summaryrefslogtreecommitdiff
path: root/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_rcc.c
diff options
context:
space:
mode:
authorjoshua <joshua@joshuayun.com>2023-12-30 23:54:31 -0500
committerjoshua <joshua@joshuayun.com>2023-12-30 23:54:31 -0500
commit86608c6770cf08c138a2bdab5855072f64be09ef (patch)
tree494a61b3ef37e76f9235a0d10f5c93d97290a35f /Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_rcc.c
downloadsdr-software-master.tar.gz
initial commitHEADmaster
Diffstat (limited to 'Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_rcc.c')
-rw-r--r--Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_rcc.c1814
1 files changed, 1814 insertions, 0 deletions
diff --git a/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_rcc.c b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_rcc.c
new file mode 100644
index 0000000..13e0c68
--- /dev/null
+++ b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_rcc.c
@@ -0,0 +1,1814 @@
+/**
+ ******************************************************************************
+ * @file stm32h7xx_hal_rcc.c
+ * @author MCD Application Team
+ * @brief RCC HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Reset and Clock Control (RCC) peripheral:
+ * + Initialization and de-initialization functions
+ * + Peripheral Control functions
+ *
+ @verbatim
+ ==============================================================================
+ ##### RCC specific features #####
+ ==============================================================================
+ [..]
+ After reset the device is running from Internal High Speed oscillator
+ (HSI 64MHz) with Flash 0 wait state,and all peripherals are off except
+ internal SRAM, Flash, JTAG and PWR
+ (+) There is no pre-scaler on High speed (AHB) and Low speed (APB) buses;
+ all peripherals mapped on these buses are running at HSI speed.
+ (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
+ (+) All GPIOs are in analogue mode , except the JTAG pins which
+ are assigned to be used for debug purpose.
+
+ [..]
+ Once the device started from reset, the user application has to:
+ (+) Configure the clock source to be used to drive the System clock
+ (if the application needs higher frequency/performance)
+ (+) Configure the System clock frequency and Flash settings
+ (+) Configure the AHB and APB buses pre-scalers
+ (+) Enable the clock for the peripheral(s) to be used
+ (+) Configure the clock kernel source(s) for peripherals which clocks are not
+ derived from the System clock through :RCC_D1CCIPR,RCC_D2CCIP1R,RCC_D2CCIP2R
+ and RCC_D3CCIPR registers
+
+ ##### RCC Limitations #####
+ ==============================================================================
+ [..]
+ A delay between an RCC peripheral clock enable and the effective peripheral
+ enabling should be taken into account in order to manage the peripheral read/write
+ from/to registers.
+ (+) This delay depends on the peripheral mapping.
+ (+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle
+ after the clock enable bit is set on the hardware register
+ (+) If peripheral is mapped on APB: the delay is 2 APB clock cycle
+ after the clock enable bit is set on the hardware register
+
+ [..]
+ Implemented Workaround:
+ (+) For AHB & APB peripherals, a dummy read to the peripheral register has been
+ inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
+
+ @endverbatim
+ ******************************************************************************
+ * @attention
+ *
+ * Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.
+ *
+ * This software is licensed under terms that can be found in the LICENSE file in
+ * the root directory of this software component.
+ * If no LICENSE file comes with this software, it is provided AS-IS.
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32h7xx_hal.h"
+
+/** @addtogroup STM32H7xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup RCC RCC
+ * @brief RCC HAL module driver
+ * @{
+ */
+
+#ifdef HAL_RCC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/** @defgroup RCC_Private_Macros RCC Private Macros
+ * @{
+ */
+#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
+#define MCO1_GPIO_PORT GPIOA
+#define MCO1_PIN GPIO_PIN_8
+
+#define MCO2_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE()
+#define MCO2_GPIO_PORT GPIOC
+#define MCO2_PIN GPIO_PIN_9
+
+/**
+ * @}
+ */
+/* Private variables ---------------------------------------------------------*/
+/** @defgroup RCC_Private_Variables RCC Private Variables
+ * @{
+ */
+
+/**
+ * @}
+ */
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup RCC_Exported_Functions RCC Exported Functions
+ * @{
+ */
+
+/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..]
+ This section provides functions allowing to configure the internal/external oscillators
+ (HSE, HSI, LSE,CSI, LSI,HSI48, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB3, AHB1
+ AHB2,AHB4,APB3, APB1L, APB1H, APB2, and APB4).
+
+ [..] Internal/external clock and PLL configuration
+ (#) HSI (high-speed internal), 64 MHz factory-trimmed RC used directly or through
+ the PLL as System clock source.
+ (#) CSI is a low-power RC oscillator which can be used directly as system clock, peripheral
+ clock, or PLL input.But even with frequency calibration, is less accurate than an
+ external crystal oscillator or ceramic resonator.
+ (#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC
+ clock source.
+
+ (#) HSE (high-speed external), 4 to 48 MHz crystal oscillator used directly or
+ through the PLL as System clock source. Can be used also as RTC clock source.
+
+ (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
+
+ (#) PLL , The RCC features three independent PLLs (clocked by HSI , HSE or CSI),
+ featuring three different output clocks and able to work either in integer or Fractional mode.
+ (++) A main PLL, PLL1, which is generally used to provide clocks to the CPU
+ and to some peripherals.
+ (++) Two dedicated PLLs, PLL2 and PLL3, which are used to generate the kernel clock for peripherals.
+
+
+ (#) CSS (Clock security system), once enabled and if a HSE clock failure occurs
+ (HSE used directly or through PLL as System clock source), the System clock
+ is automatically switched to HSI and an interrupt is generated if enabled.
+ The interrupt is linked to the Cortex-M NMI (Non-Mask-able Interrupt)
+ exception vector.
+
+ (#) MCO1 (micro controller clock output), used to output HSI, LSE, HSE, PLL1(PLL1_Q)
+ or HSI48 clock (through a configurable pre-scaler) on PA8 pin.
+
+ (#) MCO2 (micro controller clock output), used to output HSE, PLL2(PLL2_P), SYSCLK,
+ LSI, CSI, or PLL1(PLL1_P) clock (through a configurable pre-scaler) on PC9 pin.
+
+ [..] System, AHB and APB buses clocks configuration
+ (#) Several clock sources can be used to drive the System clock (SYSCLK): CSI,HSI,
+ HSE and PLL.
+ The AHB clock (HCLK) is derived from System core clock through configurable
+ pre-scaler and used to clock the CPU, memory and peripherals mapped
+ on AHB and APB bus of the 3 Domains (D1, D2, D3)* through configurable pre-scalers
+ and used to clock the peripherals mapped on these buses. You can use
+ "HAL_RCC_GetSysClockFreq()" function to retrieve system clock frequency.
+
+ -@- All the peripheral clocks are derived from the System clock (SYSCLK) except those
+ with dual clock domain where kernel source clock could be selected through
+ RCC_D1CCIPR,RCC_D2CCIP1R,RCC_D2CCIP2R and RCC_D3CCIPR registers.
+
+ (*) : 2 Domains (CD and SRD) for stm32h7a3xx and stm32h7b3xx family lines.
