/**
******************************************************************************
* @file stm32h7xx_hal_swpmi.c
* @author MCD Application Team
* @brief SWPMI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Single Wire Protocol Master Interface (SWPMI).
* + Initialization and Configuration
* + Data transfers functions
* + DMA transfers management
* + Interrupts and flags management
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
The SWPMI HAL driver can be used as follows:
(#) Declare a SWPMI_HandleTypeDef handle structure (eg. SWPMI_HandleTypeDef hswpmi).
(#) Initialize the SWPMI low level resources by implementing the HAL_SWPMI_MspInit() API:
(##) Enable the SWPMIx interface clock with __HAL_RCC_SWPMIx_CLK_ENABLE().
(##) SWPMI IO configuration:
(+++) Enable the clock for the SWPMI GPIO.
(+++) Configure these SWPMI pins as alternate function pull-up.
(##) NVIC configuration if you need to use interrupt process (HAL_SWPMI_Transmit_IT()
and HAL_SWPMI_Receive_IT() APIs):
(+++) Configure the SWPMIx interrupt priority with HAL_NVIC_SetPriority().
(+++) Enable the NVIC SWPMI IRQ handle with HAL_NVIC_EnableIRQ().
(##) DMA Configuration if you need to use DMA process (HAL_SWPMI_Transmit_DMA()
and HAL_SWPMI_Receive_DMA() APIs):
(+++) Declare a DMA handle structure for the Tx/Rx streams.
(+++) Enable the DMAx interface clock.
(+++) Configure the declared DMA handle structure with the required
Tx/Rx parameters.
(+++) Configure the DMA Tx/Rx streams and requests.
(+++) Associate the initialized DMA handle to the SWPMI DMA Tx/Rx handle.
(+++) Configure the priority and enable the NVIC for the transfer complete
interrupt on the DMA Tx/Rx streams.
(#) Program the Bite Rate, Tx Buffering mode, Rx Buffering mode in the Init structure.
(#) Enable the SWPMI peripheral by calling the HAL_SWPMI_Init() function.
[..]
Three operation modes are available within this driver :
*** Polling mode IO operation ***
=================================
[..]
(+) Send an amount of data in blocking mode using HAL_SWPMI_Transmit()
(+) Receive an amount of data in blocking mode using HAL_SWPMI_Receive()
*** Interrupt mode IO operation ***
===================================
[..]
(+) Send an amount of data in non-blocking mode using HAL_SWPMI_Transmit_IT()
(+) At transmission end of transfer HAL_SWPMI_TxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_SWPMI_TxCpltCallback()
(+) Receive an amount of data in non-blocking mode using HAL_SWPMI_Receive_IT()
(+) At reception end of transfer HAL_SWPMI_RxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_SWPMI_RxCpltCallback()
(+) In case of flag error, HAL_SWPMI_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_SWPMI_ErrorCallback()
*** DMA mode IO operation ***
=============================
[..]
(+) Send an amount of data in non-blocking mode (DMA) using HAL_SWPMI_Transmit_DMA()
(+) At transmission end of transfer HAL_SWPMI_TxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_SWPMI_TxCpltCallback()
(+) Receive an amount of data in non-blocking mode (DMA) using HAL_SWPMI_Receive_DMA()
(+) At reception end of transfer HAL_SWPMI_RxCpltCallback() is executed and user can
add his own code by customization of function pointer HAL_SWPMI_RxCpltCallback()
(+) In case of flag error, HAL_SWPMI_ErrorCallback() function is executed and user can
add his own code by customization of function pointer HAL_SWPMI_ErrorCallback()
(+) Stop the DMA Transfer using HAL_SWPMI_DMAStop()
*** SWPMI HAL driver additional function list ***
===============================================
[..]
Below the list the others API available SWPMI HAL driver :
(+) HAL_SWPMI_EnableLoopback(): Enable the loopback mode for test purpose only
(+) HAL_SWPMI_DisableLoopback(): Disable the loopback mode
*** SWPMI HAL driver macros list ***
==================================
[..]
Below the list of most used macros in SWPMI HAL driver :
(+) __HAL_SWPMI_ENABLE(): Enable the SWPMI peripheral
(+) __HAL_SWPMI_DISABLE(): Disable the SWPMI peripheral
(+) __HAL_SWPMI_TRANSCEIVER_ENABLE(): Enable the SWPMI peripheral transceiver
(+) __HAL_SWPMI_TRANSCEIVER_DISABLE(): Disable the SWPMI peripheral transceiver
(+) __HAL_SWPMI_ENABLE_IT(): Enable the specified SWPMI interrupts
(+) __HAL_SWPMI_DISABLE_IT(): Disable the specified SWPMI interrupts
(+) __HAL_SWPMI_GET_IT_SOURCE(): Check if the specified SWPMI interrupt source is
enabled or disabled
(+) __HAL_SWPMI_GET_FLAG(): Check whether the specified SWPMI flag is set or not
*** Callback registration ***
=============================
[..]
The compilation define USE_HAL_SWPMI_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
[..]
Use function HAL_SWPMI_RegisterCallback() to register a user callback. It allows
to register the following callbacks:
(+) RxCpltCallback : SWPMI receive complete.
(+) RxHalfCpltCallback : SWPMI receive half complete.
(+) TxCpltCallback : SWPMI transmit complete.
(+) TxHalfCpltCallback : SWPMI transmit half complete.
(+) ErrorCallback : SWPMI error.
(+) MspInitCallback : SWPMI MspInit.
(+) MspDeInitCallback : SWPMI MspDeInit.
[..]
This function takes as parameters the HAL peripheral handle, the callback ID
and a pointer to the user callback function.
[..]
Use function HAL_SWPMI_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function.
HAL_SWPMI_UnRegisterCallback() takes as parameters the HAL peripheral handle,
and the callback ID.
This function allows to reset following callbacks:
(+) RxCpltCallback : SWPMI receive complete.
(+) RxHalfCpltCallback : SWPMI receive half complete.
(+) TxCpltCallback : SWPMI transmit complete.
(+) TxHalfCpltCallback : SWPMI transmit half complete.
(+) ErrorCallback : SWPMI error.
(+) MspInitCallback : SWPMI MspInit.
(+) MspDeInitCallback : SWPMI MspDeInit.
[..]
By default, after the HAL_SWPMI_Init and if the state is HAL_SWPMI_STATE_RESET
all callbacks are reset to the corresponding legacy weak (surcharged) functions:
examples HAL_SWPMI_RxCpltCallback(), HAL_SWPMI_ErrorCallback().
