summaryrefslogtreecommitdiff
path: root/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_sai.c
diff options
context:
space:
mode:
authorjoshua <joshua@joshuayun.com>2023-12-30 23:54:31 -0500
committerjoshua <joshua@joshuayun.com>2023-12-30 23:54:31 -0500
commit86608c6770cf08c138a2bdab5855072f64be09ef (patch)
tree494a61b3ef37e76f9235a0d10f5c93d97290a35f /Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_sai.c
downloadsdr-software-master.tar.gz
initial commitHEADmaster
Diffstat (limited to 'Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_sai.c')
-rw-r--r--Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_sai.c2946
1 files changed, 2946 insertions, 0 deletions
diff --git a/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_sai.c b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_sai.c
new file mode 100644
index 0000000..7e25920
--- /dev/null
+++ b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_sai.c
@@ -0,0 +1,2946 @@
+/**
+ ******************************************************************************
+ * @file stm32h7xx_hal_sai.c
+ * @author MCD Application Team
+ * @brief SAI HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Serial Audio Interface (SAI) peripheral:
+ * + Initialization/de-initialization functions
+ * + I/O operation functions
+ * + Peripheral Control functions
+ * + Peripheral State functions
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.
+ *
+ * This software is licensed under terms that can be found in the LICENSE file
+ * in the root directory of this software component.
+ * If no LICENSE file comes with this software, it is provided AS-IS.
+ *
+ ******************************************************************************
+ @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+
+ [..]
+ The SAI HAL driver can be used as follows:
+
+ (#) Declare a SAI_HandleTypeDef handle structure (eg. SAI_HandleTypeDef hsai).
+ (#) Initialize the SAI low level resources by implementing the HAL_SAI_MspInit() API:
+ (##) Enable the SAI interface clock.
+ (##) SAI pins configuration:
+ (+++) Enable the clock for the SAI GPIOs.
+ (+++) Configure these SAI pins as alternate function pull-up.
+ (##) NVIC configuration if you need to use interrupt process (HAL_SAI_Transmit_IT()
+ and HAL_SAI_Receive_IT() APIs):
+ (+++) Configure the SAI interrupt priority.
+ (+++) Enable the NVIC SAI IRQ handle.
+
+ (##) DMA Configuration if you need to use DMA process (HAL_SAI_Transmit_DMA()
+ and HAL_SAI_Receive_DMA() APIs):
+ (+++) Declare a DMA handle structure for the Tx/Rx stream.
+ (+++) Enable the DMAx interface clock.
+ (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
+ (+++) Configure the DMA Tx/Rx Stream.
+ (+++) Associate the initialized DMA handle to the SAI DMA Tx/Rx handle.
+ (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the
+ DMA Tx/Rx Stream.
+
+ (#) The initialization can be done by two ways
+ (##) Expert mode : Initialize the structures Init, FrameInit and SlotInit and call HAL_SAI_Init().
+ (##) Simplified mode : Initialize the high part of Init Structure and call HAL_SAI_InitProtocol().
+
+ [..]
+ (@) The specific SAI interrupts (FIFO request and Overrun underrun interrupt)
+ will be managed using the macros __HAL_SAI_ENABLE_IT() and __HAL_SAI_DISABLE_IT()
+ inside the transmit and receive process.
+ [..]
+ (@) Make sure that either:
+ (+@) PLLSAI1CLK output is configured or
+ (+@) PLLSAI2CLK output is configured or
+ (+@) PLLSAI3CLK output is configured or
+ (+@) PLLSAI4ACLK output is configured or
+ (+@) PLLSAI4BCLK output is configured or
+ (+@) External clock source is configured after setting correctly
+ the define constant EXTERNAL_CLOCK_VALUE in the stm32h7xx_hal_conf.h file.
+
+ [..]
+ (@) In master Tx mode: enabling the audio block immediately generates the bit clock
+ for the external slaves even if there is no data in the FIFO, However FS signal
+ generation is conditioned by the presence of data in the FIFO.
+
+ [..]
+ (@) In master Rx mode: enabling the audio block immediately generates the bit clock
+ and FS signal for the external slaves.
+
+ [..]
+ (@) It is mandatory to respect the following conditions in order to avoid bad SAI behavior:
+ (+@) First bit Offset <= (SLOT size - Data size)
+ (+@) Data size <= SLOT size
+ (+@) Number of SLOT x SLOT size = Frame length
+ (+@) The number of slots should be even when SAI_FS_CHANNEL_IDENTIFICATION is selected.
+
+ [..]
+ (@) PDM interface can be activated through HAL_SAI_Init function.
+ Please note that PDM interface is only available for SAI1 or SAI4 sub-block A.
+ PDM microphone delays can be tuned with HAL_SAIEx_ConfigPdmMicDelay function.
+
+ [..]
+ Three operation modes are available within this driver :
+
+ *** Polling mode IO operation ***
+ =================================
+ [..]
+ (+) Send an amount of data in blocking mode using HAL_SAI_Transmit()
+ (+) Receive an amount of data in blocking mode using HAL_SAI_Receive()
+
+ *** Interrupt mode IO operation ***
+ ===================================
+ [..]
+ (+) Send an amount of data in non-blocking mode using HAL_SAI_Transmit_IT()
+ (+) At transmission end of transfer HAL_SAI_TxCpltCallback() is executed and user can
+ add his own code by customization of function pointer HAL_SAI_TxCpltCallback()
+ (+) Receive an amount of data in non-blocking mode using HAL_SAI_Receive_IT()
+ (+) At reception end of transfer HAL_SAI_RxCpltCallback() is executed and user can
+ add his own code by customization of function pointer HAL_SAI_RxCpltCallback()
+ (+) In case of flag error, HAL_SAI_ErrorCallback() function is executed and user can
+ add his own code by customization of function pointer HAL_SAI_ErrorCallback()
+
+ *** DMA mode IO operation ***
+ =============================
+ [..]
+ (+) Send an amount of data in non-blocking mode (DMA) using HAL_SAI_Transmit_DMA()
+ (+) At transmission end of transfer HAL_SAI_TxCpltCallback() is executed and user can
+ add his own code by customization of function pointer HAL_SAI_TxCpltCallback()
+ (+) Receive an amount of data in non-blocking mode (DMA) using HAL_SAI_Receive_DMA()
+ (+) At reception end of transfer HAL_SAI_RxCpltCallback() is executed and user can
+ add his own code by customization of function pointer HAL_SAI_RxCpltCallback()
+ (+) In case of flag error, HAL_SAI_ErrorCallback() function is executed and user can
+ add his own code by customization of function pointer HAL_SAI_ErrorCallback()
+ (+) Pause the DMA Transfer using HAL_SAI_DMAPause()
+ (+) Resume the DMA Transfer using HAL_SAI_DMAResume()
+ (+) Stop the DMA Transfer using HAL_SAI_DMAStop()
+
+ *** SAI HAL driver additional function list ***
+ ===============================================
+ [..]
+ Below the list the others API available SAI HAL driver :
+
+ (+) HAL_SAI_EnableTxMuteMode(): Enable the mute in tx mode
+ (+) HAL_SAI_DisableTxMuteMode(): Disable the mute in tx mode
+ (+) HAL_SAI_EnableRxMuteMode(): Enable the mute in Rx mode
+ (+) HAL_SAI_DisableRxMuteMode(): Disable the mute in Rx mode
+ (+) HAL_SAI_FlushRxFifo(): Flush the rx fifo.
+ (+) HAL_SAI_Abort(): Abort the current transfer
+
+ *** SAI HAL driver macros list ***
+ ==================================
+ [..]
+ Below the list of most used macros in SAI HAL driver :
+
+ (+) __HAL_SAI_ENABLE(): Enable the SAI peripheral
+ (+) __HAL_SAI_DISABLE(): Disable the SAI peripheral
+ (+) __HAL_SAI_ENABLE_IT(): Enable the specified SAI interrupts
+ (+) __HAL_SAI_DISABLE_IT(): Disable the specified SAI interrupts
+ (+) __HAL_SAI_GET_IT_SOURCE(): Check if the specified SAI interrupt source is
+ enabled or disabled
+ (+) __HAL_SAI_GET_FLAG(): Check whether the specified SAI flag is set or not
+
+ *** Callback registration ***
+ =============================
+ [..]
+ The compilation define USE_HAL_SAI_REGISTER_CALLBACKS when set to 1
+ allows the user to configure dynamically the driver callbacks.
+ Use functions HAL_SAI_RegisterCallback() to register a user callback.
+
+ [..]
+ Function HAL_SAI_RegisterCallback() allows to register following callbacks:
+ (+) RxCpltCallback : SAI receive complete.
+ (+) RxHalfCpltCallback : SAI receive half complete.
+ (+) TxCpltCallback : SAI transmit complete.
+ (+) TxHalfCpltCallback : SAI transmit half complete.
+ (+) ErrorCallback : SAI error.
+ (+) MspInitCallback : SAI MspInit.
+ (+) MspDeInitCallback : SAI MspDeInit.
+ [..]
+ This function takes as parameters the HAL peripheral handle, the callback ID
+ and a pointer to the user callback function.
+
+ [..]
+ Use function HAL_SAI_UnRegisterCallback() to reset a callback to the default
+ weak (surcharged) function.
+ HAL_SAI_UnRegisterCallback() takes as parameters the HAL peripheral handle,
+ and the callback ID.
+ [..]
+ This function allows to reset following callbacks:
+ (+) RxCpltCallback : SAI receive complete.
+ (+) RxHalfCpltCallback : SAI receive half complete.
+ (+) TxCpltCallback : SAI transmit complete.
+ (+) TxHalfCpltCallback : SAI transmit half complete.
+ (+) ErrorCallback : SAI error.
+ (+) MspInitCallback : SAI MspInit.
+ (+) MspDeInitCallback : SAI MspDeInit.
+
+ [..]
+ By default, after the HAL_SAI_Init and if the state is HAL_SAI_STATE_RESET
+ all callbacks are reset to the corresponding legacy weak (surcharged) functions:
+ examples HAL_SAI_RxCpltCallback(), HAL_SAI_ErrorCallback().
+ Exception done for MspInit and MspDeInit callbacks that are respectively
+ reset to the legacy weak (surcharged) functions in the HAL_SAI_Init
+ and HAL_SAI_DeInit only when these callbacks are null (not registered beforehand).
+ If not, MspInit or MspDeInit are not null, the HAL_SAI_Init and HAL_SAI_DeInit
+ keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
+
+ [..]
+ Callbacks can be registered/unregistered in READY state only.
+ Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
+ in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
+ during the Init/DeInit.
+ In that case first register the MspInit/MspDeInit user callbacks
+ using HAL_SAI_RegisterCallback before calling HAL_SAI_DeInit
+ or HAL_SAI_Init function.
+
+ [..]
+ When the compilation define USE_HAL_SAI_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registering feature is not available
+ and weak (surcharged) callbacks are used.