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Resets the RCC clock configuration to the default reset state.
+ * @note The default reset state of the clock configuration is given below:
+ * - HSI ON and used as system clock source
+ * - HSE, PLL1, PLL2 and PLL3 OFF
+ * - AHB, APB Bus pre-scaler set to 1.
+ * - CSS, MCO1 and MCO2 OFF
+ * - All interrupts disabled
+ * @note This function doesn't modify the configuration of the
+ * - Peripheral clocks
+ * - LSI, LSE and RTC clocks
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RCC_DeInit(void)
+{
+ uint32_t tickstart;
+
+ /* Increasing the CPU frequency */
+ if (FLASH_LATENCY_DEFAULT > __HAL_FLASH_GET_LATENCY())
+ {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLASH_LATENCY_DEFAULT);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if (__HAL_FLASH_GET_LATENCY() != FLASH_LATENCY_DEFAULT)
+ {
+ return HAL_ERROR;
+ }
+
+ }
+
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Set HSION bit */
+ SET_BIT(RCC->CR, RCC_CR_HSION);
+
+ /* Wait till HSI is ready */
+ while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Set HSITRIM[6:0] bits to the reset value */
+ SET_BIT(RCC->HSICFGR, RCC_HSICFGR_HSITRIM_6);
+
+ /* Reset CFGR register */
+ CLEAR_REG(RCC->CFGR);
+
+ /* Update the SystemCoreClock and SystemD2Clock global variables */
+ SystemCoreClock = HSI_VALUE;
+ SystemD2Clock = HSI_VALUE;
+
+ /* Adapt Systick interrupt period */
+ if (HAL_InitTick(uwTickPrio) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Wait till clock switch is ready */
+ while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Reset CSION, CSIKERON, HSEON, HSI48ON, HSECSSON, HSIDIV bits */
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSIKERON | RCC_CR_HSIDIV | RCC_CR_HSIDIVF | RCC_CR_CSION | RCC_CR_CSIKERON \
+ | RCC_CR_HSI48ON | RCC_CR_CSSHSEON);
+
+ /* Wait till HSE is disabled */
+ while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Clear PLLON bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_PLL1ON);
+
+ /* Wait till PLL is disabled */
+ while (READ_BIT(RCC->CR, RCC_CR_PLL1RDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Reset PLL2ON bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_PLL2ON);
+
+ /* Wait till PLL2 is disabled */
+ while (READ_BIT(RCC->CR, RCC_CR_PLL2RDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Get Start Tick */
+ tickstart = HAL_GetTick();
+
+ /* Reset PLL3 bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_PLL3ON);
+
+ /* Wait till PLL3 is disabled */
+ while (READ_BIT(RCC->CR, RCC_CR_PLL3RDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+#if defined(RCC_D1CFGR_HPRE)
+ /* Reset D1CFGR register */
+ CLEAR_REG(RCC->D1CFGR);
+
+ /* Reset D2CFGR register */
+ CLEAR_REG(RCC->D2CFGR);
+
+ /* Reset D3CFGR register */
+ CLEAR_REG(RCC->D3CFGR);
+#else
+ /* Reset CDCFGR1 register */
+ CLEAR_REG(RCC->CDCFGR1);
+
+ /* Reset CDCFGR2 register */
+ CLEAR_REG(RCC->CDCFGR2);
+
+ /* Reset SRDCFGR register */
+ CLEAR_REG(RCC->SRDCFGR);
+#endif
+
+ /* Reset PLLCKSELR register to default value */
+ RCC->PLLCKSELR = RCC_PLLCKSELR_DIVM1_5 | RCC_PLLCKSELR_DIVM2_5 | RCC_PLLCKSELR_DIVM3_5;
+
+ /* Reset PLLCFGR register to default value */
+ WRITE_REG(RCC->PLLCFGR, 0x01FF0000U);
+
+ /* Reset PLL1DIVR register to default value */
+ WRITE_REG(RCC->PLL1DIVR, 0x01010280U);
+
+ /* Reset PLL1FRACR register */
+ CLEAR_REG(RCC->PLL1FRACR);
+
+ /* Reset PLL2DIVR register to default value */
+ WRITE_REG(RCC->PLL2DIVR, 0x01010280U);
+
+ /* Reset PLL2FRACR register */
+ CLEAR_REG(RCC->PLL2FRACR);
+
+ /* Reset PLL3DIVR register to default value */
+ WRITE_REG(RCC->PLL3DIVR, 0x01010280U);
+
+ /* Reset PLL3FRACR register */
+ CLEAR_REG(RCC->PLL3FRACR);
+
+#if defined(RCC_CR_HSEEXT)
+ /* Reset HSEEXT */
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEEXT);
+#endif /* RCC_CR_HSEEXT */
+
+ /* Reset HSEBYP bit */
+ CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
+
+ /* Disable all interrupts */
+ CLEAR_REG(RCC->CIER);
+
+ /* Clear all interrupts flags */
+ WRITE_REG(RCC->CICR, 0xFFFFFFFFU);
+
+ /* Reset all RSR flags */
+ SET_BIT(RCC->RSR, RCC_RSR_RMVF);
+
+ /* Decreasing the number of wait states because of lower CPU frequency */
+ if (FLASH_LATENCY_DEFAULT < __HAL_FLASH_GET_LATENCY())
+ {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLASH_LATENCY_DEFAULT);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if (__HAL_FLASH_GET_LATENCY() != FLASH_LATENCY_DEFAULT)
+ {
+ return HAL_ERROR;
+ }
+
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the RCC Oscillators according to the specified parameters in the
+ * RCC_OscInitTypeDef.
+ * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
+ * contains the configuration information for the RCC Oscillators.
+ * @note The PLL is not disabled when used as system clock.
+ * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
+ * supported by this function. User should request a transition to LSE Off
+ * first and then LSE On or LSE Bypass.
+ * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
+ * supported by this function. User should request a transition to HSE Off
+ * first and then HSE On or HSE Bypass.