Exception done for MspInit and MspDeInit callbacks that are respectively
reset to the legacy weak (surcharged) functions in the HAL_SWPMI_Init
and HAL_SWPMI_DeInit only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_SWPMI_Init and HAL_SWPMI_DeInit
keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
[..]
Callbacks can be registered/unregistered in READY state only.
Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_SWPMI_RegisterCallback before calling HAL_SWPMI_DeInit
or HAL_SWPMI_Init function.
[..]
When the compilation define USE_HAL_SWPMI_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
/** @defgroup SWPMI SWPMI
* @brief HAL SWPMI module driver
* @{
*/
#ifdef HAL_SWPMI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup SWPMI_Private_Constants SWPMI Private Constants
* @{
*/
#define SWPMI_TIMEOUT_VALUE 22000U /* End of transmission timeout */
#define SWPMI_TRANSCEIVER_RDY_TIMEOUT_VALUE 2000U /* Transceiver ready timeout */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void SWPMI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void SWPMI_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
static void SWPMI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void SWPMI_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
static void SWPMI_DMAError(DMA_HandleTypeDef *hdma);
static void SWPMI_DMAAbortOnError(DMA_HandleTypeDef *hdma);
static void SWPMI_Transmit_IT(SWPMI_HandleTypeDef *hswpmi);
static void SWPMI_EndTransmit_IT(SWPMI_HandleTypeDef *hswpmi);
static void SWPMI_Receive_IT(SWPMI_HandleTypeDef *hswpmi);
static void SWPMI_EndReceive_IT(SWPMI_HandleTypeDef *hswpmi);
static void SWPMI_EndTransmitReceive_IT(SWPMI_HandleTypeDef *hswpmi);
static HAL_StatusTypeDef SWPMI_WaitOnFlagSetUntilTimeout(SWPMI_HandleTypeDef *hswpmi, uint32_t Flag, uint32_t Tickstart, uint32_t Timeout);
/* Exported functions --------------------------------------------------------*/
/** @defgroup SWPMI_Exported_Functions SWPMI Exported Functions
* @{
*/
/** @defgroup SWPMI_Exported_Group1 Initialization/de-initialization methods
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize and configure the SWPMI peripheral.
(+) De-initialize the SWPMI peripheral.
@endverbatim
* @{
*/
/**
* @brief Initialize the SWPMI peripheral according to the specified parameters in the SWPMI_InitTypeDef.
* @param hswpmi SWPMI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Init(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tickstart = HAL_GetTick();
/* Check the SWPMI handle allocation */
if (hswpmi == NULL)
{
status = HAL_ERROR;
}
else
{
/* Check the parameters */
assert_param(IS_SWPMI_VOLTAGE_CLASS(hswpmi->Init.VoltageClass));
assert_param(IS_SWPMI_BITRATE_VALUE(hswpmi->Init.BitRate));
assert_param(IS_SWPMI_TX_BUFFERING_MODE(hswpmi->Init.TxBufferingMode));
assert_param(IS_SWPMI_RX_BUFFERING_MODE(hswpmi->Init.RxBufferingMode));
if (hswpmi->State == HAL_SWPMI_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hswpmi->Lock = HAL_UNLOCKED;
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
/* Reset callback pointers to the weak predefined callbacks */
hswpmi->RxCpltCallback = HAL_SWPMI_RxCpltCallback;
hswpmi->RxHalfCpltCallback = HAL_SWPMI_RxHalfCpltCallback;
hswpmi->TxCpltCallback = HAL_SWPMI_TxCpltCallback;
hswpmi->TxHalfCpltCallback = HAL_SWPMI_TxHalfCpltCallback;
hswpmi->ErrorCallback = HAL_SWPMI_ErrorCallback;
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
if (hswpmi->MspInitCallback == NULL)
{
hswpmi->MspInitCallback = HAL_SWPMI_MspInit;
}
hswpmi->MspInitCallback(hswpmi);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
HAL_SWPMI_MspInit(hswpmi);
#endif
}
hswpmi->State = HAL_SWPMI_STATE_BUSY;
/* Disable SWPMI interface */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
/* Clear all SWPMI interface flags */
WRITE_REG(hswpmi->Instance->ICR, 0x099F);
/* Apply Voltage class selection */
MODIFY_REG(hswpmi->Instance->OR, SWPMI_OR_CLASS, hswpmi->Init.VoltageClass);
/* Configure the BRR register (Bitrate) */
WRITE_REG(hswpmi->Instance->BRR, hswpmi->Init.BitRate);
/* Apply SWPMI CR configuration */
MODIFY_REG(hswpmi->Instance->CR, \
SWPMI_CR_RXDMA | SWPMI_CR_TXDMA | SWPMI_CR_RXMODE | SWPMI_CR_TXMODE, \
hswpmi->Init.TxBufferingMode | hswpmi->Init.RxBufferingMode);
/* Enable the SWPMI transceiver */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPEN);
/* Wait on RDYF flag to activate SWPMI */
if (SWPMI_WaitOnFlagSetUntilTimeout(hswpmi, SWPMI_FLAG_RDYF, tickstart, SWPMI_TRANSCEIVER_RDY_TIMEOUT_VALUE) != HAL_OK)
{
status = HAL_TIMEOUT;
}
if (status == HAL_OK)
{
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
hswpmi->State = HAL_SWPMI_STATE_READY;
/* Enable SWPMI peripheral */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->ErrorCode = HAL_SWPMI_ERROR_TRANSCEIVER_NOT_READY;
hswpmi->State = HAL_SWPMI_STATE_ERROR;
}
}
return status;
}
/**
* @brief De-initialize the SWPMI peripheral.
* @param hswpmi SWPMI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_DeInit(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the SWPMI handle allocation */
if (hswpmi == NULL)
{
status = HAL_ERROR;
}
else
{
/* Check the parameters */
assert_param(IS_SWPMI_INSTANCE(hswpmi->Instance));
hswpmi->State = HAL_SWPMI_STATE_BUSY;
/* Disable SWPMI interface */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
/* Disable Loopback mode */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_LPBK);
/* Disable SWPMI transceiver */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPEN);
/* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
if (hswpmi->MspDeInitCallback == NULL)
{
hswpmi->MspDeInitCallback = HAL_SWPMI_MspDeInit;
}
hswpmi->MspDeInitCallback(hswpmi);
#else
HAL_SWPMI_MspDeInit(hswpmi);
#endif
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
hswpmi->State = HAL_SWPMI_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hswpmi);
}
return status;
}
/**
* @brief Initialize the SWPMI MSP.
