diff options
author | joshua <joshua@joshuayun.com> | 2023-12-30 23:54:31 -0500 |
---|---|---|
committer | joshua <joshua@joshuayun.com> | 2023-12-30 23:54:31 -0500 |
commit | 86608c6770cf08c138a2bdab5855072f64be09ef (patch) | |
tree | 494a61b3ef37e76f9235a0d10f5c93d97290a35f /Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_tim.c | |
download | sdr-software-master.tar.gz |
Diffstat (limited to 'Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_tim.c')
-rw-r--r-- | Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_tim.c | 7908 |
1 files changed, 7908 insertions, 0 deletions
diff --git a/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_tim.c b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_tim.c new file mode 100644 index 0000000..54cbd1d --- /dev/null +++ b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_tim.c @@ -0,0 +1,7908 @@ +/**
+ ******************************************************************************
+ * @file stm32h7xx_hal_tim.c
+ * @author MCD Application Team
+ * @brief TIM HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Timer (TIM) peripheral:
+ * + TIM Time Base Initialization
+ * + TIM Time Base Start
+ * + TIM Time Base Start Interruption
+ * + TIM Time Base Start DMA
+ * + TIM Output Compare/PWM Initialization
+ * + TIM Output Compare/PWM Channel Configuration
+ * + TIM Output Compare/PWM Start
+ * + TIM Output Compare/PWM Start Interruption
+ * + TIM Output Compare/PWM Start DMA
+ * + TIM Input Capture Initialization
+ * + TIM Input Capture Channel Configuration
+ * + TIM Input Capture Start
+ * + TIM Input Capture Start Interruption
+ * + TIM Input Capture Start DMA
+ * + TIM One Pulse Initialization
+ * + TIM One Pulse Channel Configuration
+ * + TIM One Pulse Start
+ * + TIM Encoder Interface Initialization
+ * + TIM Encoder Interface Start
+ * + TIM Encoder Interface Start Interruption
+ * + TIM Encoder Interface Start DMA
+ * + Commutation Event configuration with Interruption and DMA
+ * + TIM OCRef clear configuration
+ * + TIM External Clock configuration
+ ******************************************************************************
+ * @attention
+ *
+ * Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.
+ *
+ * This software is licensed under terms that can be found in the LICENSE file
+ * in the root directory of this software component.
+ * If no LICENSE file comes with this software, it is provided AS-IS.
+ *
+ ******************************************************************************
+ @verbatim
+ ==============================================================================
+ ##### TIMER Generic features #####
+ ==============================================================================
+ [..] The Timer features include:
+ (#) 16-bit up, down, up/down auto-reload counter.
+ (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
+ counter clock frequency either by any factor between 1 and 65536.
+ (#) Up to 4 independent channels for:
+ (++) Input Capture
+ (++) Output Compare
+ (++) PWM generation (Edge and Center-aligned Mode)
+ (++) One-pulse mode output
+ (#) Synchronization circuit to control the timer with external signals and to interconnect
+ several timers together.
+ (#) Supports incremental encoder for positioning purposes
+
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ (#) Initialize the TIM low level resources by implementing the following functions
+ depending on the selected feature:
+ (++) Time Base : HAL_TIM_Base_MspInit()
+ (++) Input Capture : HAL_TIM_IC_MspInit()
+ (++) Output Compare : HAL_TIM_OC_MspInit()
+ (++) PWM generation : HAL_TIM_PWM_MspInit()
+ (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
+ (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
+
+ (#) Initialize the TIM low level resources :
+ (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
+ (##) TIM pins configuration
+ (+++) Enable the clock for the TIM GPIOs using the following function:
+ __HAL_RCC_GPIOx_CLK_ENABLE();
+ (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
+
+ (#) The external Clock can be configured, if needed (the default clock is the
+ internal clock from the APBx), using the following function:
+ HAL_TIM_ConfigClockSource, the clock configuration should be done before
+ any start function.
+
+ (#) Configure the TIM in the desired functioning mode using one of the
+ Initialization function of this driver:
+ (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
+ (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
+ Output Compare signal.
+ (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
+ PWM signal.
+ (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
+ external signal.
+ (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
+ in One Pulse Mode.
+ (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
+
+ (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
+ (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
+ (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
+ (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
+ (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
+ (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
+ (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
+
+ (#) The DMA Burst is managed with the two following functions:
+ HAL_TIM_DMABurst_WriteStart()
+ HAL_TIM_DMABurst_ReadStart()
+
+ *** Callback registration ***
+ =============================================
+
+ [..]
+ The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
+ allows the user to configure dynamically the driver callbacks.
+
+ [..]
+ Use Function HAL_TIM_RegisterCallback() to register a callback.
+ HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
+ the Callback ID and a pointer to the user callback function.
+
+ [..]
+ Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default
+ weak function.
+ HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+
+ [..]
+ These functions allow to register/unregister following callbacks:
+ (+) Base_MspInitCallback : TIM Base Msp Init Callback.
+ (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback.
+ (+) IC_MspInitCallback : TIM IC Msp Init Callback.
+ (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback.
+ (+) OC_MspInitCallback : TIM OC Msp Init Callback.
+ (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback.
+ (+) PWM_MspInitCallback : TIM PWM Msp Init Callback.
+ (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback.
+ (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback.
+ (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback.
+ (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback.
+ (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback.
+ (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback.
+ (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback.
+ (+) PeriodElapsedCallback : TIM Period Elapsed Callback.
+ (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback.
+ (+) TriggerCallback : TIM Trigger Callback.
+ (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback.
+ (+) IC_CaptureCallback : TIM Input Capture Callback.
+ (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback.
+ (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback.
+ (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback.
+ (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
+ (+) ErrorCallback : TIM Error Callback.
+ (+) CommutationCallback : TIM Commutation Callback.
+ (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback.
+ (+) BreakCallback : TIM Break Callback.
+ (+) Break2Callback : TIM Break2 Callback.
+
+ [..]
+By default, after the Init and when the state is HAL_TIM_STATE_RESET
+all interrupt callbacks are set to the corresponding weak functions:
+ examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback().
+
+ [..]
+ Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
+ functionalities in the Init / DeInit only when these callbacks are null
+ (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
+ keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
+
+ [..]
+ Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
+ Exception done MspInit / MspDeInit that can be registered / unregistered
+ in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
+ thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
+ In that case first register the MspInit/MspDeInit user callbacks
+ using HAL_TIM_RegisterCallback() before calling DeInit or Init function.
+
+ [..]
+ When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available and all callbacks
+ are set to the corresponding weak functions.
+
+ @endverbatim
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32h7xx_hal.h"
+
+/** @addtogroup STM32H7xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup TIM TIM
+ * @brief TIM HAL module driver
+ * @{
+ */
+
+#ifdef HAL_TIM_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macros ------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @addtogroup TIM_Private_Functions
+ * @{
+ */
+static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
+static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
+static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
+static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
+static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
+static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
+static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
+ uint32_t TIM_ICFilter);
+static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
+static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
+ uint32_t TIM_ICFilter);
+static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
+ uint32_t TIM_ICFilter);
+static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
+static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
+static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
+static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
+ const TIM_SlaveConfigTypeDef *sSlaveConfig);
+/**
+ * @}
+ */
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup TIM_Exported_Functions TIM Exported Functions
+ * @{
+ */
+
+/** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
+ * @brief Time Base functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Time Base functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM base.
+ (+) De-initialize the TIM base.
+ (+) Start the Time Base.
+ (+) Stop the Time Base.
+ (+) Start the Time Base and enable interrupt.
+ (+) Stop the Time Base and disable interrupt.
+ (+) Start the Time Base and enable DMA transfer.
+ (+) Stop the Time Base and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM Time base Unit according to the specified
+ * parameters in the TIM_HandleTypeDef and initialize the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
+{
+ /* Check the TIM handle allocation */
+ if (htim == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+
+ if (htim->State == HAL_TIM_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->Base_MspInitCallback == NULL)
+ {
+ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->Base_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ HAL_TIM_Base_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Set the Time Base configuration */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM Base peripheral
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->Base_MspDeInitCallback == NULL)
+ {
+ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->Base_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
+ HAL_TIM_Base_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM Base MSP.
+ * @param htim TIM Base handle
+ * @retval None
+ */
+__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_Base_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM Base MSP.
+ * @param htim TIM Base handle
+ * @retval None
+ */
+__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_Base_MspDeInit could be implemented in the user file
+ */
+}
+
+
+/**
+ * @brief Starts the TIM Base generation.
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
+{
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ /* Check the TIM state */
+ if (htim->State != HAL_TIM_STATE_READY)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Base generation.
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Base generation in interrupt mode.
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
+{
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ /* Check the TIM state */
+ if (htim->State != HAL_TIM_STATE_READY)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Enable the TIM Update interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Base generation in interrupt mode.
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ /* Disable the TIM Update interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Base generation in DMA mode.
+ * @param htim TIM Base handle
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to peripheral.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length)
+{
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
+
+ /* Set the TIM state */
+ if (htim->State == HAL_TIM_STATE_BUSY)
+ {
+ return HAL_BUSY;
+ }
+ else if (htim->State == HAL_TIM_STATE_READY)
+ {
+ if ((pData == NULL) || (Length == 0U))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ htim->State = HAL_TIM_STATE_BUSY;
+ }
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the DMA Period elapsed callbacks */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Enable the TIM Update DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Base generation in DMA mode.
+ * @param htim TIM Base handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
+
+ /* Disable the TIM Update DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
+
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
+ * @brief TIM Output Compare functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM Output Compare functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM Output Compare.
+ (+) De-initialize the TIM Output Compare.
+ (+) Start the TIM Output Compare.
+ (+) Stop the TIM Output Compare.
+ (+) Start the TIM Output Compare and enable interrupt.
+ (+) Stop the TIM Output Compare and disable interrupt.
+ (+) Start the TIM Output Compare and enable DMA transfer.
+ (+) Stop the TIM Output Compare and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM Output Compare according to the specified
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
+ * @param htim TIM Output Compare handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
+{
+ /* Check the TIM handle allocation */
+ if (htim == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+
+ if (htim->State == HAL_TIM_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->OC_MspInitCallback == NULL)
+ {
+ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->OC_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_OC_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Init the base time for the Output Compare */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM peripheral
+ * @param htim TIM Output Compare handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->OC_MspDeInitCallback == NULL)
+ {
+ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->OC_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_OC_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM Output Compare MSP.
+ * @param htim TIM Output Compare handle
+ * @retval None
+ */
+__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OC_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM Output Compare MSP.
+ * @param htim TIM Output Compare handle
+ * @retval None
+ */
+__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OC_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the TIM Output Compare signal generation.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @arg TIM_CHANNEL_5: TIM Channel 5 selected
+ * @arg TIM_CHANNEL_6: TIM Channel 6 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Output Compare signal generation.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @arg TIM_CHANNEL_5: TIM Channel 5 selected
+ * @arg TIM_CHANNEL_6: TIM Channel 6 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Disable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Output Compare signal generation in interrupt mode.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Enable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Enable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Enable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Enable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Enable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Stops the TIM Output Compare signal generation in interrupt mode.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Disable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Disable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Disable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Disable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Disable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Starts the TIM Output Compare signal generation in DMA mode.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to TIM peripheral
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
+ uint16_t Length)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Set the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
+ {
+ return HAL_BUSY;
+ }
+ else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
+ {
+ if ((pData == NULL) || (Length == 0U))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Enable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Enable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 4 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Enable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Stops the TIM Output Compare signal generation in DMA mode.
+ * @param htim TIM Output Compare handle
+ * @param Channel TIM Channel to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Disable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Disable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Disable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Disable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Disable the Output compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
+ * @brief TIM PWM functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM PWM functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM PWM.
+ (+) De-initialize the TIM PWM.
+ (+) Start the TIM PWM.
+ (+) Stop the TIM PWM.
+ (+) Start the TIM PWM and enable interrupt.
+ (+) Stop the TIM PWM and disable interrupt.
+ (+) Start the TIM PWM and enable DMA transfer.
+ (+) Stop the TIM PWM and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM PWM Time Base according to the specified
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
+ * @param htim TIM PWM handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
+{
+ /* Check the TIM handle allocation */
+ if (htim == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+
+ if (htim->State == HAL_TIM_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->PWM_MspInitCallback == NULL)
+ {
+ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->PWM_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_PWM_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Init the base time for the PWM */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM peripheral
+ * @param htim TIM PWM handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->PWM_MspDeInitCallback == NULL)
+ {
+ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->PWM_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_PWM_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM PWM MSP.
+ * @param htim TIM PWM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PWM_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM PWM MSP.
+ * @param htim TIM PWM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PWM_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the PWM signal generation.
+ * @param htim TIM handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @arg TIM_CHANNEL_5: TIM Channel 5 selected
+ * @arg TIM_CHANNEL_6: TIM Channel 6 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the PWM signal generation.
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @arg TIM_CHANNEL_5: TIM Channel 5 selected
+ * @arg TIM_CHANNEL_6: TIM Channel 6 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Disable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the PWM signal generation in interrupt mode.
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channel to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Enable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Enable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Enable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Enable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Stops the PWM signal generation in interrupt mode.
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Disable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Disable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Disable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Disable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Disable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Starts the TIM PWM signal generation in DMA mode.
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @param pData The source Buffer address.
+ * @param Length The length of data to be transferred from memory to TIM peripheral
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
+ uint16_t Length)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+ uint32_t tmpsmcr;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Set the TIM channel state */
+ if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
+ {
+ return HAL_BUSY;
+ }
+ else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
+ {
+ if ((pData == NULL) || (Length == 0U))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Enable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Output Capture/Compare 3 request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 4 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Stops the TIM PWM signal generation in DMA mode.
+ * @param htim TIM PWM handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Disable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Disable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Disable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Disable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Disable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
+ * @brief TIM Input Capture functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM Input Capture functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM Input Capture.
+ (+) De-initialize the TIM Input Capture.
+ (+) Start the TIM Input Capture.
+ (+) Stop the TIM Input Capture.
+ (+) Start the TIM Input Capture and enable interrupt.
+ (+) