hi2s);
return HAL_ERROR;
}
/* Set state and reset error code */
hi2s->State = HAL_I2S_STATE_BUSY;
hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
/* Enable I2S peripheral */
__HAL_I2S_ENABLE(hi2s);
/* Start the transfer */
SET_BIT(hi2s->Instance->CR1, SPI_CR1_CSTART);
/* Process Unlocked */
__HAL_UNLOCK(hi2s);
return HAL_OK;
}
/**
* @brief Stops the audio DMA Stream/Channel playing from the Media.
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s)
{
HAL_StatusTypeDef errorcode = HAL_OK;
/* The Lock is not implemented on this API to allow the user application
to call the HAL I2S API under callbacks HAL_I2S_TxCpltCallback() or HAL_I2S_RxCpltCallback()
when calling HAL_DMA_Abort() API the DMA TX or RX Transfer complete interrupt is generated
and the correspond call back is executed HAL_I2S_TxCpltCallback() or HAL_I2S_RxCpltCallback()
*/
/* Disable the I2S Tx/Rx DMA requests */
CLEAR_BIT(hi2s->Instance->CFG1, SPI_CFG1_TXDMAEN);
CLEAR_BIT(hi2s->Instance->CFG1, SPI_CFG1_RXDMAEN);
/* Abort the I2S DMA tx Stream/Channel */
if (hi2s->hdmatx != NULL)
{
/* Disable the I2S DMA tx Stream/Channel */
if (HAL_OK != HAL_DMA_Abort(hi2s->hdmatx))
{
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA);
errorcode = HAL_ERROR;
}
}
/* Abort the I2S DMA rx Stream/Channel */
if (hi2s->hdmarx != NULL)
{
/* Disable the I2S DMA rx Stream/Channel */
if (HAL_OK != HAL_DMA_Abort(hi2s->hdmarx))
{
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA);
errorcode = HAL_ERROR;
}
}
/* Disable I2S peripheral */
__HAL_I2S_DISABLE(hi2s);
hi2s->State = HAL_I2S_STATE_READY;
return errorcode;
}
/**
* @brief This function handles I2S interrupt request.
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s)
{
uint32_t i2sier = hi2s->Instance->IER;
uint32_t i2ssr = hi2s->Instance->SR;
uint32_t trigger = i2sier & i2ssr;
if (hi2s->State == HAL_I2S_STATE_BUSY_RX)
{
/* I2S in mode Receiver ------------------------------------------------*/
if (HAL_IS_BIT_SET(trigger, I2S_FLAG_RXP) && HAL_IS_BIT_CLR(trigger, I2S_FLAG_OVR))
{
hi2s->RxISR(hi2s);
}
/* I2S Overrun error interrupt occurred -------------------------------------*/
if (HAL_IS_BIT_SET(trigger, I2S_FLAG_OVR))
{
/* Disable RXP and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXP | I2S_IT_ERR));
/* Clear Overrun flag */
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Set the error code and execute error callback*/
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR);
/* Call user error callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->ErrorCallback(hi2s);
#else
HAL_I2S_ErrorCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
if (hi2s->State == HAL_I2S_STATE_BUSY_TX)
{
/* I2S in mode Transmitter -----------------------------------------------*/
if (HAL_IS_BIT_SET(trigger, I2S_FLAG_TXP) && HAL_IS_BIT_CLR(trigger, I2S_FLAG_UDR))
{
hi2s->TxISR(hi2s);
}
/* I2S Underrun error interrupt occurred --------------------------------*/
if (HAL_IS_BIT_SET(trigger, I2S_FLAG_UDR))
{
/* Disable TXP and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXP | I2S_IT_ERR));
/* Clear Underrun flag */
__HAL_I2S_CLEAR_UDRFLAG(hi2s);
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Set the error code and execute error callback*/
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR);
/* Call user error callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->ErrorCallback(hi2s);
#else
HAL_I2S_ErrorCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
if (hi2s->State == HAL_I2S_STATE_BUSY_TX_RX)
{
/* I2S in mode Transmitter -----------------------------------------------*/
if (HAL_IS_BIT_SET(trigger, I2S_FLAG_DXP))
{
hi2s->TxISR(hi2s);
hi2s->RxISR(hi2s);
}
/* I2S in mode Receiver ------------------------------------------------*/
if (HAL_IS_BIT_SET(trigger, I2S_FLAG_RXP) && HAL_IS_BIT_CLR(trigger, I2S_FLAG_DXP))
{
hi2s->RxISR(hi2s);
}
/* I2S in mode Transmitter -----------------------------------------------*/
if (HAL_IS_BIT_SET(trigger, I2S_FLAG_TXP) && HAL_IS_BIT_CLR(trigger, I2S_FLAG_DXP))
{
hi2s->TxISR(hi2s);
}
/* I2S Underrun error interrupt occurred --------------------------------*/