+ * @retval HAL status
+ */
+__weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
+{
+ uint32_t tickstart;
+ uint32_t temp1_pllckcfg, temp2_pllckcfg;
+
+ /* Check Null pointer */
+ if (RCC_OscInitStruct == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
+ /*------------------------------- HSE Configuration ------------------------*/
+ if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
+
+ const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
+ const uint32_t temp_pllckselr = RCC->PLLCKSELR;
+ /* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */
+ if ((temp_sysclksrc == RCC_CFGR_SWS_HSE) || ((temp_sysclksrc == RCC_CFGR_SWS_PLL1) && ((temp_pllckselr & RCC_PLLCKSELR_PLLSRC) == RCC_PLLCKSELR_PLLSRC_HSE)))
+ {
+ if ((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
+ {
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ /* Set the new HSE configuration ---------------------------------------*/
+ __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
+
+ /* Check the HSE State */
+ if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
+ {
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSE is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == 0U)
+ {
+ if ((uint32_t)(HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSE is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != 0U)
+ {
+ if ((uint32_t)(HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*----------------------------- HSI Configuration --------------------------*/
+ if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
+ assert_param(IS_RCC_HSICALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
+
+ /* When the HSI is used as system clock it will not be disabled */
+ const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
+ const uint32_t temp_pllckselr = RCC->PLLCKSELR;
+ if ((temp_sysclksrc == RCC_CFGR_SWS_HSI) || ((temp_sysclksrc == RCC_CFGR_SWS_PLL1) && ((temp_pllckselr & RCC_PLLCKSELR_PLLSRC) == RCC_PLLCKSELR_PLLSRC_HSI)))
+ {
+ /* When HSI is used as system clock it will not be disabled */
+ if ((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF))
+ {
+ return HAL_ERROR;
+ }
+ /* Otherwise, only HSI division and calibration are allowed */
+ else
+ {
+ /* Enable the Internal High Speed oscillator (HSI, HSIDIV2, HSIDIV4, or HSIDIV8) */
+ __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState);
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U)
+ {
+ if ((uint32_t)(HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
+ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
+ }
+ }
+
+ else
+ {
+ /* Check the HSI State */
+ if ((RCC_OscInitStruct->HSIState) != RCC_HSI_OFF)
+ {
+ /* Enable the Internal High Speed oscillator (HSI, HSIDIV2,HSIDIV4, or HSIDIV8) */
+ __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState);
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
+ __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
+ }
+ else
+ {
+ /* Disable the Internal High Speed oscillator (HSI). */
+ __HAL_RCC_HSI_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*----------------------------- CSI Configuration --------------------------*/
+ if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_CSI) == RCC_OSCILLATORTYPE_CSI)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_CSI(RCC_OscInitStruct->CSIState));
+ assert_param(IS_RCC_CSICALIBRATION_VALUE(RCC_OscInitStruct->CSICalibrationValue));
+
+ /* When the CSI is used as system clock it will not disabled */
+ const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
+ const uint32_t temp_pllckselr = RCC->PLLCKSELR;
+ if ((temp_sysclksrc == RCC_CFGR_SWS_CSI) || ((temp_sysclksrc == RCC_CFGR_SWS_PLL1) && ((temp_pllckselr & RCC_PLLCKSELR_PLLSRC) == RCC_PLLCKSELR_PLLSRC_CSI)))
+ {
+ /* When CSI is used as system clock it will not disabled */
+ if ((__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) != 0U) && (RCC_OscInitStruct->CSIState != RCC_CSI_ON))
+ {
+ return HAL_ERROR;
+ }
+ /* Otherwise, just the calibration is allowed */
+ else
+ {
+ /* Adjusts the Internal High Speed oscillator (CSI) calibration value.*/
+ __HAL_RCC_CSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->CSICalibrationValue);
+ }
+ }
+ else
+ {
+ /* Check the CSI State */
+ if ((RCC_OscInitStruct->CSIState) != RCC_CSI_OFF)
+ {
+ /* Enable the Internal High Speed oscillator (CSI). */
+ __HAL_RCC_CSI_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till CSI is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) == 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > CSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Adjusts the Internal High Speed oscillator (CSI) calibration value.*/
+ __HAL_RCC_CSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->CSICalibrationValue);
+ }
+ else
+ {
+ /* Disable the Internal High Speed oscillator (CSI). */
+ __HAL_RCC_CSI_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till CSI is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > CSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ }
+ /*------------------------------ LSI Configuration -------------------------*/
+ if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
+
+ /* Check the LSI State */
+ if ((RCC_OscInitStruct->LSIState) != RCC_LSI_OFF)
+ {
+ /* Enable the Internal Low Speed oscillator (LSI). */
+ __HAL_RCC_LSI_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Disable the Internal Low Speed oscillator (LSI). */
+ __HAL_RCC_LSI_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSI is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+ /*------------------------------ HSI48 Configuration -------------------------*/
+ if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
+
+ /* Check the HSI48 State */
+ if ((RCC_OscInitStruct->HSI48State) != RCC_HSI48_OFF)
+ {
+ /* Enable the Internal Low Speed oscillator (HSI48). */
+ __HAL_RCC_HSI48_ENABLE();
+
+ /* Get time-out */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI48 is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Disable the Internal Low Speed oscillator (HSI48). */
+ __HAL_RCC_HSI48_DISABLE();
+
+ /* Get time-out */
+ tickstart = HAL_GetTick();
+
+ /* Wait till HSI48 is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ /*------------------------------ LSE Configuration -------------------------*/
+ if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
+
+ /* Enable write access to Backup domain */
+ PWR->CR1 |= PWR_CR1_DBP;
+
+ /* Wait for Backup domain Write protection disable */
+ tickstart = HAL_GetTick();
+
+ while ((PWR->CR1 & PWR_CR1_DBP) == 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Set the new LSE configuration -----------------------------------------*/
+ __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
+ /* Check the LSE State */
+ if ((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF)
+ {
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till LSE is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ /*-------------------------------- PLL Configuration -----------------------*/
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
+ if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
+ {
+ /* Check if the PLL is used as system clock or not */
+ if (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1)
+ {
+ if ((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
+ {
+ /* Check the parameters */
+ assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
+ assert_param(IS_RCC_PLLRGE_VALUE(RCC_OscInitStruct->PLL.PLLRGE));
+ assert_param(IS_RCC_PLLVCO_VALUE(RCC_OscInitStruct->PLL.PLLVCOSEL));
+ assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
+ assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
+ assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
+ assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
+ assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));
+ assert_param(IS_RCC_PLLFRACN_VALUE(RCC_OscInitStruct->PLL.PLLFRACN));
+
+ /* Disable the main PLL. */
+ __HAL_RCC_PLL_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Configure the main PLL clock source, multiplication and division factors. */
+ __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
+ RCC_OscInitStruct->PLL.PLLM,
+ RCC_OscInitStruct->PLL.PLLN,
+ RCC_OscInitStruct->PLL.PLLP,
+ RCC_OscInitStruct->PLL.PLLQ,
+ RCC_OscInitStruct->PLL.PLLR);
+
+ /* Disable PLLFRACN . */
+ __HAL_RCC_PLLFRACN_DISABLE();
+
+ /* Configure PLL PLL1FRACN */
+ __HAL_RCC_PLLFRACN_CONFIG(RCC_OscInitStruct->PLL.PLLFRACN);
+
+ /* Select PLL1 input reference frequency range: VCI */
+ __HAL_RCC_PLL_VCIRANGE(RCC_OscInitStruct->PLL.PLLRGE) ;
+
+ /* Select PLL1 output frequency range : VCO */
+ __HAL_RCC_PLL_VCORANGE(RCC_OscInitStruct->PLL.PLLVCOSEL) ;
+
+ /* Enable PLL System Clock output. */
+ __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL1_DIVP);
+
+ /* Enable PLL1Q Clock output. */
+ __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL1_DIVQ);
+
+ /* Enable PLL1R Clock output. */
+ __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL1_DIVR);
+
+ /* Enable PLL1FRACN . */
+ __HAL_RCC_PLLFRACN_ENABLE();
+
+ /* Enable the main PLL. */
+ __HAL_RCC_PLL_ENABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is ready */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ else
+ {
+ /* Disable the main PLL. */
+ __HAL_RCC_PLL_DISABLE();
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ /* Wait till PLL is disabled */
+ while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Do not return HAL_ERROR if request repeats the current configuration */
+ temp1_pllckcfg = RCC->PLLCKSELR;
+ temp2_pllckcfg = RCC->PLL1DIVR;
+ if (((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF) ||
+ (READ_BIT(temp1_pllckcfg, RCC_PLLCKSELR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) ||
+ ((READ_BIT(temp1_pllckcfg, RCC_PLLCKSELR_DIVM1) >> RCC_PLLCKSELR_DIVM1_Pos) != RCC_OscInitStruct->PLL.PLLM) ||
+ (READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_N1) != (RCC_OscInitStruct->PLL.PLLN - 1U)) ||
+ ((READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_P1) >> RCC_PLL1DIVR_P1_Pos) != (RCC_OscInitStruct->PLL.PLLP - 1U)) ||
+ ((READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_Q1) >> RCC_PLL1DIVR_Q1_Pos) != (RCC_OscInitStruct->PLL.PLLQ - 1U)) ||
+ ((READ_BIT(temp2_pllckcfg, RCC_PLL1DIVR_R1) >> RCC_PLL1DIVR_R1_Pos) != (RCC_OscInitStruct->PLL.PLLR - 1U)))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ /* Check if only fractional part needs to be updated */
+ temp1_pllckcfg = ((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1) >> RCC_PLL1FRACR_FRACN1_Pos);
+ if (RCC_OscInitStruct->PLL.PLLFRACN != temp1_pllckcfg)
+ {
+ assert_param(IS_RCC_PLLFRACN_VALUE(RCC_OscInitStruct->PLL.PLLFRACN));
+ /* Disable PLL1FRACEN */
+ __HAL_RCC_PLLFRACN_DISABLE();
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+ /* Wait at least 2 CK_REF (PLL input source divided by M) period to make sure next latched value will be taken into account. */
+ while ((HAL_GetTick() - tickstart) < PLL_FRAC_TIMEOUT_VALUE)
+ {
+ }
+ /* Configure PLL1 PLL1FRACN */
+ __HAL_RCC_PLLFRACN_CONFIG(RCC_OscInitStruct->PLL.PLLFRACN);
+ /* Enable PLL1FRACEN to latch new value. */
+ __HAL_RCC_PLLFRACN_ENABLE();
+ }
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the CPU, AHB and APB buses clocks according to the specified
+ * parameters in the RCC_ClkInitStruct.
+ * @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that
+ * contains the configuration information for the RCC peripheral.
+ * @param FLatency: FLASH Latency, this parameter depend on device selected
+ *
+ * @note The SystemCoreClock CMSIS variable is used to store System Core Clock Frequency
+ * and updated by HAL_InitTick() function called within this function
+ *
+ * @note The HSI is used (enabled by hardware) as system clock source after
+ * start-up from Reset, wake-up from STOP and STANDBY mode, or in case
+ * of failure of the HSE used directly or indirectly as system clock
+ * (if the Clock Security System CSS is enabled).
+ *
+ * @note A switch from one clock source to another occurs only if the target
+ * clock source is ready (clock stable after start-up delay or PLL locked).
+ * If a clock source which is not yet ready is selected, the switch will
+ * occur when the clock source will be ready.
+ * You can use HAL_RCC_GetClockConfig() function to know which clock is
+ * currently used as system clock source.
+ * @note Depending on the device voltage range, the software has to set correctly
+ * D1CPRE[3:0] bits to ensure that Domain1 core clock not exceed the maximum allowed frequency
+ * (for more details refer to section above "Initialization/de-initialization functions")
+ * @retval None
+ */
+HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
+{
+ HAL_StatusTypeDef halstatus;
+ uint32_t tickstart;
+ uint32_t common_system_clock;
+
+ /* Check Null pointer */
+ if (RCC_ClkInitStruct == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
+ assert_param(IS_FLASH_LATENCY(FLatency));
+
+ /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
+ must be correctly programmed according to the frequency of the CPU clock
+ (HCLK) and the supply voltage of the device. */
+
+ /* Increasing the CPU frequency */
+ if (FLatency > __HAL_FLASH_GET_LATENCY())
+ {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLatency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if (__HAL_FLASH_GET_LATENCY() != FLatency)
+ {
+ return HAL_ERROR;
+ }
+
+ }
+
+ /* Increasing the BUS frequency divider */
+ /*-------------------------- D1PCLK1/CDPCLK1 Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D1PCLK1) == RCC_CLOCKTYPE_D1PCLK1)
+ {
+#if defined (RCC_D1CFGR_D1PPRE)
+ if ((RCC_ClkInitStruct->APB3CLKDivider) > (RCC->D1CFGR & RCC_D1CFGR_D1PPRE))
+ {
+ assert_param(IS_RCC_D1PCLK1(RCC_ClkInitStruct->APB3CLKDivider));
+ MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_D1PPRE, RCC_ClkInitStruct->APB3CLKDivider);
+ }
+#else
+ if ((RCC_ClkInitStruct->APB3CLKDivider) > (RCC->CDCFGR1 & RCC_CDCFGR1_CDPPRE))
+ {
+ assert_param(IS_RCC_CDPCLK1(RCC_ClkInitStruct->APB3CLKDivider));
+ MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_CDPPRE, RCC_ClkInitStruct->APB3CLKDivider);
+ }
+#endif
+ }
+
+ /*-------------------------- PCLK1 Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
+ {
+#if defined (RCC_D2CFGR_D2PPRE1)
+ if ((RCC_ClkInitStruct->APB1CLKDivider) > (RCC->D2CFGR & RCC_D2CFGR_D2PPRE1))
+ {
+ assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider));
+ MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE1, (RCC_ClkInitStruct->APB1CLKDivider));
+ }
+#else
+ if ((RCC_ClkInitStruct->APB1CLKDivider) > (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1))
+ {
+ assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider));
+ MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE1, (RCC_ClkInitStruct->APB1CLKDivider));
+ }
+#endif
+ }
+ /*-------------------------- PCLK2 Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
+ {
+#if defined(RCC_D2CFGR_D2PPRE2)
+ if ((RCC_ClkInitStruct->APB2CLKDivider) > (RCC->D2CFGR & RCC_D2CFGR_D2PPRE2))
+ {
+ assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider));
+ MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE2, (RCC_ClkInitStruct->APB2CLKDivider));
+ }
+#else
+ if ((RCC_ClkInitStruct->APB2CLKDivider) > (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2))
+ {
+ assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider));
+ MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE2, (RCC_ClkInitStruct->APB2CLKDivider));
+ }
+#endif
+ }
+
+ /*-------------------------- D3PCLK1 Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D3PCLK1) == RCC_CLOCKTYPE_D3PCLK1)