* @param hswpmi SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_MspInit(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SWPMI_MspInit can be implemented in the user file
*/
}
/**
* @brief DeInitialize the SWPMI MSP.
* @param hswpmi SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_MspDeInit(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SWPMI_MspDeInit can be implemented in the user file
*/
}
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
/**
* @brief Register a user SWPMI callback
* to be used instead of the weak predefined callback.
* @param hswpmi SWPMI handle.
* @param CallbackID ID of the callback to be registered.
* This parameter can be one of the following values:
* @arg @ref HAL_SWPMI_RX_COMPLETE_CB_ID receive complete callback ID.
* @arg @ref HAL_SWPMI_RX_HALFCOMPLETE_CB_ID receive half complete callback ID.
* @arg @ref HAL_SWPMI_TX_COMPLETE_CB_ID transmit complete callback ID.
* @arg @ref HAL_SWPMI_TX_HALFCOMPLETE_CB_ID transmit half complete callback ID.
* @arg @ref HAL_SWPMI_ERROR_CB_ID error callback ID.
* @arg @ref HAL_SWPMI_MSPINIT_CB_ID MSP init callback ID.
* @arg @ref HAL_SWPMI_MSPDEINIT_CB_ID MSP de-init callback ID.
* @param pCallback pointer to the callback function.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_SWPMI_RegisterCallback(SWPMI_HandleTypeDef *hswpmi,
HAL_SWPMI_CallbackIDTypeDef CallbackID,
pSWPMI_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* update the error code */
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
}
else
{
if (hswpmi->State == HAL_SWPMI_STATE_READY)
{
switch (CallbackID)
{
case HAL_SWPMI_RX_COMPLETE_CB_ID :
hswpmi->RxCpltCallback = pCallback;
break;
case HAL_SWPMI_RX_HALFCOMPLETE_CB_ID :
hswpmi->RxHalfCpltCallback = pCallback;
break;
case HAL_SWPMI_TX_COMPLETE_CB_ID :
hswpmi->TxCpltCallback = pCallback;
break;
case HAL_SWPMI_TX_HALFCOMPLETE_CB_ID :
hswpmi->TxHalfCpltCallback = pCallback;
break;
case HAL_SWPMI_ERROR_CB_ID :
hswpmi->ErrorCallback = pCallback;
break;
case HAL_SWPMI_MSPINIT_CB_ID :
hswpmi->MspInitCallback = pCallback;
break;
case HAL_SWPMI_MSPDEINIT_CB_ID :
hswpmi->MspDeInitCallback = pCallback;
break;
default :
/* update the error code */
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else if (hswpmi->State == HAL_SWPMI_STATE_RESET)
{
switch (CallbackID)
{
case HAL_SWPMI_MSPINIT_CB_ID :
hswpmi->MspInitCallback = pCallback;
break;
case HAL_SWPMI_MSPDEINIT_CB_ID :
hswpmi->MspDeInitCallback = pCallback;
break;
default :
/* update the error code */
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* update the error code */
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Unregister a user SWPMI callback.
* SWPMI callback is redirected to the weak predefined callback.
* @param hswpmi SWPMI handle.
* @param CallbackID ID of the callback to be unregistered.
* This parameter can be one of the following values:
* @arg @ref HAL_SWPMI_RX_COMPLETE_CB_ID receive complete callback ID.
* @arg @ref HAL_SWPMI_RX_HALFCOMPLETE_CB_ID receive half complete callback ID.
* @arg @ref HAL_SWPMI_TX_COMPLETE_CB_ID transmit complete callback ID.
* @arg @ref HAL_SWPMI_TX_HALFCOMPLETE_CB_ID transmit half complete callback ID.
* @arg @ref HAL_SWPMI_ERROR_CB_ID error callback ID.
* @arg @ref HAL_SWPMI_MSPINIT_CB_ID MSP init callback ID.
* @arg @ref HAL_SWPMI_MSPDEINIT_CB_ID MSP de-init callback ID.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_SWPMI_UnRegisterCallback(SWPMI_HandleTypeDef *hswpmi,
HAL_SWPMI_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (hswpmi->State == HAL_SWPMI_STATE_READY)
{
switch (CallbackID)
{
case HAL_SWPMI_RX_COMPLETE_CB_ID :
hswpmi->RxCpltCallback = HAL_SWPMI_RxCpltCallback;
break;
case HAL_SWPMI_RX_HALFCOMPLETE_CB_ID :
hswpmi->RxHalfCpltCallback = HAL_SWPMI_RxHalfCpltCallback;
break;
case HAL_SWPMI_TX_COMPLETE_CB_ID :
hswpmi->TxCpltCallback = HAL_SWPMI_TxCpltCallback;
break;
case HAL_SWPMI_TX_HALFCOMPLETE_CB_ID :
hswpmi->TxHalfCpltCallback = HAL_SWPMI_TxHalfCpltCallback;
break;
case HAL_SWPMI_ERROR_CB_ID :
hswpmi->ErrorCallback = HAL_SWPMI_ErrorCallback;
break;
case HAL_SWPMI_MSPINIT_CB_ID :
hswpmi->MspInitCallback = HAL_SWPMI_MspInit;
break;
case HAL_SWPMI_MSPDEINIT_CB_ID :
hswpmi->MspDeInitCallback = HAL_SWPMI_MspDeInit;
break;
default :
/* update the error code */
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else if (hswpmi->State == HAL_SWPMI_STATE_RESET)
{
switch (CallbackID)
{
case HAL_SWPMI_MSPINIT_CB_ID :
hswpmi->MspInitCallback = HAL_SWPMI_MspInit;
break;
case HAL_SWPMI_MSPDEINIT_CB_ID :
hswpmi->MspDeInitCallback = HAL_SWPMI_MspDeInit;
break;
default :
/* update the error code */
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* update the error code */
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
}
return status;
}
#endif /* USE_HAL_SWPMI_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup SWPMI_Exported_Group2 IO operation methods
* @brief SWPMI Transmit/Receive functions
*
@verbatim
===============================================================================
##### IO operation methods #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the SWPMI
data transfers.
(#) There are two modes of transfer:
(++) Blocking mode: The communication is performed in polling mode.
The HAL status of all data processing is returned by the same function
after finishing transfer.
(++) Non-Blocking mode: The communication is performed using Interrupts
or DMA. The end of the data processing will be indicated through the
dedicated SWPMI Interrupt handler (HAL_SWPMI_IRQHandler()) when using Interrupt mode or
the selected DMA stream interrupt handler when using DMA mode.