if (HAL_IS_BIT_SET(trigger, I2S_FLAG_UDR))
{
/* Disable TXP, RXP and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXP | I2S_IT_RXP | I2S_IT_ERR));
/* Clear Underrun flag */
__HAL_I2S_CLEAR_UDRFLAG(hi2s);
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Set the error code and execute error callback*/
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_UDR);
/* Call user error callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->ErrorCallback(hi2s);
#else
HAL_I2S_ErrorCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/* I2S Overrun error interrupt occurred -------------------------------------*/
if (HAL_IS_BIT_SET(trigger, I2S_FLAG_OVR))
{
/* Disable TXP, RXP and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXP | I2S_IT_RXP | I2S_IT_ERR));
/* Clear Overrun flag */
__HAL_I2S_CLEAR_OVRFLAG(hi2s);
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Set the error code and execute error callback*/
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_OVR);
/* Call user error callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->ErrorCallback(hi2s);
#else
HAL_I2S_ErrorCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
}
/**
* @brief Tx Transfer Half completed callbacks
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
__weak void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2S_TxHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Tx Transfer completed callbacks
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
__weak void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2S_TxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Transfer half completed callbacks
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
__weak void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2S_RxHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Transfer completed callbacks
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
__weak void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2S_RxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Transfer half completed callbacks
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
__weak void HAL_I2SEx_TxRxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2S_RxHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Transfer completed callbacks
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
__weak void HAL_I2SEx_TxRxCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2S_RxCpltCallback could be implemented in the user file
*/
}
/**
* @brief I2S error callbacks
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
__weak void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hi2s);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_I2S_ErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup I2S_Exported_Functions_Group3 Peripheral State and Errors functions
* @brief Peripheral State functions
*
@verbatim
===============================================================================
##### Peripheral State and Errors functions #####
===============================================================================
[..]
This subsection permits to get in run-time the status of the peripheral
and the data flow.
@endverbatim
* @{
*/
/**
* @brief Return the I2S state
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval HAL state
*/
HAL_I2S_StateTypeDef HAL_I2S_GetState(const I2S_HandleTypeDef *hi2s)
{
return hi2s->State;
}
/**
* @brief Return the I2S error code
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval I2S Error Code
*/
uint32_t HAL_I2S_GetError(const I2S_HandleTypeDef *hi2s)
{
return hi2s->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup I2S_Private_Functions
* @{
*/
/**
* @brief DMA I2S transmit process complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void I2S_DMATxCplt(DMA_HandleTypeDef *hdma)
{
/* Derogation MISRAC2012-Rule-11.5 */
I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* if DMA is configured in DMA_NORMAL Mode */
if (hdma->Init.Mode == DMA_NORMAL)
{
/* Disable Tx DMA Request */
CLEAR_BIT(hi2s->Instance->CFG1, SPI_CFG1_TXDMAEN);
hi2s->TxXferCount = (uint16_t) 0UL;
hi2s->State = HAL_I2S_STATE_READY;
}
/* Call user Tx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->TxCpltCallback(hi2s);
#else
HAL_I2S_TxCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/**
* @brief DMA I2S transmit process half complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
{
/* Derogation MISRAC2012-Rule-11.5 */
I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Call user Tx half complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->TxHalfCpltCallback(hi2s);
#else
HAL_I2S_TxHalfCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/**
* @brief DMA I2S receive process complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void I2S_DMARxCplt(DMA_HandleTypeDef *hdma)
{
/* Derogation MISRAC2012-Rule-11.5 */
I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* if DMA is configured in DMA_NORMAL Mode */
if (hdma->Init.Mode == DMA_NORMAL)
{
/* Disable Rx DMA Request */
CLEAR_BIT(hi2s->Instance->CFG1, SPI_CFG1_RXDMAEN);
hi2s->RxXferCount = (uint16_t)0UL;
hi2s->State = HAL_I2S_STATE_READY;
}
/* Call user Rx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->RxCpltCallback(hi2s);
#else
HAL_I2S_RxCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/**
* @brief DMA I2S receive process half complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
{
/* Derogation MISRAC2012-Rule-11.5 */
I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Call user Rx half complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->RxHalfCpltCallback(hi2s);
#else
HAL_I2S_RxHalfCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/**
* @brief DMA I2S transmit receive process complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void I2SEx_DMATxRxCplt(DMA_HandleTypeDef *hdma)
{
I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* if DMA is configured in DMA_NORMAL Mode */
if (hdma->Init.Mode == DMA_NORMAL)
{
/* Disable Tx DMA Request */
CLEAR_BIT(hi2s->Instance->CFG1, SPI_CFG1_TXDMAEN);
hi2s->TxXferCount = (uint16_t) 0UL;
/* Disable Rx DMA Request */
CLEAR_BIT(hi2s->Instance->CFG1, SPI_CFG1_RXDMAEN);
hi2s->RxXferCount = (uint16_t)0UL;
/* Updated HAL State */
hi2s->State = HAL_I2S_STATE_READY;
}
/* Call user TxRx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->TxRxCpltCallback(hi2s);
#else
HAL_I2SEx_TxRxCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/**
* @brief DMA I2S transmit receive process half complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void I2SEx_DMATxRxHalfCplt(DMA_HandleTypeDef *hdma)
{
I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Call user TxRx Half complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1U)
hi2s->TxRxHalfCpltCallback(hi2s);
#else
HAL_I2SEx_TxRxHalfCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/**
* @brief DMA I2S communication error callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void I2S_DMAError(DMA_HandleTypeDef *hdma)
{
/* Derogation MISRAC2012-Rule-11.5 */
I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Disable Rx and Tx DMA Request */
CLEAR_BIT(hi2s->Instance->CFG1, (SPI_CFG1_RXDMAEN | SPI_CFG1_TXDMAEN));
hi2s->TxXferCount = (uint16_t) 0UL;
hi2s->RxXferCount = (uint16_t) 0UL;
hi2s->State = HAL_I2S_STATE_READY;
/* Set the error code and execute error callback*/
SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA);
/* Call user error callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->ErrorCallback(hi2s);
#else
HAL_I2S_ErrorCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
/**
* @brief Manage the transmission 16-bit in Interrupt context
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
static void I2S_Transmit_16Bit_IT(I2S_HandleTypeDef *hi2s)
{
/* Transmit data */
#if defined (__GNUC__)
__IO uint16_t *ptxdr_16bits = (__IO uint16_t *)(&(hi2s->Instance->TXDR));
*ptxdr_16bits = *((const uint16_t *)hi2s->pTxBuffPtr);
#else
*((__IO uint16_t *)&hi2s->Instance->TXDR) = *((const uint16_t *)hi2s->pTxBuffPtr);
#endif /* __GNUC__ */
hi2s->pTxBuffPtr++;
hi2s->TxXferCount--;
if (hi2s->TxXferCount == 0UL)
{
/* Disable TXP and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXP | I2S_IT_ERR));