+ {
+#if defined(RCC_D3CFGR_D3PPRE)
+ if ((RCC_ClkInitStruct->APB4CLKDivider) > (RCC->D3CFGR & RCC_D3CFGR_D3PPRE))
+ {
+ assert_param(IS_RCC_D3PCLK1(RCC_ClkInitStruct->APB4CLKDivider));
+ MODIFY_REG(RCC->D3CFGR, RCC_D3CFGR_D3PPRE, (RCC_ClkInitStruct->APB4CLKDivider));
+ }
+#else
+ if ((RCC_ClkInitStruct->APB4CLKDivider) > (RCC->SRDCFGR & RCC_SRDCFGR_SRDPPRE))
+ {
+ assert_param(IS_RCC_D3PCLK1(RCC_ClkInitStruct->APB4CLKDivider));
+ MODIFY_REG(RCC->SRDCFGR, RCC_SRDCFGR_SRDPPRE, (RCC_ClkInitStruct->APB4CLKDivider));
+ }
+#endif
+ }
+
+ /*-------------------------- HCLK Configuration --------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
+ {
+#if defined (RCC_D1CFGR_HPRE)
+ if ((RCC_ClkInitStruct->AHBCLKDivider) > (RCC->D1CFGR & RCC_D1CFGR_HPRE))
+ {
+ /* Set the new HCLK clock divider */
+ assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
+ MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
+ }
+#else
+ if ((RCC_ClkInitStruct->AHBCLKDivider) > (RCC->CDCFGR1 & RCC_CDCFGR1_HPRE))
+ {
+ /* Set the new HCLK clock divider */
+ assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
+ MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
+ }
+#endif
+ }
+
+ /*------------------------- SYSCLK Configuration -------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
+ {
+ assert_param(IS_RCC_SYSCLK(RCC_ClkInitStruct->SYSCLKDivider));
+ assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
+#if defined(RCC_D1CFGR_D1CPRE)
+ MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_D1CPRE, RCC_ClkInitStruct->SYSCLKDivider);
+#else
+ MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_CDCPRE, RCC_ClkInitStruct->SYSCLKDivider);
+#endif
+ /* HSE is selected as System Clock Source */
+ if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
+ {
+ /* Check the HSE ready flag */
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == 0U)
+ {
+ return HAL_ERROR;
+ }
+ }
+ /* PLL is selected as System Clock Source */
+ else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
+ {
+ /* Check the PLL ready flag */
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == 0U)
+ {
+ return HAL_ERROR;
+ }
+ }
+ /* CSI is selected as System Clock Source */
+ else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_CSI)
+ {
+ /* Check the PLL ready flag */
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_CSIRDY) == 0U)
+ {
+ return HAL_ERROR;
+ }
+ }
+ /* HSI is selected as System Clock Source */
+ else
+ {
+ /* Check the HSI ready flag */
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U)
+ {
+ return HAL_ERROR;
+ }
+ }
+ MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
+
+ /* Get Start Tick*/
+ tickstart = HAL_GetTick();
+
+ while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))
+ {
+ if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ }
+
+ /* Decreasing the BUS frequency divider */
+ /*-------------------------- HCLK Configuration --------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
+ {
+#if defined(RCC_D1CFGR_HPRE)
+ if ((RCC_ClkInitStruct->AHBCLKDivider) < (RCC->D1CFGR & RCC_D1CFGR_HPRE))
+ {
+ /* Set the new HCLK clock divider */
+ assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
+ MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
+ }
+#else
+ if ((RCC_ClkInitStruct->AHBCLKDivider) < (RCC->CDCFGR1 & RCC_CDCFGR1_HPRE))
+ {
+ /* Set the new HCLK clock divider */
+ assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
+ MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
+ }
+#endif
+ }
+
+ /* Decreasing the number of wait states because of lower CPU frequency */
+ if (FLatency < __HAL_FLASH_GET_LATENCY())
+ {
+ /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
+ __HAL_FLASH_SET_LATENCY(FLatency);
+
+ /* Check that the new number of wait states is taken into account to access the Flash
+ memory by reading the FLASH_ACR register */
+ if (__HAL_FLASH_GET_LATENCY() != FLatency)
+ {
+ return HAL_ERROR;
+ }
+ }
+
+ /*-------------------------- D1PCLK1/CDPCLK Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D1PCLK1) == RCC_CLOCKTYPE_D1PCLK1)
+ {
+#if defined(RCC_D1CFGR_D1PPRE)
+ if ((RCC_ClkInitStruct->APB3CLKDivider) < (RCC->D1CFGR & RCC_D1CFGR_D1PPRE))
+ {
+ assert_param(IS_RCC_D1PCLK1(RCC_ClkInitStruct->APB3CLKDivider));
+ MODIFY_REG(RCC->D1CFGR, RCC_D1CFGR_D1PPRE, RCC_ClkInitStruct->APB3CLKDivider);
+ }
+#else
+ if ((RCC_ClkInitStruct->APB3CLKDivider) < (RCC->CDCFGR1 & RCC_CDCFGR1_CDPPRE))
+ {
+ assert_param(IS_RCC_CDPCLK1(RCC_ClkInitStruct->APB3CLKDivider));
+ MODIFY_REG(RCC->CDCFGR1, RCC_CDCFGR1_CDPPRE, RCC_ClkInitStruct->APB3CLKDivider);
+ }
+#endif
+ }
+
+ /*-------------------------- PCLK1 Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
+ {
+#if defined(RCC_D2CFGR_D2PPRE1)
+ if ((RCC_ClkInitStruct->APB1CLKDivider) < (RCC->D2CFGR & RCC_D2CFGR_D2PPRE1))
+ {
+ assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider));
+ MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE1, (RCC_ClkInitStruct->APB1CLKDivider));
+ }
+#else
+ if ((RCC_ClkInitStruct->APB1CLKDivider) < (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1))
+ {
+ assert_param(IS_RCC_PCLK1(RCC_ClkInitStruct->APB1CLKDivider));
+ MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE1, (RCC_ClkInitStruct->APB1CLKDivider));
+ }
+#endif
+ }
+
+ /*-------------------------- PCLK2 Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
+ {
+#if defined (RCC_D2CFGR_D2PPRE2)
+ if ((RCC_ClkInitStruct->APB2CLKDivider) < (RCC->D2CFGR & RCC_D2CFGR_D2PPRE2))
+ {
+ assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider));
+ MODIFY_REG(RCC->D2CFGR, RCC_D2CFGR_D2PPRE2, (RCC_ClkInitStruct->APB2CLKDivider));
+ }
+#else
+ if ((RCC_ClkInitStruct->APB2CLKDivider) < (RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2))
+ {
+ assert_param(IS_RCC_PCLK2(RCC_ClkInitStruct->APB2CLKDivider));
+ MODIFY_REG(RCC->CDCFGR2, RCC_CDCFGR2_CDPPRE2, (RCC_ClkInitStruct->APB2CLKDivider));
+ }
+#endif
+ }
+
+ /*-------------------------- D3PCLK1/SRDPCLK1 Configuration ---------------------------*/
+ if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_D3PCLK1) == RCC_CLOCKTYPE_D3PCLK1)
+ {
+#if defined(RCC_D3CFGR_D3PPRE)
+ if ((RCC_ClkInitStruct->APB4CLKDivider) < (RCC->D3CFGR & RCC_D3CFGR_D3PPRE))
+ {
+ assert_param(IS_RCC_D3PCLK1(RCC_ClkInitStruct->APB4CLKDivider));
+ MODIFY_REG(RCC->D3CFGR, RCC_D3CFGR_D3PPRE, (RCC_ClkInitStruct->APB4CLKDivider));
+ }
+#else
+ if ((RCC_ClkInitStruct->APB4CLKDivider) < (RCC->SRDCFGR & RCC_SRDCFGR_SRDPPRE))
+ {
+ assert_param(IS_RCC_SRDPCLK1(RCC_ClkInitStruct->APB4CLKDivider));
+ MODIFY_REG(RCC->SRDCFGR, RCC_SRDCFGR_SRDPPRE, (RCC_ClkInitStruct->APB4CLKDivider));
+ }
+#endif
+ }
+
+ /* Update the SystemCoreClock global variable */
+#if defined(RCC_D1CFGR_D1CPRE)
+ common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE) >> RCC_D1CFGR_D1CPRE_Pos]) & 0x1FU);
+#else
+ common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE) >> RCC_CDCFGR1_CDCPRE_Pos]) & 0x1FU);
+#endif
+
+#if defined(RCC_D1CFGR_HPRE)
+ SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE) >> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
+#else
+ SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE) >> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
+#endif
+
+#if defined(DUAL_CORE) && defined(CORE_CM4)
+ SystemCoreClock = SystemD2Clock;
+#else
+ SystemCoreClock = common_system_clock;
+#endif /* DUAL_CORE && CORE_CM4 */
+
+ /* Configure the source of time base considering new system clocks settings*/
+ halstatus = HAL_InitTick(uwTickPrio);
+
+ return halstatus;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
+ * @brief RCC clocks control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to control the RCC Clocks
+ frequencies.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9).