The HAL_SWPMI_TxCpltCallback(), HAL_SWPMI_RxCpltCallback() user callbacks
will be executed respectively at the end of the transmit or receive process.
The HAL_SWPMI_ErrorCallback() user callback will be executed when a communication error is detected.
(#) Blocking mode API's are:
(++) HAL_SWPMI_Transmit()
(++) HAL_SWPMI_Receive()
(#) Non-Blocking mode API's with Interrupt are:
(++) HAL_SWPMI_Transmit_IT()
(++) HAL_SWPMI_Receive_IT()
(++) HAL_SWPMI_IRQHandler()
(#) Non-Blocking mode API's with DMA are:
(++) HAL_SWPMI_Transmit_DMA()
(++) HAL_SWPMI_Receive_DMA()
(++) HAL_SWPMI_DMAPause()
(++) HAL_SWPMI_DMAResume()
(++) HAL_SWPMI_DMAStop()
(#) A set of Transfer Complete Callbacks are provided in Non-Blocking mode:
(++) HAL_SWPMI_TxHalfCpltCallback()
(++) HAL_SWPMI_TxCpltCallback()
(++) HAL_SWPMI_RxHalfCpltCallback()
(++) HAL_SWPMI_RxCpltCallback()
(++) HAL_SWPMI_ErrorCallback()
(#) The capability to launch the above IO operations in loopback mode for
user application verification:
(++) HAL_SWPMI_EnableLoopback()
(++) HAL_SWPMI_DisableLoopback()
@endverbatim
* @{
*/
/**
* @brief Transmit an amount of data in blocking mode.
* @param hswpmi pointer to a SWPMI_HandleTypeDef structure that contains
* the configuration information for SWPMI module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Transmit(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
HAL_StatusTypeDef status = HAL_OK;
HAL_SWPMI_StateTypeDef tmp_state;
uint32_t *ptmp_data;
uint32_t tmp_size;
if ((pData == NULL) || (Size == 0U))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
tmp_state = hswpmi->State;
if ((tmp_state == HAL_SWPMI_STATE_READY) || (tmp_state == HAL_SWPMI_STATE_BUSY_RX))
{
/* Check if a non-blocking receive process is ongoing or not */
if (tmp_state == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
/* Disable any transmitter interrupts */
__HAL_SWPMI_DISABLE_IT(hswpmi, SWPMI_IT_TCIE | SWPMI_IT_TIE | SWPMI_IT_TXUNRIE | SWPMI_IT_TXBEIE);
/* Disable any transmitter flags */
__HAL_SWPMI_CLEAR_FLAG(hswpmi, SWPMI_FLAG_TXBEF | SWPMI_FLAG_TXUNRF | SWPMI_FLAG_TCF);
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
ptmp_data = pData;
tmp_size = Size;
do
{
/* Wait the TXE to write data */
if (HAL_IS_BIT_SET(hswpmi->Instance->ISR, SWPMI_FLAG_TXE))
{
hswpmi->Instance->TDR = *ptmp_data;
ptmp_data++;
tmp_size--;
}
else
{
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
{
status = HAL_TIMEOUT;
break;
}
}
}
}
while (tmp_size != 0U);
/* Wait on TXBEF flag to be able to start a second transfer */
if (SWPMI_WaitOnFlagSetUntilTimeout(hswpmi, SWPMI_FLAG_TXBEF, tickstart, Timeout) != HAL_OK)
{
/* Timeout occurred */
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_TXBEF_TIMEOUT;
status = HAL_TIMEOUT;
}
if (status == HAL_OK)
{
/* Check if a non-blocking receive Process is ongoing or not */
if (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
}
}
else
{
status = HAL_BUSY;
}
}
if ((status != HAL_OK) && (status != HAL_BUSY))
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
return status;
}
/**
* @brief Receive an amount of data in blocking mode.
* @param hswpmi pointer to a SWPMI_HandleTypeDef structure that contains
* the configuration information for SWPMI module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be received
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Receive(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
HAL_StatusTypeDef status = HAL_OK;
HAL_SWPMI_StateTypeDef tmp_state;
uint32_t *ptmp_data;
uint32_t tmp_size;
if ((pData == NULL) || (Size == 0U))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
tmp_state = hswpmi->State;
if ((tmp_state == HAL_SWPMI_STATE_READY) || (tmp_state == HAL_SWPMI_STATE_BUSY_TX))
{
/* Check if a non-blocking transmit process is ongoing or not */
if (tmp_state == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
/* Disable any receiver interrupts */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_SRIE | SWPMI_IT_RIE | SWPMI_IT_RXBERIE | SWPMI_IT_RXOVRIE | SWPMI_IT_RXBFIE);
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
ptmp_data = pData;
tmp_size = Size;
do
{
/* Wait the RXNE to read data */
if (HAL_IS_BIT_SET(hswpmi->Instance->ISR, SWPMI_FLAG_RXNE))
{
*ptmp_data = hswpmi->Instance->RDR;
ptmp_data++;
tmp_size--;
}
else
{
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
{
status = HAL_TIMEOUT;
break;
}
}
}
}
while (tmp_size != 0U);
if (status == HAL_OK)
{
if (HAL_IS_BIT_SET(hswpmi->Instance->ISR, SWPMI_FLAG_RXBFF))
{
/* Clear RXBFF at end of reception */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_RXBFF);
}
/* Check if a non-blocking transmit Process is ongoing or not */
if (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
}
}
else
{
status = HAL_BUSY;
}
}
if ((status != HAL_OK) && (status != HAL_BUSY))
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
return status;
}
/**
* @brief Transmit an amount of data in non-blocking mode with interrupt.
* @param hswpmi pointer to a SWPMI_HandleTypeDef structure that contains
* the configuration information for SWPMI module.
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Transmit_IT(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_SWPMI_StateTypeDef tmp_state;
if ((pData == NULL) || (Size == 0U))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
tmp_state = hswpmi->State;
if ((tmp_state == HAL_SWPMI_STATE_READY) || (tmp_state == HAL_SWPMI_STATE_BUSY_RX))
{
/* Update handle */
hswpmi->pTxBuffPtr = pData;
hswpmi->TxXferSize = Size;
hswpmi->TxXferCount = Size;
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
/* Check if a receive process is ongoing or not */
if (tmp_state == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
/* Enable the SWPMI transmit underrun error */
__HAL_SWPMI_ENABLE_IT(hswpmi, SWPMI_IT_TXUNRIE);
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
/* Enable the SWPMI interrupts: */
/* - Transmit data register empty */
/* - Transmit buffer empty */
/* - Transmit/Reception completion */
__HAL_SWPMI_ENABLE_IT(hswpmi, SWPMI_IT_TIE | SWPMI_IT_TXBEIE | SWPMI_IT_TCIE);
}
else
{
status = HAL_BUSY;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
}
}
return status;
}
/**
* @brief Receive an amount of data in non-blocking mode with interrupt.