+
+ @endverbatim
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32h7xx_hal.h"
+
+/** @addtogroup STM32H7xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup SAI SAI
+ * @brief SAI HAL module driver
+ * @{
+ */
+
+#ifdef HAL_SAI_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/** @defgroup SAI_Private_Typedefs SAI Private Typedefs
+ * @{
+ */
+typedef enum
+{
+ SAI_MODE_DMA,
+ SAI_MODE_IT
+} SAI_ModeTypedef;
+/**
+ * @}
+ */
+
+/* Private define ------------------------------------------------------------*/
+/** @defgroup SAI_Private_Constants SAI Private Constants
+ * @{
+ */
+#define SAI_DEFAULT_TIMEOUT 4U
+#define SAI_LONG_TIMEOUT 1000U
+#define SAI_SPDIF_FRAME_LENGTH 64U
+#define SAI_AC97_FRAME_LENGTH 256U
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup SAI_Private_Functions SAI Private Functions
+ * @{
+ */
+static void SAI_FillFifo(SAI_HandleTypeDef *hsai);
+static uint32_t SAI_InterruptFlag(const SAI_HandleTypeDef *hsai, SAI_ModeTypedef mode);
+static HAL_StatusTypeDef SAI_InitI2S(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot);
+static HAL_StatusTypeDef SAI_InitPCM(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot);
+
+static HAL_StatusTypeDef SAI_Disable(SAI_HandleTypeDef *hsai);
+static void SAI_Transmit_IT8Bit(SAI_HandleTypeDef *hsai);
+static void SAI_Transmit_IT16Bit(SAI_HandleTypeDef *hsai);
+static void SAI_Transmit_IT32Bit(SAI_HandleTypeDef *hsai);
+static void SAI_Receive_IT8Bit(SAI_HandleTypeDef *hsai);
+static void SAI_Receive_IT16Bit(SAI_HandleTypeDef *hsai);
+static void SAI_Receive_IT32Bit(SAI_HandleTypeDef *hsai);
+
+static void SAI_DMATxCplt(DMA_HandleTypeDef *hdma);
+static void SAI_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
+static void SAI_DMARxCplt(DMA_HandleTypeDef *hdma);
+static void SAI_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
+static void SAI_DMAError(DMA_HandleTypeDef *hdma);
+static void SAI_DMAAbort(DMA_HandleTypeDef *hdma);
+/**
+ * @}
+ */
+
+/* Exported functions ---------------------------------------------------------*/
+/** @defgroup SAI_Exported_Functions SAI Exported Functions
+ * @{
+ */
+
+/** @defgroup SAI_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..] This subsection provides a set of functions allowing to initialize and
+ de-initialize the SAIx peripheral:
+
+ (+) User must implement HAL_SAI_MspInit() function in which he configures
+ all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
+
+ (+) Call the function HAL_SAI_Init() to configure the selected device with
+ the selected configuration:
+ (++) Mode (Master/slave TX/RX)
+ (++) Protocol
+ (++) Data Size
+ (++) MCLK Output
+ (++) Audio frequency
+ (++) FIFO Threshold
+ (++) Frame Config
+ (++) Slot Config
+ (++) PDM Config
+
+ (+) Call the function HAL_SAI_DeInit() to restore the default configuration
+ of the selected SAI peripheral.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initialize the structure FrameInit, SlotInit and the low part of
+ * Init according to the specified parameters and call the function
+ * HAL_SAI_Init to initialize the SAI block.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param protocol one of the supported protocol @ref SAI_Protocol
+ * @param datasize one of the supported datasize @ref SAI_Protocol_DataSize
+ * the configuration information for SAI module.
+ * @param nbslot Number of slot.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_InitProtocol(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot)
+{
+ HAL_StatusTypeDef status;
+
+ /* Check the parameters */
+ assert_param(IS_SAI_SUPPORTED_PROTOCOL(protocol));
+ assert_param(IS_SAI_PROTOCOL_DATASIZE(datasize));
+
+ switch (protocol)
+ {
+ case SAI_I2S_STANDARD :
+ case SAI_I2S_MSBJUSTIFIED :
+ case SAI_I2S_LSBJUSTIFIED :
+ status = SAI_InitI2S(hsai, protocol, datasize, nbslot);
+ break;
+ case SAI_PCM_LONG :
+ case SAI_PCM_SHORT :
+ status = SAI_InitPCM(hsai, protocol, datasize, nbslot);
+ break;
+ default :
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ status = HAL_SAI_Init(hsai);
+ }
+
+ return status;
+}
+
+/**
+ * @brief Initialize the SAI according to the specified parameters.
+ * in the SAI_InitTypeDef structure and initialize the associated handle.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_Init(SAI_HandleTypeDef *hsai)
+{
+ uint32_t tmpregisterGCR;
+ uint32_t ckstr_bits;
+ uint32_t syncen_bits;
+ SAI_TypeDef *SaiBaseAddress;
+
+ /* Check the SAI handle allocation */
+ if (hsai == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* check the instance */
+ assert_param(IS_SAI_ALL_INSTANCE(hsai->Instance));
+
+ /* Check the SAI Block parameters */
+ assert_param(IS_SAI_AUDIO_FREQUENCY(hsai->Init.AudioFrequency));
+ assert_param(IS_SAI_BLOCK_PROTOCOL(hsai->Init.Protocol));
+ assert_param(IS_SAI_BLOCK_MODE(hsai->Init.AudioMode));
+ assert_param(IS_SAI_BLOCK_DATASIZE(hsai->Init.DataSize));
+ assert_param(IS_SAI_BLOCK_FIRST_BIT(hsai->Init.FirstBit));
+ assert_param(IS_SAI_BLOCK_CLOCK_STROBING(hsai->Init.ClockStrobing));
+ assert_param(IS_SAI_BLOCK_SYNCHRO(hsai->Init.Synchro));
+#if defined(SAI_VER_V2_X)
+ /* SAI Peripheral version depends on STM32H7 device revision ID */
+ if (HAL_GetREVID() >= REV_ID_B) /* STM32H7xx Rev.B and above */
+ {
+ assert_param(IS_SAI_BLOCK_MCK_OUTPUT(hsai->Init.MckOutput));
+ }
+#else /* SAI_VER_V2_1 */
+ assert_param(IS_SAI_BLOCK_MCK_OUTPUT(hsai->Init.MckOutput));
+#endif /* SAI_VER_V2_X */
+ assert_param(IS_SAI_BLOCK_OUTPUT_DRIVE(hsai->Init.OutputDrive));
+ assert_param(IS_SAI_BLOCK_NODIVIDER(hsai->Init.NoDivider));
+ assert_param(IS_SAI_BLOCK_FIFO_THRESHOLD(hsai->Init.FIFOThreshold));
+ assert_param(IS_SAI_MONO_STEREO_MODE(hsai->Init.MonoStereoMode));
+ assert_param(IS_SAI_BLOCK_COMPANDING_MODE(hsai->Init.CompandingMode));
+ assert_param(IS_SAI_BLOCK_TRISTATE_MANAGEMENT(hsai->Init.TriState));
+ assert_param(IS_SAI_BLOCK_SYNCEXT(hsai->Init.SynchroExt));
+ assert_param(IS_SAI_BLOCK_MCK_OVERSAMPLING(hsai->Init.MckOverSampling));
+
+ /* Check the SAI Block Frame parameters */
+ assert_param(IS_SAI_BLOCK_FRAME_LENGTH(hsai->FrameInit.FrameLength));
+ assert_param(IS_SAI_BLOCK_ACTIVE_FRAME(hsai->FrameInit.ActiveFrameLength));
+ assert_param(IS_SAI_BLOCK_FS_DEFINITION(hsai->FrameInit.FSDefinition));
+ assert_param(IS_SAI_BLOCK_FS_POLARITY(hsai->FrameInit.FSPolarity));
+ assert_param(IS_SAI_BLOCK_FS_OFFSET(hsai->FrameInit.FSOffset));
+
+ /* Check the SAI Block Slot parameters */
+ assert_param(IS_SAI_BLOCK_FIRSTBIT_OFFSET(hsai->SlotInit.FirstBitOffset));
+ assert_param(IS_SAI_BLOCK_SLOT_SIZE(hsai->SlotInit.SlotSize));
+ assert_param(IS_SAI_BLOCK_SLOT_NUMBER(hsai->SlotInit.SlotNumber));
+ assert_param(IS_SAI_SLOT_ACTIVE(hsai->SlotInit.SlotActive));
+
+ /* Check the SAI PDM parameters */
+ assert_param(IS_FUNCTIONAL_STATE(hsai->Init.PdmInit.Activation));
+ if (hsai->Init.PdmInit.Activation == ENABLE)
+ {
+ assert_param(IS_SAI_PDM_MIC_PAIRS_NUMBER(hsai->Init.PdmInit.MicPairsNbr));
+ assert_param(IS_SAI_PDM_CLOCK_ENABLE(hsai->Init.PdmInit.ClockEnable));
+ /* Check that SAI sub-block is SAI1 or SAI4 sub-block A, in master RX mode with free protocol */
+#if defined(SAI4)
+ if (((hsai->Instance != SAI1_Block_A) && (hsai->Instance != SAI4_Block_A)) ||
+ (hsai->Init.AudioMode != SAI_MODEMASTER_RX) ||
+ (hsai->Init.Protocol != SAI_FREE_PROTOCOL))
+ {
+ return HAL_ERROR;
+ }
+#else
+ if ((hsai->Instance != SAI1_Block_A) ||
+ (hsai->Init.AudioMode != SAI_MODEMASTER_RX) ||
+ (hsai->Init.Protocol != SAI_FREE_PROTOCOL))
+ {
+ return HAL_ERROR;
+ }
+#endif /* SAI4 */
+ }
+
+ /* Get the SAI base address according to the SAI handle */
+ if ((hsai->Instance == SAI1_Block_A) || (hsai->Instance == SAI1_Block_B))
+ {
+ SaiBaseAddress = SAI1;
+ }
+#if defined(SAI2)
+ else if ((hsai->Instance == SAI2_Block_A) || (hsai->Instance == SAI2_Block_B))
+ {
+ SaiBaseAddress = SAI2;
+ }
+#endif /* SAI2 */
+#if defined(SAI3)
+ else if ((hsai->Instance == SAI3_Block_A) || (hsai->Instance == SAI3_Block_B))
+ {
+ SaiBaseAddress = SAI3;
+ }
+#endif /* SAI3 */
+#if defined(SAI4)
+ else if ((hsai->Instance == SAI4_Block_A) || (hsai->Instance == SAI4_Block_B))
+ {
+ SaiBaseAddress = SAI4;
+ }
+#endif /* SAI4 */
+ else
+ {
+ return HAL_ERROR;
+ }
+
+ if (hsai->State == HAL_SAI_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ hsai->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ /* Reset callback pointers to the weak predefined callbacks */
+ hsai->RxCpltCallback = HAL_SAI_RxCpltCallback;
+ hsai->RxHalfCpltCallback = HAL_SAI_RxHalfCpltCallback;
+ hsai->TxCpltCallback = HAL_SAI_TxCpltCallback;
+ hsai->TxHalfCpltCallback = HAL_SAI_TxHalfCpltCallback;