+ * @note PA8/PC9 should be configured in alternate function mode.
+ * @param RCC_MCOx: specifies the output direction for the clock source.
+ * This parameter can be one of the following values:
+ * @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8).
+ * @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9).
+ * @param RCC_MCOSource: specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source
+ * @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source
+ * @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source
+ * @arg RCC_MCO1SOURCE_PLL1QCLK: PLL1Q clock selected as MCO1 source
+ * @arg RCC_MCO1SOURCE_HSI48: HSI48 (48MHZ) selected as MCO1 source
+ * @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source
+ * @arg RCC_MCO2SOURCE_PLL2PCLK: PLL2P clock selected as MCO2 source
+ * @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source
+ * @arg RCC_MCO2SOURCE_PLLCLK: PLL1P clock selected as MCO2 source
+ * @arg RCC_MCO2SOURCE_CSICLK: CSI clock selected as MCO2 source
+ * @arg RCC_MCO2SOURCE_LSICLK: LSI clock selected as MCO2 source
+ * @param RCC_MCODiv: specifies the MCOx pre-scaler.
+ * This parameter can be one of the following values:
+ * @arg RCC_MCODIV_1 up to RCC_MCODIV_15 : divider applied to MCOx clock
+ * @retval None
+ */
+void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
+{
+ GPIO_InitTypeDef GPIO_InitStruct;
+ /* Check the parameters */
+ assert_param(IS_RCC_MCO(RCC_MCOx));
+ assert_param(IS_RCC_MCODIV(RCC_MCODiv));
+ /* RCC_MCO1 */
+ if (RCC_MCOx == RCC_MCO1)
+ {
+ assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
+
+ /* MCO1 Clock Enable */
+ MCO1_CLK_ENABLE();
+
+ /* Configure the MCO1 pin in alternate function mode */
+ GPIO_InitStruct.Pin = MCO1_PIN;
+ GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
+ GPIO_InitStruct.Pull = GPIO_NOPULL;
+ GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
+ HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
+
+ /* Mask MCO1 and MCO1PRE[3:0] bits then Select MCO1 clock source and pre-scaler */
+ MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv));
+ }
+ else
+ {
+ assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource));
+
+ /* MCO2 Clock Enable */
+ MCO2_CLK_ENABLE();
+
+ /* Configure the MCO2 pin in alternate function mode */
+ GPIO_InitStruct.Pin = MCO2_PIN;
+ GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
+ GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
+ GPIO_InitStruct.Pull = GPIO_NOPULL;
+ GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
+ HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct);
+
+ /* Mask MCO2 and MCO2PRE[3:0] bits then Select MCO2 clock source and pre-scaler */
+ MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 7U)));
+ }
+}
+
+/**
+ * @brief Enables the Clock Security System.
+ * @note If a failure is detected on the HSE oscillator clock, this oscillator
+ * is automatically disabled and an interrupt is generated to inform the
+ * software about the failure (Clock Security System Interrupt, CSSI),
+ * allowing the MCU to perform rescue operations. The CSSI is linked to
+ * the Cortex-M NMI (Non-Mask-able Interrupt) exception vector.
+ * @retval None
+ */
+void HAL_RCC_EnableCSS(void)
+{
+ SET_BIT(RCC->CR, RCC_CR_CSSHSEON) ;
+}
+
+/**
+ * @brief Disables the Clock Security System.
+ * @retval None
+ */
+void HAL_RCC_DisableCSS(void)
+{
+ CLEAR_BIT(RCC->CR, RCC_CR_CSSHSEON);
+}
+
+/**
+ * @brief Returns the SYSCLK frequency
+ *
+ * @note The system frequency computed by this function is not the real
+ * frequency in the chip. It is calculated based on the predefined
+ * constant and the selected clock source:
+ * @note If SYSCLK source is CSI, function returns values based on CSI_VALUE(*)
+ * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(**)
+ * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***)
+ * @note If SYSCLK source is PLL, function returns values based on CSI_VALUE(*),
+ * HSI_VALUE(**) or HSE_VALUE(***) multiplied/divided by the PLL factors.
+ * @note (*) CSI_VALUE is a constant defined in stm32h7xx_hal_conf.h file (default value
+ * 4 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature.
+ * @note (**) HSI_VALUE is a constant defined in stm32h7xx_hal_conf.h file (default value
+ * 64 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature.
+ * @note (***) HSE_VALUE is a constant defined in stm32h7xx_hal_conf.h file (default value
+ * 25 MHz), user has to ensure that HSE_VALUE is same as the real
+ * frequency of the crystal used. Otherwise, this function may
+ * have wrong result.
+ *
+ * @note The result of this function could be not correct when using fractional
+ * value for HSE crystal.
+ *
+ * @note This function can be used by the user application to compute the
+ * baud rate for the communication peripherals or configure other parameters.
+ *
+ * @note Each time SYSCLK changes, this function must be called to update the
+ * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
+ *
+ *
+ * @retval SYSCLK frequency
+ */
+uint32_t HAL_RCC_GetSysClockFreq(void)
+{
+ uint32_t pllp, pllsource, pllm, pllfracen, hsivalue;
+ float_t fracn1, pllvco;
+ uint32_t sysclockfreq;
+
+ /* Get SYSCLK source -------------------------------------------------------*/
+
+ switch (RCC->CFGR & RCC_CFGR_SWS)
+ {
+ case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */
+
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
+ {
+ sysclockfreq = (uint32_t)(HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3));
+ }
+ else
+ {
+ sysclockfreq = (uint32_t) HSI_VALUE;
+ }
+
+ break;
+
+ case RCC_CFGR_SWS_CSI: /* CSI used as system clock source */
+ sysclockfreq = CSI_VALUE;
+ break;
+
+ case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */
+ sysclockfreq = HSE_VALUE;
+ break;
+
+ case RCC_CFGR_SWS_PLL1: /* PLL1 used as system clock source */
+
+ /* PLL_VCO = (HSE_VALUE or HSI_VALUE or CSI_VALUE/ PLLM) * PLLN
+ SYSCLK = PLL_VCO / PLLR
+ */
+ pllsource = (RCC->PLLCKSELR & RCC_PLLCKSELR_PLLSRC);
+ pllm = ((RCC->PLLCKSELR & RCC_PLLCKSELR_DIVM1) >> 4) ;
+ pllfracen = ((RCC-> PLLCFGR & RCC_PLLCFGR_PLL1FRACEN) >> RCC_PLLCFGR_PLL1FRACEN_Pos);
+ fracn1 = (float_t)(uint32_t)(pllfracen * ((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1) >> 3));
+
+ if (pllm != 0U)
+ {
+ switch (pllsource)
+ {
+ case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
+
+ if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIDIV) != 0U)
+ {
+ hsivalue = (HSI_VALUE >> (__HAL_RCC_GET_HSI_DIVIDER() >> 3));
+ pllvco = ((float_t)hsivalue / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1);
+ }
+ else
+ {
+ pllvco = ((float_t)HSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1);
+ }
+ break;
+
+ case RCC_PLLSOURCE_CSI: /* CSI used as PLL clock source */
+ pllvco = ((float_t)CSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1);
+ break;
+
+ case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
+ pllvco = ((float_t)HSE_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1);
+ break;
+
+ default:
+ pllvco = ((float_t)CSI_VALUE / (float_t)pllm) * ((float_t)(uint32_t)(RCC->PLL1DIVR & RCC_PLL1DIVR_N1) + (fracn1 / (float_t)0x2000) + (float_t)1);
+ break;
+ }
+ pllp = (((RCC->PLL1DIVR & RCC_PLL1DIVR_P1) >> 9) + 1U) ;
+ sysclockfreq = (uint32_t)(float_t)(pllvco / (float_t)pllp);
+ }
+ else
+ {
+ sysclockfreq = 0U;
+ }
+ break;
+
+ default:
+ sysclockfreq = CSI_VALUE;
+ break;
+ }
+
+ return sysclockfreq;
+}
+
+
+/**
+ * @brief Returns the HCLK frequency
+ * @note Each time HCLK changes, this function must be called to update the
+ * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
+ *
+ * @note The SystemD2Clock CMSIS variable is used to store System domain2 Clock Frequency
+ * and updated within this function
+ * @retval HCLK frequency
+ */
+uint32_t HAL_RCC_GetHCLKFreq(void)
+{
+ uint32_t common_system_clock;
+
+#if defined(RCC_D1CFGR_D1CPRE)
+ common_system_clock = HAL_RCC_GetSysClockFreq() >> (D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE) >> RCC_D1CFGR_D1CPRE_Pos] & 0x1FU);
+#else
+ common_system_clock = HAL_RCC_GetSysClockFreq() >> (D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE) >> RCC_CDCFGR1_CDCPRE_Pos] & 0x1FU);
+#endif
+
+#if defined(RCC_D1CFGR_HPRE)
+ SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE) >> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
+#else
+ SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE) >> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
+#endif
+
+#if defined(DUAL_CORE) && defined(CORE_CM4)
+ SystemCoreClock = SystemD2Clock;
+#else
+ SystemCoreClock = common_system_clock;
+#endif /* DUAL_CORE && CORE_CM4 */
+
+ return SystemD2Clock;
+}
+
+
+/**
+ * @brief Returns the PCLK1 frequency
+ * @note Each time PCLK1 changes, this function must be called to update the
+ * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
+ * @retval PCLK1 frequency
+ */
+uint32_t HAL_RCC_GetPCLK1Freq(void)
+{
+#if defined (RCC_D2CFGR_D2PPRE1)
+ /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
+ return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->D2CFGR & RCC_D2CFGR_D2PPRE1) >> RCC_D2CFGR_D2PPRE1_Pos]) & 0x1FU));
+#else
+ /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
+ return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1) >> RCC_CDCFGR2_CDPPRE1_Pos]) & 0x1FU));
+#endif
+}
+
+
+/**
+ * @brief Returns the D2 PCLK2 frequency
+ * @note Each time PCLK2 changes, this function must be called to update the
+ * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
+ * @retval PCLK1 frequency
+ */
+uint32_t HAL_RCC_GetPCLK2Freq(void)
+{
+ /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
+#if defined(RCC_D2CFGR_D2PPRE2)
+ return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->D2CFGR & RCC_D2CFGR_D2PPRE2) >> RCC_D2CFGR_D2PPRE2_Pos]) & 0x1FU));
+#else
+ return (HAL_RCC_GetHCLKFreq() >> ((D1CorePrescTable[(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2) >> RCC_CDCFGR2_CDPPRE2_Pos]) & 0x1FU));
+#endif
+}
+
+/**
+ * @brief Configures the RCC_OscInitStruct according to the internal
+ * RCC configuration registers.
+ * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
+ * will be configured.
+ * @retval None
+ */
+void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
+{
+ /* Set all possible values for the Oscillator type parameter ---------------*/
+ RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_CSI | \
+ RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48;
+
+ /* Get the HSE configuration -----------------------------------------------*/
+#if defined(RCC_CR_HSEEXT)
+ if ((RCC->CR & (RCC_CR_HSEBYP | RCC_CR_HSEEXT)) == RCC_CR_HSEBYP)
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
+ }
+ else if ((RCC->CR & (RCC_CR_HSEBYP | RCC_CR_HSEEXT)) == (RCC_CR_HSEBYP | RCC_CR_HSEEXT))
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS_DIGITAL;
+ }
+ else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
+ }
+#else
+ if ((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
+ }
+ else if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
+ }
+#endif /* RCC_CR_HSEEXT */
+
+ /* Get the CSI configuration -----------------------------------------------*/
+ if ((RCC->CR & RCC_CR_CSION) == RCC_CR_CSION)
+ {
+ RCC_OscInitStruct->CSIState = RCC_CSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->CSIState = RCC_CSI_OFF;
+ }
+
+#if defined(RCC_VER_X)
+ if (HAL_GetREVID() <= REV_ID_Y)
+ {
+ RCC_OscInitStruct->CSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, HAL_RCC_REV_Y_CSITRIM_Msk) >> HAL_RCC_REV_Y_CSITRIM_Pos);
+ }
+ else
+ {
+ RCC_OscInitStruct->CSICalibrationValue = (uint32_t)(READ_BIT(RCC->CSICFGR, RCC_CSICFGR_CSITRIM) >> RCC_CSICFGR_CSITRIM_Pos);
+ }
+#else
+ RCC_OscInitStruct->CSICalibrationValue = (uint32_t)(READ_BIT(RCC->CSICFGR, RCC_CSICFGR_CSITRIM) >> RCC_CSICFGR_CSITRIM_Pos);
+#endif /*RCC_VER_X*/
+
+ /* Get the HSI configuration -----------------------------------------------*/
+ if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION)
+ {
+ RCC_OscInitStruct->HSIState = RCC_HSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
+ }
+
+#if defined(RCC_VER_X)
+ if (HAL_GetREVID() <= REV_ID_Y)
+ {
+ RCC_OscInitStruct->HSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, HAL_RCC_REV_Y_HSITRIM_Msk) >> HAL_RCC_REV_Y_HSITRIM_Pos);
+ }
+ else
+ {
+ RCC_OscInitStruct->HSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, RCC_HSICFGR_HSITRIM) >> RCC_HSICFGR_HSITRIM_Pos);
+ }
+#else
+ RCC_OscInitStruct->HSICalibrationValue = (uint32_t)(READ_BIT(RCC->HSICFGR, RCC_HSICFGR_HSITRIM) >> RCC_HSICFGR_HSITRIM_Pos);
+#endif /*RCC_VER_X*/
+
+ /* Get the LSE configuration -----------------------------------------------*/
+#if defined(RCC_BDCR_LSEEXT)
+ if ((RCC->BDCR & (RCC_BDCR_LSEBYP | RCC_BDCR_LSEEXT)) == RCC_BDCR_LSEBYP)
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
+ }
+ else if ((RCC->BDCR & (RCC_BDCR_LSEBYP | RCC_BDCR_LSEEXT)) == (RCC_BDCR_LSEBYP | RCC_BDCR_LSEEXT))
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS_DIGITAL;
+ }
+ else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
+ }
+#else
+ if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
+ }
+ else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
+ }
+#endif /* RCC_BDCR_LSEEXT */
+
+ /* Get the LSI configuration -----------------------------------------------*/
+ if ((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION)
+ {
+ RCC_OscInitStruct->LSIState = RCC_LSI_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
+ }
+
+ /* Get the HSI48 configuration ---------------------------------------------*/
+ if ((RCC->CR & RCC_CR_HSI48ON) == RCC_CR_HSI48ON)
+ {
+ RCC_OscInitStruct->HSI48State = RCC_HSI48_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
+ }
+
+ /* Get the PLL configuration -----------------------------------------------*/
+ if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON)
+ {
+ RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
+ }
+ else
+ {
+ RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
+ }
+ RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCKSELR & RCC_PLLCKSELR_PLLSRC);
+ RCC_OscInitStruct->PLL.PLLM = (uint32_t)((RCC->PLLCKSELR & RCC_PLLCKSELR_DIVM1) >> RCC_PLLCKSELR_DIVM1_Pos);
+ RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_N1) >> RCC_PLL1DIVR_N1_Pos) + 1U;
+ RCC_OscInitStruct->PLL.PLLR = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_R1) >> RCC_PLL1DIVR_R1_Pos) + 1U;
+ RCC_OscInitStruct->PLL.PLLP = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_P1) >> RCC_PLL1DIVR_P1_Pos) + 1U;
+ RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLL1DIVR & RCC_PLL1DIVR_Q1) >> RCC_PLL1DIVR_Q1_Pos) + 1U;
+ RCC_OscInitStruct->PLL.PLLRGE = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLL1RGE));
+ RCC_OscInitStruct->PLL.PLLVCOSEL = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLL1VCOSEL) >> RCC_PLLCFGR_PLL1VCOSEL_Pos);
+ RCC_OscInitStruct->PLL.PLLFRACN = (uint32_t)(((RCC->PLL1FRACR & RCC_PLL1FRACR_FRACN1) >> RCC_PLL1FRACR_FRACN1_Pos));
+}
+
+/**
+ * @brief Configures the RCC_ClkInitStruct according to the internal
+ * RCC configuration registers.
+ * @param RCC_ClkInitStruct: pointer to an RCC_ClkInitTypeDef structure that
+ * will be configured.
+ * @param pFLatency: Pointer on the Flash Latency.
+ * @retval None
+ */
+void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
+{
+ /* Set all possible values for the Clock type parameter --------------------*/
+ RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_D1PCLK1 | RCC_CLOCKTYPE_PCLK1 |
+ RCC_CLOCKTYPE_PCLK2 | RCC_CLOCKTYPE_D3PCLK1 ;
+
+ /* Get the SYSCLK configuration --------------------------------------------*/
+ RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
+
+#if defined(RCC_D1CFGR_D1CPRE)
+ /* Get the SYSCLK configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->SYSCLKDivider = (uint32_t)(RCC->D1CFGR & RCC_D1CFGR_D1CPRE);
+
+ /* Get the D1HCLK configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->D1CFGR & RCC_D1CFGR_HPRE);
+
+ /* Get the APB3 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB3CLKDivider = (uint32_t)(RCC->D1CFGR & RCC_D1CFGR_D1PPRE);
+
+ /* Get the APB1 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->D2CFGR & RCC_D2CFGR_D2PPRE1);
+
+ /* Get the APB2 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)(RCC->D2CFGR & RCC_D2CFGR_D2PPRE2);
+
+ /* Get the APB4 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB4CLKDivider = (uint32_t)(RCC->D3CFGR & RCC_D3CFGR_D3PPRE);
+#else
+ /* Get the SYSCLK configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->SYSCLKDivider = (uint32_t)(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE);
+
+ /* Get the D1HCLK configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE);
+
+ /* Get the APB3 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB3CLKDivider = (uint32_t)(RCC->CDCFGR1 & RCC_CDCFGR1_CDPPRE);
+
+ /* Get the APB1 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE1);
+
+ /* Get the APB2 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)(RCC->CDCFGR2 & RCC_CDCFGR2_CDPPRE2);
+
+ /* Get the APB4 configuration ----------------------------------------------*/
+ RCC_ClkInitStruct->APB4CLKDivider = (uint32_t)(RCC->SRDCFGR & RCC_SRDCFGR_SRDPPRE);
+#endif
+
+ /* Get the Flash Wait State (Latency) configuration ------------------------*/
+ *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
+}
+
+/**
+ * @brief This function handles the RCC CSS interrupt request.
+ * @note This API should be called under the NMI_Handler().
+ * @retval None
+ */
+void HAL_RCC_NMI_IRQHandler(void)
+{
+ /* Check RCC CSSF flag */
+ if (__HAL_RCC_GET_IT(RCC_IT_CSS))
+ {
+ /* RCC Clock Security System interrupt user callback */
+ HAL_RCC_CSSCallback();
+
+ /* Clear RCC CSS pending bit */
+ __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
+ }
+}
+
+/**
+ * @brief RCC Clock Security System interrupt callback
+ * @retval none
+ */
+__weak void HAL_RCC_CSSCallback(void)
+{
+ /* NOTE : This function Should not be modified, when the callback is needed,
+ the HAL_RCC_CSSCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_RCC_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+