* @param hswpmi SWPMI handle
* @param pData Pointer to data buffer
* @param Size Amount of data to be received
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Receive_IT(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_SWPMI_StateTypeDef tmp_state;
if ((pData == NULL) || (Size == 0U))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
tmp_state = hswpmi->State;
if ((tmp_state == HAL_SWPMI_STATE_READY) || (tmp_state == HAL_SWPMI_STATE_BUSY_TX))
{
/* Update handle */
hswpmi->pRxBuffPtr = pData;
hswpmi->RxXferSize = Size;
hswpmi->RxXferCount = Size;
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
/* Check if a transmit process is ongoing or not */
if (tmp_state == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
/* Enable the SWPMI slave resume */
/* Enable the SWPMI Data Register not empty Interrupt, receive CRC Error, receive overrun and RxBuf Interrupt */
/* Enable the SWPMI Transmit/Reception completion */
__HAL_SWPMI_ENABLE_IT(hswpmi, SWPMI_IT_RIE | SWPMI_IT_RXBERIE | SWPMI_IT_RXOVRIE | SWPMI_IT_RXBFIE);
}
else
{
status = HAL_BUSY;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
}
}
return status;
}
/**
* @brief Transmit an amount of data in non-blocking mode with DMA interrupt.
* @param hswpmi SWPMI handle
* @param pData Pointer to data buffer
* @param Size Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Transmit_DMA(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_SWPMI_StateTypeDef tmp_state;
if ((pData == NULL) || (Size == 0U))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
tmp_state = hswpmi->State;
if ((tmp_state == HAL_SWPMI_STATE_READY) || (tmp_state == HAL_SWPMI_STATE_BUSY_RX))
{
/* Update handle */
hswpmi->pTxBuffPtr = pData;
hswpmi->TxXferSize = Size;
hswpmi->TxXferCount = Size;
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
/* Check if a receive process is ongoing or not */
if (tmp_state == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
/* Set the SWPMI DMA transfer complete callback */
hswpmi->hdmatx->XferCpltCallback = SWPMI_DMATransmitCplt;
/* Set the SWPMI DMA Half transfer complete callback */
hswpmi->hdmatx->XferHalfCpltCallback = SWPMI_DMATxHalfCplt;
/* Set the DMA error callback */
hswpmi->hdmatx->XferErrorCallback = SWPMI_DMAError;
/* Enable the SWPMI transmit DMA stream */
if (HAL_DMA_Start_IT(hswpmi->hdmatx, (uint32_t)hswpmi->pTxBuffPtr, (uint32_t)&hswpmi->Instance->TDR, Size) != HAL_OK)
{
hswpmi->State = tmp_state; /* Back to previous state */
hswpmi->ErrorCode = HAL_SWPMI_ERROR_DMA;
status = HAL_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
/* Enable the SWPMI transmit underrun error */
__HAL_SWPMI_ENABLE_IT(hswpmi, SWPMI_IT_TXUNRIE);
/* Enable the DMA transfer for transmit request by setting the TXDMA bit
in the SWPMI CR register */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_TXDMA);
}
}
else
{
status = HAL_BUSY;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
}
}
return status;
}
/**
* @brief Receive an amount of data in non-blocking mode with DMA interrupt.
* @param hswpmi SWPMI handle
* @param pData Pointer to data buffer
* @param Size Amount of data to be received
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_Receive_DMA(SWPMI_HandleTypeDef *hswpmi, uint32_t *pData, uint16_t Size)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_SWPMI_StateTypeDef tmp_state;
if ((pData == NULL) || (Size == 0U))
{
status = HAL_ERROR;
}
else
{
/* Process Locked */
__HAL_LOCK(hswpmi);
tmp_state = hswpmi->State;
if ((tmp_state == HAL_SWPMI_STATE_READY) || (tmp_state == HAL_SWPMI_STATE_BUSY_TX))
{
/* Update handle */
hswpmi->pRxBuffPtr = pData;
hswpmi->RxXferSize = Size;
hswpmi->ErrorCode = HAL_SWPMI_ERROR_NONE;
/* Check if a transmit process is ongoing or not */
if (tmp_state == HAL_SWPMI_STATE_READY)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
/* Enable SWPMI peripheral if not */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
}
else
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX_RX;
}
/* Set the SWPMI DMA transfer complete callback */
hswpmi->hdmarx->XferCpltCallback = SWPMI_DMAReceiveCplt;
/* Set the SWPMI DMA Half transfer complete callback */
hswpmi->hdmarx->XferHalfCpltCallback = SWPMI_DMARxHalfCplt;
/* Set the DMA error callback */
hswpmi->hdmarx->XferErrorCallback = SWPMI_DMAError;
/* Enable the DMA request */
if (HAL_DMA_Start_IT(hswpmi->hdmarx, (uint32_t)&hswpmi->Instance->RDR, (uint32_t)hswpmi->pRxBuffPtr, Size) != HAL_OK)
{
hswpmi->State = tmp_state; /* Back to previous state */
hswpmi->ErrorCode = HAL_SWPMI_ERROR_DMA;
status = HAL_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
/* Enable the SWPMI receive CRC Error and receive overrun interrupts */
__HAL_SWPMI_ENABLE_IT(hswpmi, SWPMI_IT_RXBERIE | SWPMI_IT_RXOVRIE);
/* Enable the DMA transfer for the receiver request by setting the RXDMA bit
in the SWPMI CR register */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_RXDMA);
}
}
else
{
status = HAL_BUSY;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
}
}
return status;
}
/**
* @brief Stop all DMA transfers.
* @param hswpmi SWPMI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SWPMI_DMAStop(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(hswpmi);
/* Disable the SWPMI Tx/Rx DMA requests */
CLEAR_BIT(hswpmi->Instance->CR, (SWPMI_CR_TXDMA | SWPMI_CR_RXDMA));
/* Abort the SWPMI DMA tx stream */
if (hswpmi->hdmatx != NULL)
{
if (HAL_DMA_Abort(hswpmi->hdmatx) != HAL_OK)
{
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_DMA;
status = HAL_ERROR;
}
}
/* Abort the SWPMI DMA rx stream */
if (hswpmi->hdmarx != NULL)
{
if (HAL_DMA_Abort(hswpmi->hdmarx) != HAL_OK)
{
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_DMA;
status = HAL_ERROR;
}
}
/* Disable SWPMI interface */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
hswpmi->State = HAL_SWPMI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
return status;
}
/**
* @brief Enable the Loopback mode.
* @param hswpmi SWPMI handle
* @note Loopback mode is to be used only for test purposes
* @retval HAL_OK / HAL_BUSY
*/
HAL_StatusTypeDef HAL_SWPMI_EnableLoopback(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(hswpmi);
/* Make sure the SWPMI interface is not enabled to set the loopback mode */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
/* Set Loopback */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_LPBK);
/* Enable SWPMI interface in loopback mode */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
return status;
}
/**
* @brief Disable the Loopback mode.
* @param hswpmi SWPMI handle
* @note Loopback mode is to be used only for test purposes
* @retval HAL_OK / HAL_BUSY
*/
HAL_StatusTypeDef HAL_SWPMI_DisableLoopback(SWPMI_HandleTypeDef *hswpmi)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(hswpmi);
/* Make sure the SWPMI interface is not enabled to reset the loopback mode */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
/* Reset Loopback */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_LPBK);
/* Re-enable SWPMI interface in normal mode */
SET_BIT(hswpmi->Instance->CR, SWPMI_CR_SWPACT);
/* Process Unlocked */
__HAL_UNLOCK(hswpmi);
return status;
}
/**
* @}
*/
/** @defgroup SWPMI_Exported_Group3 SWPMI IRQ handler and callbacks
* @brief SWPMI IRQ handler.
*
@verbatim
==============================================================================
##### SWPMI IRQ handler and callbacks #####
==============================================================================
[..] This section provides SWPMI IRQ handler and callback functions called within
the IRQ handler.
@endverbatim
* @{
*/
/**
* @brief Handle SWPMI interrupt request.
* @param hswpmi SWPMI handle
* @retval None
*/
void HAL_SWPMI_IRQHandler(SWPMI_HandleTypeDef *hswpmi)
{
uint32_t regisr = READ_REG(hswpmi->Instance->ISR);
uint32_t regier = READ_REG(hswpmi->Instance->IER);
uint32_t errcode = HAL_SWPMI_ERROR_NONE;
/* SWPMI CRC error interrupt occurred --------------------------------------*/
if (((regisr & SWPMI_FLAG_RXBERF) != 0U) && ((regier & SWPMI_IT_RXBERIE) != 0U))
{
/* Disable Receive CRC interrupt */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_RXBERIE | SWPMI_IT_RXBFIE);
/* Clear Receive CRC and Receive buffer full flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_RXBERF | SWPMI_FLAG_RXBFF);
errcode |= HAL_SWPMI_ERROR_CRC;
}
/* SWPMI Over-Run interrupt occurred -----------------------------------------*/
if (((regisr & SWPMI_FLAG_RXOVRF) != 0U) && ((regier & SWPMI_IT_RXOVRIE) != 0U))
{
/* Disable Receive overrun interrupt */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_RXOVRIE);
/* Clear Receive overrun flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_RXOVRF);
errcode |= HAL_SWPMI_ERROR_OVR;
}
/* SWPMI Under-Run interrupt occurred -----------------------------------------*/
if (((regisr & SWPMI_FLAG_TXUNRF) != 0U) && ((regier & SWPMI_IT_TXUNRIE) != 0U))
{
/* Disable Transmit under run interrupt */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_TXUNRIE);
/* Clear Transmit under run flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_TXUNRF);
errcode |= HAL_SWPMI_ERROR_UDR;
}
/* Call SWPMI Error Call back function if needed --------------------------*/
if (errcode != HAL_SWPMI_ERROR_NONE)
{
hswpmi->ErrorCode |= errcode;
if ((errcode & HAL_SWPMI_ERROR_UDR) != 0U)
{
/* Check TXDMA transfer to abort */
if (HAL_IS_BIT_SET(hswpmi->Instance->CR, SWPMI_CR_TXDMA))
{
/* Disable DMA TX at SWPMI level */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_TXDMA);
/* Abort the USART DMA Tx stream */
if (hswpmi->hdmatx != NULL)
{
/* Set the SWPMI Tx DMA Abort callback :
will lead to call HAL_SWPMI_ErrorCallback() at end of DMA abort procedure */
hswpmi->hdmatx->XferAbortCallback = SWPMI_DMAAbortOnError;
/* Abort DMA TX */
if (HAL_DMA_Abort_IT(hswpmi->hdmatx) != HAL_OK)
{
/* Call Directly hswpmi->hdmatx->XferAbortCallback function in case of error */
hswpmi->hdmatx->XferAbortCallback(hswpmi->hdmatx);
}
}
else
{
/* Set the SWPMI state ready to be able to start again the process */
hswpmi->State = HAL_SWPMI_STATE_READY;
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->ErrorCallback(hswpmi);
#else
HAL_SWPMI_ErrorCallback(hswpmi);
#endif
}
}
else
{
/* Set the SWPMI state ready to be able to start again the process */
hswpmi->State = HAL_SWPMI_STATE_READY;
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->ErrorCallback(hswpmi);
#else
HAL_SWPMI_ErrorCallback(hswpmi);
#endif
}
}
else
{
/* Check RXDMA transfer to abort */
if (HAL_IS_BIT_SET(hswpmi->Instance->CR, SWPMI_CR_RXDMA))
{
/* Disable DMA RX at SWPMI level */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_RXDMA);
/* Abort the USART DMA Rx stream */
if (hswpmi->hdmarx != NULL)
{
/* Set the SWPMI Rx DMA Abort callback :
will lead to call HAL_SWPMI_ErrorCallback() at end of DMA abort procedure */
hswpmi->hdmarx->XferAbortCallback = SWPMI_DMAAbortOnError;
/* Abort DMA RX */
if (HAL_DMA_Abort_IT(hswpmi->hdmarx) != HAL_OK)
{
/* Call Directly hswpmi->hdmarx->XferAbortCallback function in case of error */
hswpmi->hdmarx->XferAbortCallback(hswpmi->hdmarx);
}
}
else
{
/* Set the SWPMI state ready to be able to start again the process */
hswpmi->State = HAL_SWPMI_STATE_READY;
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->ErrorCallback(hswpmi);
#else
HAL_SWPMI_ErrorCallback(hswpmi);
#endif
}
}
else
{
/* Set the SWPMI state ready to be able to start again the process */
hswpmi->State = HAL_SWPMI_STATE_READY;
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->ErrorCallback(hswpmi);
#else
HAL_SWPMI_ErrorCallback(hswpmi);
#endif
}
}
}
/* SWPMI in mode Receiver ---------------------------------------------------*/
if (((regisr & SWPMI_FLAG_RXNE) != 0U) && ((regier & SWPMI_IT_RIE) != 0U))
{
SWPMI_Receive_IT(hswpmi);
}
/* SWPMI in mode Transmitter ------------------------------------------------*/
if (((regisr & SWPMI_FLAG_TXE) != 0U) && ((regier & SWPMI_IT_TIE) != 0U))
{
SWPMI_Transmit_IT(hswpmi);
}
/* SWPMI in mode Transmitter (Transmit buffer empty) ------------------------*/
if (((regisr & SWPMI_FLAG_TXBEF) != 0U) && ((regier & SWPMI_IT_TXBEIE) != 0U))
{
SWPMI_EndTransmit_IT(hswpmi);
}
/* SWPMI in mode Receiver (Receive buffer full) -----------------------------*/
if (((regisr & SWPMI_FLAG_RXBFF) != 0U) && ((regier & SWPMI_IT_RXBFIE) != 0U))
{
SWPMI_EndReceive_IT(hswpmi);
}
/* Both Transmission and reception complete ---------------------------------*/
if (((regisr & SWPMI_FLAG_TCF) != 0U) && ((regier & SWPMI_IT_TCIE) != 0U))
{
SWPMI_EndTransmitReceive_IT(hswpmi);
}
}
/**
* @brief Tx Transfer completed callback.
* @param hswpmi SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_TxCpltCallback(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SWPMI_TxCpltCallback is to be implemented in the user file
*/
}
/**
* @brief Tx Half Transfer completed callback.
* @param hswpmi SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_TxHalfCpltCallback(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_SWPMI_TxHalfCpltCallback is to be implemented in the user file
*/
}
/**
* @brief Rx Transfer completed callback.
* @param hswpmi SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_RxCpltCallback(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SWPMI_RxCpltCallback is to be implemented in the user file
*/
}
/**
* @brief Rx Half Transfer completed callback.
* @param hswpmi SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_RxHalfCpltCallback(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_SWPMI_RxHalfCpltCallback is to be implemented in the user file
*/
}
/**
* @brief SWPMI error callback.
* @param hswpmi SWPMI handle
* @retval None
*/
__weak void HAL_SWPMI_ErrorCallback(SWPMI_HandleTypeDef *hswpmi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hswpmi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SWPMI_ErrorCallback is to be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup SWPMI_Exported_Group4 Peripheral Control methods
* @brief SWPMI control functions
*
@verbatim
===============================================================================
##### Peripheral Control methods #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the SWPMI.
(+) HAL_SWPMI_GetState() API is helpful to check in run-time the state of the SWPMI peripheral
(+) HAL_SWPMI_GetError() API is helpful to check in run-time the error state of the SWPMI peripheral
@endverbatim
* @{
*/
/**
* @brief Return the SWPMI handle state.
* @param hswpmi SWPMI handle
* @retval HAL state
*/
HAL_SWPMI_StateTypeDef HAL_SWPMI_GetState(SWPMI_HandleTypeDef *hswpmi)
{
/* Return SWPMI handle state */
return hswpmi->State;
}
/**
* @brief Return the SWPMI error code.
* @param hswpmi : pointer to a SWPMI_HandleTypeDef structure that contains
* the configuration information for the specified SWPMI.
* @retval SWPMI Error Code
*/
uint32_t HAL_SWPMI_GetError(SWPMI_HandleTypeDef *hswpmi)
{
return hswpmi->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup SWPMI_Private_Functions SWPMI Private Functions
* @{
*/
/**
* @brief Transmit an amount of data in interrupt mode.
* @note Function called under interruption only, once interruptions have been enabled by HAL_SWPMI_Transmit_IT()
* @param hswpmi SWPMI handle
* @retval None
*/
static void SWPMI_Transmit_IT(SWPMI_HandleTypeDef *hswpmi)
{
HAL_SWPMI_StateTypeDef tmp_state = hswpmi->State;
if ((tmp_state == HAL_SWPMI_STATE_BUSY_TX) || (tmp_state == HAL_SWPMI_STATE_BUSY_TX_RX))
{
if (hswpmi->TxXferCount == 0U)
{
/* Disable the SWPMI TXE and Underrun Interrupts */
CLEAR_BIT(hswpmi->Instance->IER, (SWPMI_IT_TIE | SWPMI_IT_TXUNRIE));
}
else
{
hswpmi->Instance->TDR = (uint32_t) * hswpmi->pTxBuffPtr;
hswpmi->pTxBuffPtr++;
hswpmi->TxXferCount--;
}
}
else
{
/* nothing to do */
}
}
/**
* @brief Wraps up transmission in non-blocking mode.
* @param hswpmi SWPMI handle
* @retval None
*/
static void SWPMI_EndTransmit_IT(SWPMI_HandleTypeDef *hswpmi)
{
/* Clear the SWPMI Transmit buffer empty Flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_TXBEF);
/* Disable the all SWPMI Transmit Interrupts */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_TIE | SWPMI_IT_TXUNRIE | SWPMI_IT_TXBEIE);
/* Check if a receive Process is ongoing or not */
if (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->TxCpltCallback(hswpmi);
#else
HAL_SWPMI_TxCpltCallback(hswpmi);
#endif
}
/**
* @brief Receive an amount of data in interrupt mode.
* @note Function called under interruption only, once interruptions have been enabled by HAL_SWPMI_Receive_IT()
* @param hswpmi SWPMI handle
* @retval None
*/
static void SWPMI_Receive_IT(SWPMI_HandleTypeDef *hswpmi)
{
HAL_SWPMI_StateTypeDef tmp_state = hswpmi->State;
if ((tmp_state == HAL_SWPMI_STATE_BUSY_RX) || (tmp_state == HAL_SWPMI_STATE_BUSY_TX_RX))
{
*hswpmi->pRxBuffPtr = (uint32_t)(hswpmi->Instance->RDR);
hswpmi->pRxBuffPtr++;
--hswpmi->RxXferCount;
if (hswpmi->RxXferCount == 0U)
{
/* Wait for RXBFF flag to update state */
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->RxCpltCallback(hswpmi);
#else
HAL_SWPMI_RxCpltCallback(hswpmi);
#endif
}
}
else
{
/* nothing to do */
}
}
/**
* @brief Wraps up reception in non-blocking mode.