+ hsai->ErrorCallback = HAL_SAI_ErrorCallback;
+
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ if (hsai->MspInitCallback == NULL)
+ {
+ hsai->MspInitCallback = HAL_SAI_MspInit;
+ }
+ hsai->MspInitCallback(hsai);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_SAI_MspInit(hsai);
+#endif
+ }
+
+ /* Disable the selected SAI peripheral */
+ if(SAI_Disable(hsai) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ hsai->State = HAL_SAI_STATE_BUSY;
+
+ /* SAI Block Synchro Configuration -----------------------------------------*/
+ /* This setting must be done with both audio block (A & B) disabled */
+ switch (hsai->Init.SynchroExt)
+ {
+ case SAI_SYNCEXT_DISABLE :
+ tmpregisterGCR = 0;
+ break;
+ case SAI_SYNCEXT_OUTBLOCKA_ENABLE :
+ tmpregisterGCR = SAI_GCR_SYNCOUT_0;
+ break;
+ case SAI_SYNCEXT_OUTBLOCKB_ENABLE :
+ tmpregisterGCR = SAI_GCR_SYNCOUT_1;
+ break;
+ default:
+ tmpregisterGCR = 0;
+ break;
+ }
+
+ switch (hsai->Init.Synchro)
+ {
+ case SAI_ASYNCHRONOUS :
+ syncen_bits = 0;
+ break;
+ case SAI_SYNCHRONOUS :
+ syncen_bits = SAI_xCR1_SYNCEN_0;
+ break;
+ case SAI_SYNCHRONOUS_EXT_SAI1 :
+ syncen_bits = SAI_xCR1_SYNCEN_1;
+ break;
+#if defined(SAI2)
+ case SAI_SYNCHRONOUS_EXT_SAI2 :
+ syncen_bits = SAI_xCR1_SYNCEN_1;
+ tmpregisterGCR |= SAI_GCR_SYNCIN_0;
+ break;
+#endif /* SAI2 */
+#if defined(SAI3)
+ case SAI_SYNCHRONOUS_EXT_SAI3 :
+ syncen_bits = SAI_xCR1_SYNCEN_1;
+ tmpregisterGCR |= SAI_GCR_SYNCIN_1;
+ break;
+#endif /* SAI3 */
+#if defined(SAI4)
+ case SAI_SYNCHRONOUS_EXT_SAI4 :
+ syncen_bits = SAI_xCR1_SYNCEN_1;
+ tmpregisterGCR |= (SAI_GCR_SYNCIN_1 | SAI_GCR_SYNCIN_0);
+ break;
+#endif /* SAI4 */
+ default:
+ syncen_bits = 0;
+ break;
+ }
+
+ /* Set the SAI Block Synchro Configuration */
+ SaiBaseAddress->GCR = tmpregisterGCR;
+
+ if (hsai->Init.AudioFrequency != SAI_AUDIO_FREQUENCY_MCKDIV)
+ {
+ uint32_t freq = 0;
+ uint32_t tmpval;
+
+ /* In this case, the MCKDIV value is calculated to get AudioFrequency */
+ if ((hsai->Instance == SAI1_Block_A) || (hsai->Instance == SAI1_Block_B))
+ {
+ freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI1);
+ }
+
+#if defined(SAI2)
+#if defined(RCC_PERIPHCLK_SAI2)
+ if ((hsai->Instance == SAI2_Block_A) || (hsai->Instance == SAI2_Block_B))
+ {
+ freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI2);
+ }
+#else
+ if (hsai->Instance == SAI2_Block_A)
+ {
+ freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI2A);
+ }
+ if (hsai->Instance == SAI2_Block_B)
+ {
+ freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI2B);
+ }
+#endif /* RCC_PERIPHCLK_SAI2 */
+#endif /* SAI2 */
+
+#if defined(SAI3)
+ if ((hsai->Instance == SAI3_Block_A) || (hsai->Instance == SAI3_Block_B))
+ {
+ freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI3);
+ }
+#endif /* SAI3 */
+#if defined(SAI4)
+ if (hsai->Instance == SAI4_Block_A)
+ {
+ freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI4A);
+ }
+ if (hsai->Instance == SAI4_Block_B)
+ {
+ freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI4B);
+ }
+#endif /* SAI4 */
+
+ /* Configure Master Clock Divider using the following formula :
+ - If NODIV = 1 :
+ MCKDIV[5:0] = SAI_CK_x / (FS * (FRL + 1))
+ - If NODIV = 0 :
+ MCKDIV[5:0] = SAI_CK_x / (FS * (OSR + 1) * 256) */
+ if (hsai->Init.NoDivider == SAI_MASTERDIVIDER_DISABLE)
+ {
+ /* NODIV = 1 */
+ uint32_t tmpframelength;
+
+ if (hsai->Init.Protocol == SAI_SPDIF_PROTOCOL)
+ {
+ /* For SPDIF protocol, frame length is set by hardware to 64 */
+ tmpframelength = SAI_SPDIF_FRAME_LENGTH;
+ }
+ else if (hsai->Init.Protocol == SAI_AC97_PROTOCOL)
+ {
+ /* For AC97 protocol, frame length is set by hardware to 256 */
+ tmpframelength = SAI_AC97_FRAME_LENGTH;
+ }
+ else
+ {
+ /* For free protocol, frame length is set by user */
+ tmpframelength = hsai->FrameInit.FrameLength;
+ }
+
+ /* (freq x 10) to keep Significant digits */
+ tmpval = (freq * 10U) / (hsai->Init.AudioFrequency * tmpframelength);
+ }
+ else
+ {
+ /* NODIV = 0 */
+ uint32_t tmposr;
+ tmposr = (hsai->Init.MckOverSampling == SAI_MCK_OVERSAMPLING_ENABLE) ? 2U : 1U;
+ /* (freq x 10) to keep Significant digits */
+ tmpval = (freq * 10U) / (hsai->Init.AudioFrequency * tmposr * 256U);
+ }
+ hsai->Init.Mckdiv = tmpval / 10U;
+
+ /* Round result to the nearest integer */
+ if ((tmpval % 10U) > 8U)
+ {
+ hsai->Init.Mckdiv += 1U;
+ }
+
+ /* For SPDIF protocol, SAI shall provide a bit clock twice faster the symbol-rate */
+ if (hsai->Init.Protocol == SAI_SPDIF_PROTOCOL)
+ {
+ hsai->Init.Mckdiv = hsai->Init.Mckdiv >> 1;
+ }
+ }
+
+ /* Check the SAI Block master clock divider parameter */
+ assert_param(IS_SAI_BLOCK_MASTER_DIVIDER(hsai->Init.Mckdiv));
+
+ /* Compute CKSTR bits of SAI CR1 according ClockStrobing and AudioMode */
+ if ((hsai->Init.AudioMode == SAI_MODEMASTER_TX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX))
+ {
+ /* Transmit */
+ ckstr_bits = (hsai->Init.ClockStrobing == SAI_CLOCKSTROBING_RISINGEDGE) ? 0U : SAI_xCR1_CKSTR;
+ }
+ else
+ {
+ /* Receive */
+ ckstr_bits = (hsai->Init.ClockStrobing == SAI_CLOCKSTROBING_RISINGEDGE) ? SAI_xCR1_CKSTR : 0U;
+ }
+
+ /* SAI Block Configuration -------------------------------------------------*/
+ /* SAI CR1 Configuration */
+#if defined(SAI_VER_V2_X) /* SAI Peripheral version depends on STM32H7 device revision ID */
+
+ if (HAL_GetREVID() >= REV_ID_B) /* STM32H7xx Rev.B and above */
+ {
+ hsai->Instance->CR1 &= ~(SAI_xCR1_MODE | SAI_xCR1_PRTCFG | SAI_xCR1_DS | \
+ SAI_xCR1_LSBFIRST | SAI_xCR1_CKSTR | SAI_xCR1_SYNCEN | \
+ SAI_xCR1_MONO | SAI_xCR1_OUTDRIV | SAI_xCR1_DMAEN | \
+ SAI_xCR1_NODIV | SAI_xCR1_MCKDIV | SAI_xCR1_OSR | \
+ SAI_xCR1_MCKEN);
+
+ hsai->Instance->CR1 |= (hsai->Init.AudioMode | hsai->Init.Protocol | \
+ hsai->Init.DataSize | hsai->Init.FirstBit | \
+ ckstr_bits | syncen_bits | \
+ hsai->Init.MonoStereoMode | hsai->Init.OutputDrive | \
+ hsai->Init.NoDivider | (hsai->Init.Mckdiv << 20) | \
+ hsai->Init.MckOverSampling | hsai->Init.MckOutput);
+ }
+ else /* STM32H7xx Rev.Y */
+ {
+ hsai->Instance->CR1 &= ~(SAI_xCR1_MODE | SAI_xCR1_PRTCFG | SAI_xCR1_DS | \
+ SAI_xCR1_LSBFIRST | SAI_xCR1_CKSTR | SAI_xCR1_SYNCEN | \
+ SAI_xCR1_MONO | SAI_xCR1_OUTDRIV | SAI_xCR1_DMAEN | \
+ SAI_xCR1_NODIV | SAI_xCR1_MCKDIV | SAI_xCR1_OSR);
+
+ hsai->Instance->CR1 |= (hsai->Init.AudioMode | hsai->Init.Protocol | \
+ hsai->Init.DataSize | hsai->Init.FirstBit | \
+ ckstr_bits | syncen_bits | \
+ hsai->Init.MonoStereoMode | hsai->Init.OutputDrive | \
+ hsai->Init.NoDivider | (hsai->Init.Mckdiv << 20) | \
+ hsai->Init.MckOverSampling);
+ }
+#else /* SAI_VER_V2_1*/
+ hsai->Instance->CR1 &= ~(SAI_xCR1_MODE | SAI_xCR1_PRTCFG | SAI_xCR1_DS | \
+ SAI_xCR1_LSBFIRST | SAI_xCR1_CKSTR | SAI_xCR1_SYNCEN | \
+ SAI_xCR1_MONO | SAI_xCR1_OUTDRIV | SAI_xCR1_DMAEN | \
+ SAI_xCR1_NODIV | SAI_xCR1_MCKDIV | SAI_xCR1_OSR | \
+ SAI_xCR1_MCKEN);
+
+ hsai->Instance->CR1 |= (hsai->Init.AudioMode | hsai->Init.Protocol | \
+ hsai->Init.DataSize | hsai->Init.FirstBit | \
+ ckstr_bits | syncen_bits | \
+ hsai->Init.MonoStereoMode | hsai->Init.OutputDrive | \
+ hsai->Init.NoDivider | (hsai->Init.Mckdiv << 20) | \
+ hsai->Init.MckOverSampling | hsai->Init.MckOutput);
+#endif /* SAI_VER_V2_X */
+
+ /* SAI CR2 Configuration */
+ hsai->Instance->CR2 &= ~(SAI_xCR2_FTH | SAI_xCR2_FFLUSH | SAI_xCR2_COMP | SAI_xCR2_CPL);
+ hsai->Instance->CR2 |= (hsai->Init.FIFOThreshold | hsai->Init.CompandingMode | hsai->Init.TriState);
+
+ /* SAI Frame Configuration -----------------------------------------*/
+ hsai->Instance->FRCR &= (~(SAI_xFRCR_FRL | SAI_xFRCR_FSALL | SAI_xFRCR_FSDEF | \
+ SAI_xFRCR_FSPOL | SAI_xFRCR_FSOFF));
+ hsai->Instance->FRCR |= ((hsai->FrameInit.FrameLength - 1U) |
+ hsai->FrameInit.FSOffset |
+ hsai->FrameInit.FSDefinition |
+ hsai->FrameInit.FSPolarity |
+ ((hsai->FrameInit.ActiveFrameLength - 1U) << 8));
+
+ /* SAI Block_x SLOT Configuration ------------------------------------------*/
+ /* This register has no meaning in AC 97 and SPDIF audio protocol */
+ hsai->Instance->SLOTR &= (~(SAI_xSLOTR_FBOFF | SAI_xSLOTR_SLOTSZ | \
+ SAI_xSLOTR_NBSLOT | SAI_xSLOTR_SLOTEN));
+
+ hsai->Instance->SLOTR |= hsai->SlotInit.FirstBitOffset | hsai->SlotInit.SlotSize | \
+ (hsai->SlotInit.SlotActive << 16) | ((hsai->SlotInit.SlotNumber - 1U) << 8);
+
+ /* SAI PDM Configuration ---------------------------------------------------*/
+#if defined(SAI4)
+ if ((hsai->Instance == SAI1_Block_A) || (hsai->Instance == SAI4_Block_A))
+#else
+ if (hsai->Instance == SAI1_Block_A)
+#endif /* SAI4 */
+ {
+ /* Disable PDM interface */
+ SaiBaseAddress->PDMCR &= ~(SAI_PDMCR_PDMEN);
+ if (hsai->Init.PdmInit.Activation == ENABLE)