if ((hi2s->Init.Mode == I2S_MODE_SLAVE_TX) || (hi2s->Init.Mode == I2S_MODE_MASTER_TX))
{
hi2s->State = HAL_I2S_STATE_READY;
/* Call user Tx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->TxCpltCallback(hi2s);
#else
HAL_I2S_TxCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
}
/**
* @brief Manage the transmission 32-bit in Interrupt context
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
static void I2S_Transmit_32Bit_IT(I2S_HandleTypeDef *hi2s)
{
/* Transmit data */
hi2s->Instance->TXDR = *((const uint32_t *)hi2s->pTxBuffPtr);
hi2s->pTxBuffPtr += 2;
hi2s->TxXferCount--;
if (hi2s->TxXferCount == 0UL)
{
/* Disable TXP and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXP | I2S_IT_ERR));
if ((hi2s->Init.Mode == I2S_MODE_SLAVE_TX) || (hi2s->Init.Mode == I2S_MODE_MASTER_TX))
{
hi2s->State = HAL_I2S_STATE_READY;
/* Call user Tx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
hi2s->TxCpltCallback(hi2s);
#else
HAL_I2S_TxCpltCallback(hi2s);
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
}
/**
* @brief Manage the reception 16-bit in Interrupt context
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
static void I2S_Receive_16Bit_IT(I2S_HandleTypeDef *hi2s)
{
/* Receive data */
#if defined (__GNUC__)
__IO uint16_t *prxdr_16bits = (__IO uint16_t *)(&(hi2s->Instance->RXDR));
*((uint16_t *)hi2s->pRxBuffPtr) = *prxdr_16bits;
#else
*((uint16_t *)hi2s->pRxBuffPtr) = *((__IO uint16_t *)&hi2s->Instance->RXDR);
#endif /* __GNUC__ */
hi2s->pRxBuffPtr++;
hi2s->RxXferCount--;
if (hi2s->RxXferCount == 0UL)
{
if (IS_I2S_FULLDUPLEX(hi2s->Init.Mode))
{
/* Disable TXP, RXP, DXP, ERR interrupts */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXP | I2S_IT_RXP | I2S_IT_DXP | I2S_IT_ERR));
}
else
{
/* Disable RXP and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXP | I2S_IT_ERR));
}
hi2s->State = HAL_I2S_STATE_READY;
/* Call user Rx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
if (IS_I2S_FULLDUPLEX(hi2s->Init.Mode))
{
hi2s->TxRxCpltCallback(hi2s);
}
else
{
hi2s->RxCpltCallback(hi2s);
}
#else
if (IS_I2S_FULLDUPLEX(hi2s->Init.Mode))
{
HAL_I2SEx_TxRxCpltCallback(hi2s);
}
else
{
HAL_I2S_RxCpltCallback(hi2s);
}
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
/**
* @brief Manage the reception 32-bit in Interrupt context
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @retval None
*/
static void I2S_Receive_32Bit_IT(I2S_HandleTypeDef *hi2s)
{
/* Receive data */
*((uint32_t *)hi2s->pRxBuffPtr) = hi2s->Instance->RXDR;
hi2s->pRxBuffPtr += 2;
hi2s->RxXferCount--;
if (hi2s->RxXferCount == 0UL)
{
if (IS_I2S_FULLDUPLEX(hi2s->Init.Mode))
{
/* Disable TXP, RXP, DXP, ERR interrupts */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXP | I2S_IT_RXP | I2S_IT_DXP | I2S_IT_ERR));
}
else
{
/* Disable RXP and ERR interrupt */
__HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_RXP | I2S_IT_ERR));
}
hi2s->State = HAL_I2S_STATE_READY;
/* Call user Rx complete callback */
#if (USE_HAL_I2S_REGISTER_CALLBACKS == 1UL)
if (IS_I2S_FULLDUPLEX(hi2s->Init.Mode))
{
hi2s->TxRxCpltCallback(hi2s);
}
else
{
hi2s->RxCpltCallback(hi2s);
}
#else
if (IS_I2S_FULLDUPLEX(hi2s->Init.Mode))
{
HAL_I2SEx_TxRxCpltCallback(hi2s);
}
else
{
HAL_I2S_RxCpltCallback(hi2s);
}
#endif /* USE_HAL_I2S_REGISTER_CALLBACKS */
}
}
/**
* @brief This function handles I2S Communication Timeout.
* @param hi2s pointer to a I2S_HandleTypeDef structure that contains
* the configuration information for I2S module
* @param Flag Flag checked
* @param State Value of the flag expected
* @param Tickstart Tick start value
* @param Timeout Duration of the timeout
* @retval HAL status
*/
static HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, FlagStatus State,
uint32_t Tickstart, uint32_t Timeout)
{
/* Wait until flag is set to status*/
while (((__HAL_I2S_GET_FLAG(hi2s, Flag)) ? SET : RESET) != State)
{
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - Tickstart) >= Timeout) || (Timeout == 0UL))
{
/* Set the I2S State ready */
hi2s->State = HAL_I2S_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2s);
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_I2S_MODULE_ENABLED */