* @param hswpmi SWPMI handle
* @retval None
*/
static void SWPMI_EndReceive_IT(SWPMI_HandleTypeDef *hswpmi)
{
/* Clear the SWPMI Receive buffer full Flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_RXBFF);
/* Disable the all SWPMI Receive Interrupts */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_RIE | SWPMI_IT_RXBERIE | SWPMI_IT_RXOVRIE | SWPMI_IT_RXBFIE);
/* Check if a transmit Process is ongoing or not */
if (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
}
/**
* @brief Wraps up transmission and reception in non-blocking mode.
* @param hswpmi SWPMI handle
* @retval None
*/
static void SWPMI_EndTransmitReceive_IT(SWPMI_HandleTypeDef *hswpmi)
{
/* Clear the SWPMI Transmission Complete Flag */
WRITE_REG(hswpmi->Instance->ICR, SWPMI_FLAG_TCF);
/* Disable the SWPMI Transmission Complete Interrupt */
CLEAR_BIT(hswpmi->Instance->IER, SWPMI_IT_TCIE);
/* Check if a receive Process is ongoing or not */
if (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
}
else if (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX)
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
else
{
/* nothing to do */
}
}
/**
* @brief DMA SWPMI transmit process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void SWPMI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef *hswpmi = (SWPMI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
uint32_t tickstart;
/* DMA Normal mode*/
if (((((DMA_Stream_TypeDef *)hdma->Instance)->CR) & DMA_SxCR_CIRC) == 0U)
{
hswpmi->TxXferCount = 0U;
/* Disable the DMA transfer for transmit request by setting the TXDMA bit
in the SWPMI CR register */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_TXDMA);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Wait the TXBEF */
if (SWPMI_WaitOnFlagSetUntilTimeout(hswpmi, SWPMI_FLAG_TXBEF, tickstart, SWPMI_TIMEOUT_VALUE) != HAL_OK)
{
/* Timeout occurred */
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_TXBEF_TIMEOUT;
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->ErrorCallback(hswpmi);
#else
HAL_SWPMI_ErrorCallback(hswpmi);
#endif
}
else
{
/* No Timeout */
/* Check if a receive process is ongoing or not */
if (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_RX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->TxCpltCallback(hswpmi);
#else
HAL_SWPMI_TxCpltCallback(hswpmi);
#endif
}
}
/* DMA Circular mode */
else
{
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->TxCpltCallback(hswpmi);
#else
HAL_SWPMI_TxCpltCallback(hswpmi);
#endif
}
}
/**
* @brief DMA SWPMI transmit process half complete callback.
* @param hdma DMA handle
* @retval None
*/
static void SWPMI_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef *hswpmi = (SWPMI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->TxHalfCpltCallback(hswpmi);
#else
HAL_SWPMI_TxHalfCpltCallback(hswpmi);
#endif
}
/**
* @brief DMA SWPMI receive process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void SWPMI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef *hswpmi = (SWPMI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* DMA Normal mode*/
if (((((DMA_Stream_TypeDef *)hdma->Instance)->CR) & DMA_SxCR_CIRC) == 0U)
{
hswpmi->RxXferCount = 0U;
/* Disable the DMA transfer for the receiver request by setting the RXDMA bit
in the SWPMI CR register */
CLEAR_BIT(hswpmi->Instance->CR, SWPMI_CR_RXDMA);
/* Check if a transmit Process is ongoing or not */
if (hswpmi->State == HAL_SWPMI_STATE_BUSY_TX_RX)
{
hswpmi->State = HAL_SWPMI_STATE_BUSY_TX;
}
else
{
hswpmi->State = HAL_SWPMI_STATE_READY;
}
}
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->RxCpltCallback(hswpmi);
#else
HAL_SWPMI_RxCpltCallback(hswpmi);
#endif
}
/**
* @brief DMA SWPMI receive process half complete callback.
* @param hdma DMA handle
* @retval None
*/
static void SWPMI_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef *hswpmi = (SWPMI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->RxHalfCpltCallback(hswpmi);
#else
HAL_SWPMI_RxHalfCpltCallback(hswpmi);
#endif
}
/**
* @brief DMA SWPMI communication error callback.
* @param hdma DMA handle
* @retval None
*/
static void SWPMI_DMAError(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef *hswpmi = (SWPMI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Update handle */
hswpmi->RxXferCount = 0U;
hswpmi->TxXferCount = 0U;
hswpmi->State = HAL_SWPMI_STATE_READY;
hswpmi->ErrorCode |= HAL_SWPMI_ERROR_DMA;
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->ErrorCallback(hswpmi);
#else
HAL_SWPMI_ErrorCallback(hswpmi);
#endif
}
/**
* @brief DMA SWPMI communication abort callback.
* @param hdma DMA handle
* @retval None
*/
static void SWPMI_DMAAbortOnError(DMA_HandleTypeDef *hdma)
{
SWPMI_HandleTypeDef *hswpmi = (SWPMI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
/* Update handle */
hswpmi->RxXferCount = 0U;
hswpmi->TxXferCount = 0U;
hswpmi->State = HAL_SWPMI_STATE_READY;
#if (USE_HAL_SWPMI_REGISTER_CALLBACKS == 1)
hswpmi->ErrorCallback(hswpmi);
#else
HAL_SWPMI_ErrorCallback(hswpmi);
#endif
}
/**
* @brief Handle SWPMI Communication Timeout.
* @param hswpmi SWPMI handle
* @param Flag specifies the SWPMI flag to check.
* @param Tickstart Tick start value
* @param Timeout timeout duration.
* @retval HAL status
*/
static HAL_StatusTypeDef SWPMI_WaitOnFlagSetUntilTimeout(SWPMI_HandleTypeDef *hswpmi, uint32_t Flag, uint32_t Tickstart, uint32_t Timeout)
{
HAL_StatusTypeDef status = HAL_OK;
/* Wait until flag is set */
while (!(HAL_IS_BIT_SET(hswpmi->Instance->ISR, Flag)))
{
/* Check for the Timeout */
if ((((HAL_GetTick() - Tickstart) > Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
{
/* Set the SWPMI state ready to be able to start again the process */
hswpmi->State = HAL_SWPMI_STATE_READY;
status = HAL_TIMEOUT;
break;
}
}
return status;
}
/**
* @}
*/
#endif /* HAL_SWPMI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/