+ {
+ /* Configure and enable PDM interface */
+ SaiBaseAddress->PDMCR = (hsai->Init.PdmInit.ClockEnable |
+ ((hsai->Init.PdmInit.MicPairsNbr - 1U) << SAI_PDMCR_MICNBR_Pos));
+ SaiBaseAddress->PDMCR |= SAI_PDMCR_PDMEN;
+ }
+ }
+
+ /* Initialize the error code */
+ hsai->ErrorCode = HAL_SAI_ERROR_NONE;
+
+ /* Initialize the SAI state */
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Release Lock */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitialize the SAI peripheral.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_DeInit(SAI_HandleTypeDef *hsai)
+{
+ SAI_TypeDef *SaiBaseAddress;
+
+ /* Check the SAI handle allocation */
+ if (hsai == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ hsai->State = HAL_SAI_STATE_BUSY;
+
+ /* Disabled All interrupt and clear all the flag */
+ hsai->Instance->IMR = 0;
+ hsai->Instance->CLRFR = 0xFFFFFFFFU;
+
+ /* Disable the SAI */
+ if (SAI_Disable(hsai) != HAL_OK)
+ {
+ /* Reset SAI state to ready */
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Release Lock */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_ERROR;
+ }
+
+ /* Flush the fifo */
+ SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
+
+ /* Disable SAI PDM interface */
+#if defined(SAI4)
+ if ((hsai->Instance == SAI1_Block_A) || (hsai->Instance == SAI4_Block_A))
+#else
+ if (hsai->Instance == SAI1_Block_A)
+#endif /* SAI4 */
+ {
+ /* Get the SAI base address according to the SAI handle */
+#if defined(SAI4)
+ SaiBaseAddress = (hsai->Instance == SAI1_Block_A) ? SAI1 : SAI4;
+#else
+ SaiBaseAddress = SAI1;
+#endif /* SAI4 */
+
+ /* Reset PDM delays */
+ SaiBaseAddress->PDMDLY = 0U;
+
+ /* Disable PDM interface */
+ SaiBaseAddress->PDMCR &= ~(SAI_PDMCR_PDMEN);
+ }
+
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ if (hsai->MspDeInitCallback == NULL)
+ {
+ hsai->MspDeInitCallback = HAL_SAI_MspDeInit;
+ }
+ hsai->MspDeInitCallback(hsai);
+#else
+ HAL_SAI_MspDeInit(hsai);
+#endif
+
+ /* Initialize the error code */
+ hsai->ErrorCode = HAL_SAI_ERROR_NONE;
+
+ /* Initialize the SAI state */
+ hsai->State = HAL_SAI_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initialize the SAI MSP.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+__weak void HAL_SAI_MspInit(SAI_HandleTypeDef *hsai)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hsai);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SAI_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitialize the SAI MSP.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+__weak void HAL_SAI_MspDeInit(SAI_HandleTypeDef *hsai)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hsai);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SAI_MspDeInit could be implemented in the user file
+ */
+}
+
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a user SAI callback
+ * to be used instead of the weak predefined callback.
+ * @param hsai SAI handle.
+ * @param CallbackID ID of the callback to be registered.
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_SAI_RX_COMPLETE_CB_ID receive complete callback ID.
+ * @arg @ref HAL_SAI_RX_HALFCOMPLETE_CB_ID receive half complete callback ID.
+ * @arg @ref HAL_SAI_TX_COMPLETE_CB_ID transmit complete callback ID.
+ * @arg @ref HAL_SAI_TX_HALFCOMPLETE_CB_ID transmit half complete callback ID.
+ * @arg @ref HAL_SAI_ERROR_CB_ID error callback ID.
+ * @arg @ref HAL_SAI_MSPINIT_CB_ID MSP init callback ID.
+ * @arg @ref HAL_SAI_MSPDEINIT_CB_ID MSP de-init callback ID.
+ * @param pCallback pointer to the callback function.
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef HAL_SAI_RegisterCallback(SAI_HandleTypeDef *hsai,
+ HAL_SAI_CallbackIDTypeDef CallbackID,
+ pSAI_CallbackTypeDef pCallback)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL)
+ {
+ /* update the error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
+ /* update return status */
+ status = HAL_ERROR;
+ }
+ else
+ {
+ if (HAL_SAI_STATE_READY == hsai->State)
+ {
+ switch (CallbackID)
+ {
+ case HAL_SAI_RX_COMPLETE_CB_ID :
+ hsai->RxCpltCallback = pCallback;
+ break;
+ case HAL_SAI_RX_HALFCOMPLETE_CB_ID :
+ hsai->RxHalfCpltCallback = pCallback;
+ break;
+ case HAL_SAI_TX_COMPLETE_CB_ID :
+ hsai->TxCpltCallback = pCallback;
+ break;
+ case HAL_SAI_TX_HALFCOMPLETE_CB_ID :
+ hsai->TxHalfCpltCallback = pCallback;
+ break;
+ case HAL_SAI_ERROR_CB_ID :
+ hsai->ErrorCallback = pCallback;
+ break;
+ case HAL_SAI_MSPINIT_CB_ID :
+ hsai->MspInitCallback = pCallback;
+ break;
+ case HAL_SAI_MSPDEINIT_CB_ID :
+ hsai->MspDeInitCallback = pCallback;
+ break;
+ default :
+ /* update the error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
+ /* update return status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (HAL_SAI_STATE_RESET == hsai->State)
+ {
+ switch (CallbackID)
+ {
+ case HAL_SAI_MSPINIT_CB_ID :
+ hsai->MspInitCallback = pCallback;
+ break;
+ case HAL_SAI_MSPDEINIT_CB_ID :
+ hsai->MspDeInitCallback = pCallback;
+ break;
+ default :
+ /* update the error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
+ /* update return status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* update the error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
+ /* update return status */
+ status = HAL_ERROR;
+ }
+ }
+ return status;
+}
+
+/**
+ * @brief Unregister a user SAI callback.
+ * SAI callback is redirected to the weak predefined callback.
+ * @param hsai SAI handle.
+ * @param CallbackID ID of the callback to be unregistered.
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_SAI_RX_COMPLETE_CB_ID receive complete callback ID.
+ * @arg @ref HAL_SAI_RX_HALFCOMPLETE_CB_ID receive half complete callback ID.
+ * @arg @ref HAL_SAI_TX_COMPLETE_CB_ID transmit complete callback ID.
+ * @arg @ref HAL_SAI_TX_HALFCOMPLETE_CB_ID transmit half complete callback ID.
+ * @arg @ref HAL_SAI_ERROR_CB_ID error callback ID.
+ * @arg @ref HAL_SAI_MSPINIT_CB_ID MSP init callback ID.
+ * @arg @ref HAL_SAI_MSPDEINIT_CB_ID MSP de-init callback ID.
+ * @retval HAL status.
+ */
+HAL_StatusTypeDef HAL_SAI_UnRegisterCallback(SAI_HandleTypeDef *hsai,
+ HAL_SAI_CallbackIDTypeDef CallbackID)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (HAL_SAI_STATE_READY == hsai->State)
+ {
+ switch (CallbackID)
+ {
+ case HAL_SAI_RX_COMPLETE_CB_ID :
+ hsai->RxCpltCallback = HAL_SAI_RxCpltCallback;
+ break;
+ case HAL_SAI_RX_HALFCOMPLETE_CB_ID :
+ hsai->RxHalfCpltCallback = HAL_SAI_RxHalfCpltCallback;
+ break;
+ case HAL_SAI_TX_COMPLETE_CB_ID :
+ hsai->TxCpltCallback = HAL_SAI_TxCpltCallback;
+ break;
+ case HAL_SAI_TX_HALFCOMPLETE_CB_ID :
+ hsai->TxHalfCpltCallback = HAL_SAI_TxHalfCpltCallback;
+ break;
+ case HAL_SAI_ERROR_CB_ID :
+ hsai->ErrorCallback = HAL_SAI_ErrorCallback;
+ break;
+ case HAL_SAI_MSPINIT_CB_ID :
+ hsai->MspInitCallback = HAL_SAI_MspInit;
+ break;
+ case HAL_SAI_MSPDEINIT_CB_ID :
+ hsai->MspDeInitCallback = HAL_SAI_MspDeInit;
+ break;
+ default :
+ /* update the error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
+ /* update return status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (HAL_SAI_STATE_RESET == hsai->State)
+ {
+ switch (CallbackID)
+ {
+ case HAL_SAI_MSPINIT_CB_ID :
+ hsai->MspInitCallback = HAL_SAI_MspInit;
+ break;
+ case HAL_SAI_MSPDEINIT_CB_ID :
+ hsai->MspDeInitCallback = HAL_SAI_MspDeInit;
+ break;
+ default :
+ /* update the error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
+ /* update return status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* update the error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
+ /* update return status */
+ status = HAL_ERROR;
+ }
+ return status;
+}
+#endif /* USE_HAL_SAI_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/** @defgroup SAI_Exported_Functions_Group2 IO operation functions
+ * @brief Data transfers functions
+ *
+@verbatim
+ ==============================================================================
+ ##### IO operation functions #####
+ ==============================================================================
+ [..]
+ This subsection provides a set of functions allowing to manage the SAI data
+ transfers.
+
+ (+) There are two modes of transfer:
+ (++) Blocking mode : The communication is performed in the polling mode.
+ The status of all data processing is returned by the same function
+ after finishing transfer.
+ (++) No-Blocking mode : The communication is performed using Interrupts
+ or DMA. These functions return the status of the transfer startup.
+ The end of the data processing will be indicated through the
+ dedicated SAI IRQ when using Interrupt mode or the DMA IRQ when
+ using DMA mode.
+
+ (+) Blocking mode functions are :
+ (++) HAL_SAI_Transmit()
+ (++) HAL_SAI_Receive()
+
+ (+) Non Blocking mode functions with Interrupt are :
+ (++) HAL_SAI_Transmit_IT()
+ (++) HAL_SAI_Receive_IT()
+
+ (+) Non Blocking mode functions with DMA are :
+ (++) HAL_SAI_Transmit_DMA()
+ (++) HAL_SAI_Receive_DMA()
+
+ (+) A set of Transfer Complete Callbacks are provided in non Blocking mode:
+ (++) HAL_SAI_TxCpltCallback()
+ (++) HAL_SAI_RxCpltCallback()
+ (++) HAL_SAI_ErrorCallback()
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Transmit an amount of data in blocking mode.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_Transmit(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size, uint32_t Timeout)
+{
+ uint32_t tickstart = HAL_GetTick();
+ uint32_t temp;
+
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ if (hsai->State == HAL_SAI_STATE_READY)
+ {
+ /* Process Locked */
+ __HAL_LOCK(hsai);
+
+ hsai->XferSize = Size;
+ hsai->XferCount = Size;
+ hsai->pBuffPtr = pData;
+ hsai->State = HAL_SAI_STATE_BUSY_TX;
+ hsai->ErrorCode = HAL_SAI_ERROR_NONE;
+
+ /* Check if the SAI is already enabled */
+ if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
+ {
+ /* fill the fifo with data before to enabled the SAI */
+ SAI_FillFifo(hsai);
+ /* Enable SAI peripheral */
+ __HAL_SAI_ENABLE(hsai);
+ }
+
+ while (hsai->XferCount > 0U)
+ {
+ /* Write data if the FIFO is not full */
+ if ((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_FULL)
+ {
+ if ((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING))
+ {
+ hsai->Instance->DR = *hsai->pBuffPtr;
+ hsai->pBuffPtr++;
+ }
+ else if (hsai->Init.DataSize <= SAI_DATASIZE_16)
+ {
+ temp = (uint32_t)(*hsai->pBuffPtr);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
+ hsai->pBuffPtr++;
+ hsai->Instance->DR = temp;
+ }
+ else
+ {
+ temp = (uint32_t)(*hsai->pBuffPtr);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 16);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 24);
+ hsai->pBuffPtr++;
+ hsai->Instance->DR = temp;
+ }
+ hsai->XferCount--;
+ }
+ else
+ {
+ /* Check for the Timeout */
+ if ((((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) && (Timeout != HAL_MAX_DELAY))
+ {
+ /* Update error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT;
+
+ /* Clear all the flags */
+ hsai->Instance->CLRFR = 0xFFFFFFFFU;
+
+ /* Disable SAI peripheral */
+ /* No need to check return value because state update, unlock and error return will be performed later */
+ (void) SAI_Disable(hsai);
+
+ /* Flush the fifo */
+ SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
+
+ /* Change the SAI state */
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in blocking mode.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be received
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_Receive(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size, uint32_t Timeout)
+{
+ uint32_t tickstart = HAL_GetTick();
+ uint32_t temp;
+
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ if (hsai->State == HAL_SAI_STATE_READY)
+ {
+ /* Process Locked */
+ __HAL_LOCK(hsai);
+
+ hsai->pBuffPtr = pData;
+ hsai->XferSize = Size;
+ hsai->XferCount = Size;
+ hsai->State = HAL_SAI_STATE_BUSY_RX;
+ hsai->ErrorCode = HAL_SAI_ERROR_NONE;
+
+ /* Check if the SAI is already enabled */
+ if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
+ {
+ /* Enable SAI peripheral */
+ __HAL_SAI_ENABLE(hsai);
+ }
+
+ /* Receive data */
+ while (hsai->XferCount > 0U)
+ {
+ if ((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_EMPTY)
+ {
+ if ((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING))
+ {
+ *hsai->pBuffPtr = (uint8_t)hsai->Instance->DR;
+ hsai->pBuffPtr++;
+ }
+ else if (hsai->Init.DataSize <= SAI_DATASIZE_16)
+ {
+ temp = hsai->Instance->DR;
+ *hsai->pBuffPtr = (uint8_t)temp;
+ hsai->pBuffPtr++;
+ *hsai->pBuffPtr = (uint8_t)(temp >> 8);
+ hsai->pBuffPtr++;
+ }
+ else
+ {
+ temp = hsai->Instance->DR;
+ *hsai->pBuffPtr = (uint8_t)temp;
+ hsai->pBuffPtr++;
+ *hsai->pBuffPtr = (uint8_t)(temp >> 8);
+ hsai->pBuffPtr++;
+ *hsai->pBuffPtr = (uint8_t)(temp >> 16);
+ hsai->pBuffPtr++;
+ *hsai->pBuffPtr = (uint8_t)(temp >> 24);
+ hsai->pBuffPtr++;
+ }
+ hsai->XferCount--;
+ }
+ else
+ {
+ /* Check for the Timeout */
+ if ((((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) && (Timeout != HAL_MAX_DELAY))
+ {
+ /* Update error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT;
+
+ /* Clear all the flags */
+ hsai->Instance->CLRFR = 0xFFFFFFFFU;
+
+ /* Disable SAI peripheral */
+ /* No need to check return value because state update, unlock and error return will be performed later */
+ (void) SAI_Disable(hsai);
+
+ /* Flush the fifo */
+ SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
+
+ /* Change the SAI state */
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_ERROR;
+ }
+ }
+ }
+
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Transmit an amount of data in non-blocking mode with Interrupt.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_Transmit_IT(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size)
+{
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ if (hsai->State == HAL_SAI_STATE_READY)
+ {
+ /* Process Locked */
+ __HAL_LOCK(hsai);
+
+ hsai->pBuffPtr = pData;
+ hsai->XferSize = Size;
+ hsai->XferCount = Size;
+ hsai->ErrorCode = HAL_SAI_ERROR_NONE;
+ hsai->State = HAL_SAI_STATE_BUSY_TX;
+
+ if ((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING))
+ {
+ hsai->InterruptServiceRoutine = SAI_Transmit_IT8Bit;
+ }
+ else if (hsai->Init.DataSize <= SAI_DATASIZE_16)
+ {
+ hsai->InterruptServiceRoutine = SAI_Transmit_IT16Bit;
+ }
+ else
+ {
+ hsai->InterruptServiceRoutine = SAI_Transmit_IT32Bit;
+ }
+
+ /* Fill the fifo before starting the communication */
+ SAI_FillFifo(hsai);
+
+ /* Enable FRQ and OVRUDR interrupts */
+ __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
+
+ /* Check if the SAI is already enabled */
+ if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
+ {
+ /* Enable SAI peripheral */
+ __HAL_SAI_ENABLE(hsai);
+ }
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in non-blocking mode with Interrupt.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be received
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_Receive_IT(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size)
+{
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ if (hsai->State == HAL_SAI_STATE_READY)
+ {
+ /* Process Locked */
+ __HAL_LOCK(hsai);
+
+ hsai->pBuffPtr = pData;
+ hsai->XferSize = Size;
+ hsai->XferCount = Size;
+ hsai->ErrorCode = HAL_SAI_ERROR_NONE;
+ hsai->State = HAL_SAI_STATE_BUSY_RX;
+
+ if ((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING))
+ {
+ hsai->InterruptServiceRoutine = SAI_Receive_IT8Bit;
+ }
+ else if (hsai->Init.DataSize <= SAI_DATASIZE_16)
+ {
+ hsai->InterruptServiceRoutine = SAI_Receive_IT16Bit;
+ }
+ else
+ {
+ hsai->InterruptServiceRoutine = SAI_Receive_IT32Bit;
+ }
+
+ /* Enable TXE and OVRUDR interrupts */
+ __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
+
+ /* Check if the SAI is already enabled */
+ if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
+ {
+ /* Enable SAI peripheral */
+ __HAL_SAI_ENABLE(hsai);
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Pause the audio stream playing from the Media.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_DMAPause(SAI_HandleTypeDef *hsai)
+{
+ /* Process Locked */
+ __HAL_LOCK(hsai);
+
+ /* Pause the audio file playing by disabling the SAI DMA requests */
+ hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Resume the audio stream playing from the Media.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_DMAResume(SAI_HandleTypeDef *hsai)
+{
+ /* Process Locked */
+ __HAL_LOCK(hsai);
+
+ /* Enable the SAI DMA requests */
+ hsai->Instance->CR1 |= SAI_xCR1_DMAEN;
+
+ /* If the SAI peripheral is still not enabled, enable it */
+ if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
+ {
+ /* Enable SAI peripheral */
+ __HAL_SAI_ENABLE(hsai);
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Stop the audio stream playing from the Media.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_DMAStop(SAI_HandleTypeDef *hsai)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process Locked */
+ __HAL_LOCK(hsai);
+
+ /* Disable the SAI DMA request */
+ hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN;
+
+ /* Abort the SAI Tx DMA Stream */
+ if ((hsai->State == HAL_SAI_STATE_BUSY_TX) && (hsai->hdmatx != NULL))
+ {
+ if (HAL_DMA_Abort(hsai->hdmatx) != HAL_OK)
+ {
+ /* If the DMA Tx errorCode is different from DMA No Transfer then return Error */
+ if (hsai->hdmatx->ErrorCode != HAL_DMA_ERROR_NO_XFER)
+ {
+ status = HAL_ERROR;
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+ }
+ }
+ }
+
+ /* Abort the SAI Rx DMA Stream */
+ if ((hsai->State == HAL_SAI_STATE_BUSY_RX) && (hsai->hdmarx != NULL))
+ {
+ if (HAL_DMA_Abort(hsai->hdmarx) != HAL_OK)
+ {
+ /* If the DMA Rx errorCode is different from DMA No Transfer then return Error */
+ if (hsai->hdmarx->ErrorCode != HAL_DMA_ERROR_NO_XFER)
+ {
+ status = HAL_ERROR;
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+ }
+ }
+ }
+
+ /* Disable SAI peripheral */
+ if (SAI_Disable(hsai) != HAL_OK)
+ {
+ status = HAL_ERROR;
+ }
+
+ /* Flush the fifo */
+ SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
+
+ /* Set hsai state to ready */
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return status;
+}
+
+/**
+ * @brief Abort the current transfer and disable the SAI.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_Abort(SAI_HandleTypeDef *hsai)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process Locked */
+ __HAL_LOCK(hsai);
+
+ /* Check SAI DMA is enabled or not */
+ if ((hsai->Instance->CR1 & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN)
+ {
+ /* Disable the SAI DMA request */
+ hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN;
+
+ /* Abort the SAI Tx DMA Stream */
+ if ((hsai->State == HAL_SAI_STATE_BUSY_TX)&& (hsai->hdmatx != NULL))
+ {
+ if (HAL_DMA_Abort(hsai->hdmatx) != HAL_OK)
+ {
+ /* If the DMA Tx errorCode is different from DMA No Transfer then return Error */
+ if (hsai->hdmatx->ErrorCode != HAL_DMA_ERROR_NO_XFER)
+ {
+ status = HAL_ERROR;
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+ }
+ }
+ }
+
+ /* Abort the SAI Rx DMA Stream */
+ if ((hsai->State == HAL_SAI_STATE_BUSY_RX) && (hsai->hdmarx != NULL))
+ {
+ if (HAL_DMA_Abort(hsai->hdmarx) != HAL_OK)
+ {
+ /* If the DMA Rx errorCode is different from DMA No Transfer then return Error */
+ if (hsai->hdmarx->ErrorCode != HAL_DMA_ERROR_NO_XFER)
+ {
+ status = HAL_ERROR;
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+ }
+ }
+ }
+ }
+
+ /* Disabled All interrupt and clear all the flag */
+ hsai->Instance->IMR = 0;
+ hsai->Instance->CLRFR = 0xFFFFFFFFU;
+
+ /* Disable SAI peripheral */
+ if (SAI_Disable(hsai) != HAL_OK)
+ {
+ status = HAL_ERROR;
+ }
+
+ /* Flush the fifo */
+ SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
+
+ /* Set hsai state to ready */
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return status;
+}
+
+/**
+ * @brief Transmit an amount of data in non-blocking mode with DMA.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be sent
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_Transmit_DMA(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size)
+{
+ uint32_t tickstart = HAL_GetTick();
+
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ if (hsai->State == HAL_SAI_STATE_READY)
+ {
+ /* Process Locked */
+ __HAL_LOCK(hsai);
+
+ hsai->pBuffPtr = pData;
+ hsai->XferSize = Size;
+ hsai->XferCount = Size;
+ hsai->ErrorCode = HAL_SAI_ERROR_NONE;
+ hsai->State = HAL_SAI_STATE_BUSY_TX;
+
+ /* Set the SAI Tx DMA Half transfer complete callback */
+ hsai->hdmatx->XferHalfCpltCallback = SAI_DMATxHalfCplt;
+
+ /* Set the SAI TxDMA transfer complete callback */
+ hsai->hdmatx->XferCpltCallback = SAI_DMATxCplt;
+
+ /* Set the DMA error callback */
+ hsai->hdmatx->XferErrorCallback = SAI_DMAError;
+
+ /* Set the DMA Tx abort callback */
+ hsai->hdmatx->XferAbortCallback = NULL;
+
+ /* Enable the Tx DMA Stream */
+ if (HAL_DMA_Start_IT(hsai->hdmatx, (uint32_t)hsai->pBuffPtr, (uint32_t)&hsai->Instance->DR, hsai->XferSize) != HAL_OK)
+ {
+ __HAL_UNLOCK(hsai);
+ return HAL_ERROR;
+ }
+
+ /* Enable the interrupts for error handling */
+ __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA));
+
+ /* Enable SAI Tx DMA Request */
+ hsai->Instance->CR1 |= SAI_xCR1_DMAEN;
+
+ /* Wait until FIFO is not empty */
+ while ((hsai->Instance->SR & SAI_xSR_FLVL) == SAI_FIFOSTATUS_EMPTY)
+ {
+ /* Check for the Timeout */
+ if ((HAL_GetTick() - tickstart) > SAI_LONG_TIMEOUT)
+ {
+ /* Update error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Check if the SAI is already enabled */
+ if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
+ {
+ /* Enable SAI peripheral */
+ __HAL_SAI_ENABLE(hsai);
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in non-blocking mode with DMA.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param pData Pointer to data buffer
+ * @param Size Amount of data to be received
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_Receive_DMA(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size)
+{
+
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ if (hsai->State == HAL_SAI_STATE_READY)
+ {
+ /* Process Locked */
+ __HAL_LOCK(hsai);
+
+ hsai->pBuffPtr = pData;
+ hsai->XferSize = Size;
+ hsai->XferCount = Size;
+ hsai->ErrorCode = HAL_SAI_ERROR_NONE;
+ hsai->State = HAL_SAI_STATE_BUSY_RX;
+
+ /* Set the SAI Rx DMA Half transfer complete callback */
+ hsai->hdmarx->XferHalfCpltCallback = SAI_DMARxHalfCplt;
+
+ /* Set the SAI Rx DMA transfer complete callback */
+ hsai->hdmarx->XferCpltCallback = SAI_DMARxCplt;
+
+ /* Set the DMA error callback */
+ hsai->hdmarx->XferErrorCallback = SAI_DMAError;
+
+ /* Set the DMA Rx abort callback */
+ hsai->hdmarx->XferAbortCallback = NULL;
+
+ /* Enable the Rx DMA Stream */
+ if (HAL_DMA_Start_IT(hsai->hdmarx, (uint32_t)&hsai->Instance->DR, (uint32_t)hsai->pBuffPtr, hsai->XferSize) != HAL_OK)
+ {
+ __HAL_UNLOCK(hsai);
+ return HAL_ERROR;
+ }
+
+ /* Enable the interrupts for error handling */
+ __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA));
+
+ /* Enable SAI Rx DMA Request */
+ hsai->Instance->CR1 |= SAI_xCR1_DMAEN;
+
+ /* Check if the SAI is already enabled */
+ if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
+ {
+ /* Enable SAI peripheral */
+ __HAL_SAI_ENABLE(hsai);
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hsai);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Enable the Tx mute mode.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param val value sent during the mute @ref SAI_Block_Mute_Value
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_EnableTxMuteMode(SAI_HandleTypeDef *hsai, uint16_t val)
+{
+ assert_param(IS_SAI_BLOCK_MUTE_VALUE(val));
+
+ if (hsai->State != HAL_SAI_STATE_RESET)
+ {
+ CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTEVAL | SAI_xCR2_MUTE);
+ SET_BIT(hsai->Instance->CR2, SAI_xCR2_MUTE | (uint32_t)val);
+ return HAL_OK;
+ }
+ return HAL_ERROR;
+}
+
+/**
+ * @brief Disable the Tx mute mode.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_DisableTxMuteMode(SAI_HandleTypeDef *hsai)
+{
+ if (hsai->State != HAL_SAI_STATE_RESET)
+ {
+ CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTEVAL | SAI_xCR2_MUTE);
+ return HAL_OK;
+ }
+ return HAL_ERROR;
+}
+
+/**
+ * @brief Enable the Rx mute detection.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param callback function called when the mute is detected.
+ * @param counter number a data before mute detection max 63.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_EnableRxMuteMode(SAI_HandleTypeDef *hsai, SAIcallback callback, uint16_t counter)
+{
+ assert_param(IS_SAI_BLOCK_MUTE_COUNTER(counter));
+
+ if (hsai->State != HAL_SAI_STATE_RESET)
+ {
+ /* set the mute counter */
+ CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTECNT);
+ SET_BIT(hsai->Instance->CR2, (uint32_t)((uint32_t)counter << SAI_xCR2_MUTECNT_Pos));
+ hsai->mutecallback = callback;
+ /* enable the IT interrupt */
+ __HAL_SAI_ENABLE_IT(hsai, SAI_IT_MUTEDET);
+ return HAL_OK;
+ }
+ return HAL_ERROR;
+}
+
+/**
+ * @brief Disable the Rx mute detection.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_SAI_DisableRxMuteMode(SAI_HandleTypeDef *hsai)
+{
+ if (hsai->State != HAL_SAI_STATE_RESET)
+ {
+ /* set the mutecallback to NULL */
+ hsai->mutecallback = NULL;
+ /* enable the IT interrupt */
+ __HAL_SAI_DISABLE_IT(hsai, SAI_IT_MUTEDET);
+ return HAL_OK;
+ }
+ return HAL_ERROR;
+}
+
+/**
+ * @brief Handle SAI interrupt request.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+void HAL_SAI_IRQHandler(SAI_HandleTypeDef *hsai)
+{
+ if (hsai->State != HAL_SAI_STATE_RESET)
+ {
+ uint32_t itflags = hsai->Instance->SR;
+ uint32_t itsources = hsai->Instance->IMR;
+ uint32_t cr1config = hsai->Instance->CR1;
+ uint32_t tmperror;
+
+ /* SAI Fifo request interrupt occurred ------------------------------------*/
+ if (((itflags & SAI_xSR_FREQ) == SAI_xSR_FREQ) && ((itsources & SAI_IT_FREQ) == SAI_IT_FREQ))
+ {
+ hsai->InterruptServiceRoutine(hsai);
+ }
+ /* SAI Overrun error interrupt occurred ----------------------------------*/
+ else if (((itflags & SAI_FLAG_OVRUDR) == SAI_FLAG_OVRUDR) && ((itsources & SAI_IT_OVRUDR) == SAI_IT_OVRUDR))
+ {
+ /* Clear the SAI Overrun flag */
+ __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR);
+ /* Get the SAI error code */
+ tmperror = ((hsai->State == HAL_SAI_STATE_BUSY_RX) ? HAL_SAI_ERROR_OVR : HAL_SAI_ERROR_UDR);
+ /* Change the SAI error code */
+ hsai->ErrorCode |= tmperror;
+ /* the transfer is not stopped, we will forward the information to the user and we let the user decide what needs to be done */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ /* SAI mutedet interrupt occurred ----------------------------------*/
+ else if (((itflags & SAI_FLAG_MUTEDET) == SAI_FLAG_MUTEDET) && ((itsources & SAI_IT_MUTEDET) == SAI_IT_MUTEDET))
+ {
+ /* Clear the SAI mutedet flag */
+ __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_MUTEDET);
+ /* call the call back function */
+ if (hsai->mutecallback != NULL)
+ {
+ /* inform the user that an RX mute event has been detected */
+ hsai->mutecallback();
+ }
+ }
+ /* SAI AFSDET interrupt occurred ----------------------------------*/
+ else if (((itflags & SAI_FLAG_AFSDET) == SAI_FLAG_AFSDET) && ((itsources & SAI_IT_AFSDET) == SAI_IT_AFSDET))
+ {
+ /* Clear the SAI AFSDET flag */
+ __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_AFSDET);
+
+ /* Change the SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_AFSDET;
+
+ /* Check SAI DMA is enabled or not */
+ if ((cr1config & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN)
+ {
+ /* Abort the SAI DMA Streams */
+ if (hsai->hdmatx != NULL)
+ {
+ /* Set the DMA Tx abort callback */
+ hsai->hdmatx->XferAbortCallback = SAI_DMAAbort;
+
+ /* Abort DMA in IT mode */
+ if (HAL_DMA_Abort_IT(hsai->hdmatx) != HAL_OK)
+ {
+ /* Update SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+
+ /* Call SAI error callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ }
+ if (hsai->hdmarx != NULL)
+ {
+ /* Set the DMA Rx abort callback */
+ hsai->hdmarx->XferAbortCallback = SAI_DMAAbort;
+
+ /* Abort DMA in IT mode */
+ if (HAL_DMA_Abort_IT(hsai->hdmarx) != HAL_OK)
+ {
+ /* Update SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+
+ /* Call SAI error callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ }
+ }
+ else
+ {
+ /* Abort SAI */
+ /* No need to check return value because HAL_SAI_ErrorCallback will be called later */
+ (void) HAL_SAI_Abort(hsai);
+
+ /* Set error callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ }
+ /* SAI LFSDET interrupt occurred ----------------------------------*/
+ else if (((itflags & SAI_FLAG_LFSDET) == SAI_FLAG_LFSDET) && ((itsources & SAI_IT_LFSDET) == SAI_IT_LFSDET))
+ {
+ /* Clear the SAI LFSDET flag */
+ __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_LFSDET);
+
+ /* Change the SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_LFSDET;
+
+ /* Check SAI DMA is enabled or not */
+ if ((cr1config & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN)
+ {
+ /* Abort the SAI DMA Streams */
+ if (hsai->hdmatx != NULL)
+ {
+ /* Set the DMA Tx abort callback */
+ hsai->hdmatx->XferAbortCallback = SAI_DMAAbort;
+
+ /* Abort DMA in IT mode */
+ if (HAL_DMA_Abort_IT(hsai->hdmatx) != HAL_OK)
+ {
+ /* Update SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+
+ /* Call SAI error callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ }
+ if (hsai->hdmarx != NULL)
+ {
+ /* Set the DMA Rx abort callback */
+ hsai->hdmarx->XferAbortCallback = SAI_DMAAbort;
+
+ /* Abort DMA in IT mode */
+ if (HAL_DMA_Abort_IT(hsai->hdmarx) != HAL_OK)
+ {
+ /* Update SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+
+ /* Call SAI error callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ }
+ }
+ else
+ {
+ /* Abort SAI */
+ /* No need to check return value because HAL_SAI_ErrorCallback will be called later */
+ (void) HAL_SAI_Abort(hsai);
+
+ /* Set error callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ }
+ /* SAI WCKCFG interrupt occurred ----------------------------------*/
+ else if (((itflags & SAI_FLAG_WCKCFG) == SAI_FLAG_WCKCFG) && ((itsources & SAI_IT_WCKCFG) == SAI_IT_WCKCFG))
+ {
+ /* Clear the SAI WCKCFG flag */
+ __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_WCKCFG);
+
+ /* Change the SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_WCKCFG;
+
+ /* Check SAI DMA is enabled or not */
+ if ((cr1config & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN)
+ {
+ /* Abort the SAI DMA Streams */
+ if (hsai->hdmatx != NULL)
+ {
+ /* Set the DMA Tx abort callback */
+ hsai->hdmatx->XferAbortCallback = SAI_DMAAbort;
+
+ /* Abort DMA in IT mode */
+ if (HAL_DMA_Abort_IT(hsai->hdmatx) != HAL_OK)
+ {
+ /* Update SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+
+ /* Call SAI error callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ }
+ if (hsai->hdmarx != NULL)
+ {
+ /* Set the DMA Rx abort callback */
+ hsai->hdmarx->XferAbortCallback = SAI_DMAAbort;
+
+ /* Abort DMA in IT mode */
+ if (HAL_DMA_Abort_IT(hsai->hdmarx) != HAL_OK)
+ {
+ /* Update SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+
+ /* Call SAI error callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ }
+ }
+ else
+ {
+ /* If WCKCFG occurs, SAI audio block is automatically disabled */
+ /* Disable all interrupts and clear all flags */
+ hsai->Instance->IMR = 0U;
+ hsai->Instance->CLRFR = 0xFFFFFFFFU;
+ /* Set the SAI state to ready to be able to start again the process */
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Initialize XferCount */
+ hsai->XferCount = 0U;
+
+ /* SAI error Callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ }
+ /* SAI CNRDY interrupt occurred ----------------------------------*/
+ else if (((itflags & SAI_FLAG_CNRDY) == SAI_FLAG_CNRDY) && ((itsources & SAI_IT_CNRDY) == SAI_IT_CNRDY))
+ {
+ /* Clear the SAI CNRDY flag */
+ __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_CNRDY);
+ /* Change the SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_CNREADY;
+ /* the transfer is not stopped, we will forward the information to the user and we let the user decide what needs to be done */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+ else
+ {
+ /* Nothing to do */
+ }
+ }
+}
+
+/**
+ * @brief Tx Transfer completed callback.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+__weak void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hsai);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SAI_TxCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Tx Transfer Half completed callback.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+__weak void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hsai);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SAI_TxHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Rx Transfer completed callback.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+__weak void HAL_SAI_RxCpltCallback(SAI_HandleTypeDef *hsai)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hsai);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SAI_RxCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Rx Transfer half completed callback.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+__weak void HAL_SAI_RxHalfCpltCallback(SAI_HandleTypeDef *hsai)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hsai);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SAI_RxHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief SAI error callback.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+__weak void HAL_SAI_ErrorCallback(SAI_HandleTypeDef *hsai)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hsai);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_SAI_ErrorCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SAI_Exported_Functions_Group3 Peripheral State functions
+ * @brief Peripheral State functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral State and Errors functions #####
+ ===============================================================================
+ [..]
+ This subsection permits to get in run-time the status of the peripheral
+ and the data flow.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Return the SAI handle state.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval HAL state
+ */
+HAL_SAI_StateTypeDef HAL_SAI_GetState(const SAI_HandleTypeDef *hsai)
+{
+ return hsai->State;
+}
+
+/**
+ * @brief Return the SAI error code.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for the specified SAI Block.
+ * @retval SAI Error Code
+ */
+uint32_t HAL_SAI_GetError(const SAI_HandleTypeDef *hsai)
+{
+ return hsai->ErrorCode;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup SAI_Private_Functions
+ * @brief Private functions
+ * @{
+ */
+
+/**
+ * @brief Initialize the SAI I2S protocol according to the specified parameters
+ * in the SAI_InitTypeDef and create the associated handle.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param protocol one of the supported protocol.
+ * @param datasize one of the supported datasize @ref SAI_Protocol_DataSize.
+ * @param nbslot number of slot minimum value is 2 and max is 16.
+ * the value must be a multiple of 2.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef SAI_InitI2S(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ hsai->Init.Protocol = SAI_FREE_PROTOCOL;
+ hsai->Init.FirstBit = SAI_FIRSTBIT_MSB;
+ /* Compute ClockStrobing according AudioMode */
+ if ((hsai->Init.AudioMode == SAI_MODEMASTER_TX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX))
+ {
+ /* Transmit */
+ hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE;
+ }
+ else
+ {
+ /* Receive */
+ hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE;
+ }
+ hsai->FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION;
+ hsai->SlotInit.SlotActive = SAI_SLOTACTIVE_ALL;
+ hsai->SlotInit.FirstBitOffset = 0;
+ hsai->SlotInit.SlotNumber = nbslot;
+
+ /* in IS2 the number of slot must be even */
+ if ((nbslot & 0x1U) != 0U)
+ {
+ return HAL_ERROR;
+ }
+
+ if (protocol == SAI_I2S_STANDARD)
+ {
+ hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW;
+ hsai->FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT;
+ }
+ else
+ {
+ /* SAI_I2S_MSBJUSTIFIED or SAI_I2S_LSBJUSTIFIED */
+ hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_HIGH;
+ hsai->FrameInit.FSOffset = SAI_FS_FIRSTBIT;
+ }
+
+ /* Frame definition */
+ switch (datasize)
+ {
+ case SAI_PROTOCOL_DATASIZE_16BIT:
+ hsai->Init.DataSize = SAI_DATASIZE_16;
+ hsai->FrameInit.FrameLength = 32U * (nbslot / 2U);
+ hsai->FrameInit.ActiveFrameLength = 16U * (nbslot / 2U);
+ hsai->SlotInit.SlotSize = SAI_SLOTSIZE_16B;
+ break;
+ case SAI_PROTOCOL_DATASIZE_16BITEXTENDED :
+ hsai->Init.DataSize = SAI_DATASIZE_16;
+ hsai->FrameInit.FrameLength = 64U * (nbslot / 2U);
+ hsai->FrameInit.ActiveFrameLength = 32U * (nbslot / 2U);
+ hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
+ break;
+ case SAI_PROTOCOL_DATASIZE_24BIT:
+ hsai->Init.DataSize = SAI_DATASIZE_24;
+ hsai->FrameInit.FrameLength = 64U * (nbslot / 2U);
+ hsai->FrameInit.ActiveFrameLength = 32U * (nbslot / 2U);
+ hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
+ break;
+ case SAI_PROTOCOL_DATASIZE_32BIT:
+ hsai->Init.DataSize = SAI_DATASIZE_32;
+ hsai->FrameInit.FrameLength = 64U * (nbslot / 2U);
+ hsai->FrameInit.ActiveFrameLength = 32U * (nbslot / 2U);
+ hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
+ break;
+ default :
+ status = HAL_ERROR;
+ break;
+ }
+ if (protocol == SAI_I2S_LSBJUSTIFIED)
+ {
+ if (datasize == SAI_PROTOCOL_DATASIZE_16BITEXTENDED)
+ {
+ hsai->SlotInit.FirstBitOffset = 16;
+ }
+ if (datasize == SAI_PROTOCOL_DATASIZE_24BIT)
+ {
+ hsai->SlotInit.FirstBitOffset = 8;
+ }
+ }
+ return status;
+}
+
+/**
+ * @brief Initialize the SAI PCM protocol according to the specified parameters
+ * in the SAI_InitTypeDef and create the associated handle.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param protocol one of the supported protocol
+ * @param datasize one of the supported datasize @ref SAI_Protocol_DataSize
+ * @param nbslot number of slot minimum value is 1 and the max is 16.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef SAI_InitPCM(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ hsai->Init.Protocol = SAI_FREE_PROTOCOL;
+ hsai->Init.FirstBit = SAI_FIRSTBIT_MSB;
+ /* Compute ClockStrobing according AudioMode */
+ if ((hsai->Init.AudioMode == SAI_MODEMASTER_TX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX))
+ {
+ /* Transmit */
+ hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE;
+ }
+ else
+ {
+ /* Receive */
+ hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE;
+ }
+ hsai->FrameInit.FSDefinition = SAI_FS_STARTFRAME;
+ hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_HIGH;
+ hsai->FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT;
+ hsai->SlotInit.FirstBitOffset = 0;
+ hsai->SlotInit.SlotNumber = nbslot;
+ hsai->SlotInit.SlotActive = SAI_SLOTACTIVE_ALL;
+
+ if (protocol == SAI_PCM_SHORT)
+ {
+ hsai->FrameInit.ActiveFrameLength = 1;
+ }
+ else
+ {
+ /* SAI_PCM_LONG */
+ hsai->FrameInit.ActiveFrameLength = 13;
+ }
+
+ switch (datasize)
+ {
+ case SAI_PROTOCOL_DATASIZE_16BIT:
+ hsai->Init.DataSize = SAI_DATASIZE_16;
+ hsai->FrameInit.FrameLength = 16U * nbslot;
+ hsai->SlotInit.SlotSize = SAI_SLOTSIZE_16B;
+ break;
+ case SAI_PROTOCOL_DATASIZE_16BITEXTENDED :
+ hsai->Init.DataSize = SAI_DATASIZE_16;
+ hsai->FrameInit.FrameLength = 32U * nbslot;
+ hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
+ break;
+ case SAI_PROTOCOL_DATASIZE_24BIT :
+ hsai->Init.DataSize = SAI_DATASIZE_24;
+ hsai->FrameInit.FrameLength = 32U * nbslot;
+ hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
+ break;
+ case SAI_PROTOCOL_DATASIZE_32BIT:
+ hsai->Init.DataSize = SAI_DATASIZE_32;
+ hsai->FrameInit.FrameLength = 32U * nbslot;
+ hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
+ break;
+ default :
+ status = HAL_ERROR;
+ break;
+ }
+
+ return status;
+}
+
+/**
+ * @brief Fill the fifo.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+static void SAI_FillFifo(SAI_HandleTypeDef *hsai)
+{
+ uint32_t temp;
+
+ /* fill the fifo with data before to enabled the SAI */
+ while (((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_FULL) && (hsai->XferCount > 0U))
+ {
+ if ((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING))
+ {
+ hsai->Instance->DR = *hsai->pBuffPtr;
+ hsai->pBuffPtr++;
+ }
+ else if (hsai->Init.DataSize <= SAI_DATASIZE_16)
+ {
+ temp = (uint32_t)(*hsai->pBuffPtr);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
+ hsai->pBuffPtr++;
+ hsai->Instance->DR = temp;
+ }
+ else
+ {
+ temp = (uint32_t)(*hsai->pBuffPtr);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 16);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 24);
+ hsai->pBuffPtr++;
+ hsai->Instance->DR = temp;
+ }
+ hsai->XferCount--;
+ }
+}
+
+/**
+ * @brief Return the interrupt flag to set according the SAI setup.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @param mode SAI_MODE_DMA or SAI_MODE_IT
+ * @retval the list of the IT flag to enable
+ */
+static uint32_t SAI_InterruptFlag(const SAI_HandleTypeDef *hsai, SAI_ModeTypedef mode)
+{
+ uint32_t tmpIT = SAI_IT_OVRUDR;
+
+ if (mode == SAI_MODE_IT)
+ {
+ tmpIT |= SAI_IT_FREQ;
+ }
+
+ if ((hsai->Init.Protocol == SAI_AC97_PROTOCOL) &&
+ ((hsai->Init.AudioMode == SAI_MODESLAVE_RX) || (hsai->Init.AudioMode == SAI_MODEMASTER_RX)))
+ {
+ tmpIT |= SAI_IT_CNRDY;
+ }
+
+ if ((hsai->Init.AudioMode == SAI_MODESLAVE_RX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX))
+ {
+ tmpIT |= SAI_IT_AFSDET | SAI_IT_LFSDET;
+ }
+ else
+ {
+ /* hsai has been configured in master mode */
+ tmpIT |= SAI_IT_WCKCFG;
+ }
+ return tmpIT;
+}
+
+/**
+ * @brief Disable the SAI and wait for the disabling.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+static HAL_StatusTypeDef SAI_Disable(SAI_HandleTypeDef *hsai)
+{
+ uint32_t count = SAI_DEFAULT_TIMEOUT * (SystemCoreClock / 7U / 1000U);
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Disable the SAI instance */
+ __HAL_SAI_DISABLE(hsai);
+
+ do
+ {
+ /* Check for the Timeout */
+ if (count == 0U)
+ {
+ /* Update error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT;
+ status = HAL_TIMEOUT;
+ break;
+ }
+ count--;
+ }
+ while ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) != 0U);
+
+ return status;
+}
+
+/**
+ * @brief Tx Handler for Transmit in Interrupt mode 8-Bit transfer.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+static void SAI_Transmit_IT8Bit(SAI_HandleTypeDef *hsai)
+{
+ if (hsai->XferCount == 0U)
+ {
+ /* Handle the end of the transmission */
+ /* Disable FREQ and OVRUDR interrupts */
+ __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
+ hsai->State = HAL_SAI_STATE_READY;
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->TxCpltCallback(hsai);
+#else
+ HAL_SAI_TxCpltCallback(hsai);
+#endif
+ }
+ else
+ {
+ /* Write data on DR register */
+ hsai->Instance->DR = *hsai->pBuffPtr;
+ hsai->pBuffPtr++;
+ hsai->XferCount--;
+ }
+}
+
+/**
+ * @brief Tx Handler for Transmit in Interrupt mode for 16-Bit transfer.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+static void SAI_Transmit_IT16Bit(SAI_HandleTypeDef *hsai)
+{
+ if (hsai->XferCount == 0U)
+ {
+ /* Handle the end of the transmission */
+ /* Disable FREQ and OVRUDR interrupts */
+ __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
+ hsai->State = HAL_SAI_STATE_READY;
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->TxCpltCallback(hsai);
+#else
+ HAL_SAI_TxCpltCallback(hsai);
+#endif
+ }
+ else
+ {
+ /* Write data on DR register */
+ uint32_t temp;
+ temp = (uint32_t)(*hsai->pBuffPtr);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
+ hsai->pBuffPtr++;
+ hsai->Instance->DR = temp;
+ hsai->XferCount--;
+ }
+}
+
+/**
+ * @brief Tx Handler for Transmit in Interrupt mode for 32-Bit transfer.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+static void SAI_Transmit_IT32Bit(SAI_HandleTypeDef *hsai)
+{
+ if (hsai->XferCount == 0U)
+ {
+ /* Handle the end of the transmission */
+ /* Disable FREQ and OVRUDR interrupts */
+ __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
+ hsai->State = HAL_SAI_STATE_READY;
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->TxCpltCallback(hsai);
+#else
+ HAL_SAI_TxCpltCallback(hsai);
+#endif
+ }
+ else
+ {
+ /* Write data on DR register */
+ uint32_t temp;
+ temp = (uint32_t)(*hsai->pBuffPtr);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 16);
+ hsai->pBuffPtr++;
+ temp |= ((uint32_t)(*hsai->pBuffPtr) << 24);
+ hsai->pBuffPtr++;
+ hsai->Instance->DR = temp;
+ hsai->XferCount--;
+ }
+}
+
+/**
+ * @brief Rx Handler for Receive in Interrupt mode 8-Bit transfer.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+static void SAI_Receive_IT8Bit(SAI_HandleTypeDef *hsai)
+{
+ /* Receive data */
+ *hsai->pBuffPtr = (uint8_t)hsai->Instance->DR;
+ hsai->pBuffPtr++;
+ hsai->XferCount--;
+
+ /* Check end of the transfer */
+ if (hsai->XferCount == 0U)
+ {
+ /* Disable TXE and OVRUDR interrupts */
+ __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
+
+ /* Clear the SAI Overrun flag */
+ __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR);
+
+ hsai->State = HAL_SAI_STATE_READY;
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->RxCpltCallback(hsai);
+#else
+ HAL_SAI_RxCpltCallback(hsai);
+#endif
+ }
+}
+
+/**
+ * @brief Rx Handler for Receive in Interrupt mode for 16-Bit transfer.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+static void SAI_Receive_IT16Bit(SAI_HandleTypeDef *hsai)
+{
+ uint32_t temp;
+
+ /* Receive data */
+ temp = hsai->Instance->DR;
+ *hsai->pBuffPtr = (uint8_t)temp;
+ hsai->pBuffPtr++;
+ *hsai->pBuffPtr = (uint8_t)(temp >> 8);
+ hsai->pBuffPtr++;
+ hsai->XferCount--;
+
+ /* Check end of the transfer */
+ if (hsai->XferCount == 0U)
+ {
+ /* Disable TXE and OVRUDR interrupts */
+ __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
+
+ /* Clear the SAI Overrun flag */
+ __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR);
+
+ hsai->State = HAL_SAI_STATE_READY;
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->RxCpltCallback(hsai);
+#else
+ HAL_SAI_RxCpltCallback(hsai);
+#endif
+ }
+}
+
+/**
+ * @brief Rx Handler for Receive in Interrupt mode for 32-Bit transfer.
+ * @param hsai pointer to a SAI_HandleTypeDef structure that contains
+ * the configuration information for SAI module.
+ * @retval None
+ */
+static void SAI_Receive_IT32Bit(SAI_HandleTypeDef *hsai)
+{
+ uint32_t temp;
+
+ /* Receive data */
+ temp = hsai->Instance->DR;
+ *hsai->pBuffPtr = (uint8_t)temp;
+ hsai->pBuffPtr++;
+ *hsai->pBuffPtr = (uint8_t)(temp >> 8);
+ hsai->pBuffPtr++;
+ *hsai->pBuffPtr = (uint8_t)(temp >> 16);
+ hsai->pBuffPtr++;
+ *hsai->pBuffPtr = (uint8_t)(temp >> 24);
+ hsai->pBuffPtr++;
+ hsai->XferCount--;
+
+ /* Check end of the transfer */
+ if (hsai->XferCount == 0U)
+ {
+ /* Disable TXE and OVRUDR interrupts */
+ __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
+
+ /* Clear the SAI Overrun flag */
+ __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR);
+
+ hsai->State = HAL_SAI_STATE_READY;
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->RxCpltCallback(hsai);
+#else
+ HAL_SAI_RxCpltCallback(hsai);
+#endif
+ }
+}
+
+/**
+ * @brief DMA SAI transmit process complete callback.
+ * @param hdma pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SAI_DMATxCplt(DMA_HandleTypeDef *hdma)
+{
+ SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma->Init.Mode != DMA_CIRCULAR)
+ {
+ hsai->XferCount = 0;
+
+ /* Disable SAI Tx DMA Request */
+ hsai->Instance->CR1 &= (uint32_t)(~SAI_xCR1_DMAEN);
+
+ /* Stop the interrupts error handling */
+ __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA));
+
+ hsai->State = HAL_SAI_STATE_READY;
+ }
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->TxCpltCallback(hsai);
+#else
+ HAL_SAI_TxCpltCallback(hsai);
+#endif
+}
+
+/**
+ * @brief DMA SAI transmit process half complete callback.
+ * @param hdma pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SAI_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
+{
+ SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->TxHalfCpltCallback(hsai);
+#else
+ HAL_SAI_TxHalfCpltCallback(hsai);
+#endif
+}
+
+/**
+ * @brief DMA SAI receive process complete callback.
+ * @param hdma pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SAI_DMARxCplt(DMA_HandleTypeDef *hdma)
+{
+ SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma->Init.Mode != DMA_CIRCULAR)
+ {
+ /* Disable Rx DMA Request */
+ hsai->Instance->CR1 &= (uint32_t)(~SAI_xCR1_DMAEN);
+ hsai->XferCount = 0;
+
+ /* Stop the interrupts error handling */
+ __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA));
+
+ hsai->State = HAL_SAI_STATE_READY;
+ }
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->RxCpltCallback(hsai);
+#else
+ HAL_SAI_RxCpltCallback(hsai);
+#endif
+}
+
+/**
+ * @brief DMA SAI receive process half complete callback
+ * @param hdma pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SAI_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
+{
+ SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->RxHalfCpltCallback(hsai);
+#else
+ HAL_SAI_RxHalfCpltCallback(hsai);
+#endif
+}
+
+/**
+ * @brief DMA SAI communication error callback.
+ * @param hdma pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SAI_DMAError(DMA_HandleTypeDef *hdma)
+{
+ SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Ignore DMA FIFO error */
+ if (HAL_DMA_GetError(hdma) != HAL_DMA_ERROR_FE)
+ {
+ /* Set SAI error code */
+ hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
+
+ /* Disable the SAI DMA request */
+ hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN;
+
+ /* Disable SAI peripheral */
+ /* No need to check return value because state will be updated and HAL_SAI_ErrorCallback will be called later */
+ (void) SAI_Disable(hsai);
+
+ /* Set the SAI state ready to be able to start again the process */
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Initialize XferCount */
+ hsai->XferCount = 0U;
+
+ /* SAI error Callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+ }
+}
+
+/**
+ * @brief DMA SAI Abort callback.
+ * @param hdma pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void SAI_DMAAbort(DMA_HandleTypeDef *hdma)
+{
+ SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Disable DMA request */
+ hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN;
+
+ /* Disable all interrupts and clear all flags */
+ hsai->Instance->IMR = 0U;
+ hsai->Instance->CLRFR = 0xFFFFFFFFU;
+
+ if (hsai->ErrorCode != HAL_SAI_ERROR_WCKCFG)
+ {
+ /* Disable SAI peripheral */
+ /* No need to check return value because state will be updated and HAL_SAI_ErrorCallback will be called later */
+ (void) SAI_Disable(hsai);
+
+ /* Flush the fifo */
+ SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
+ }
+ /* Set the SAI state to ready to be able to start again the process */
+ hsai->State = HAL_SAI_STATE_READY;
+
+ /* Initialize XferCount */
+ hsai->XferCount = 0U;
+
+ /* SAI error Callback */
+#if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
+ hsai->ErrorCallback(hsai);
+#else
+ HAL_SAI_ErrorCallback(hsai);
+#endif
+}
+
+/**
+ * @}
+ */
+
+#endif /* HAL_SAI_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+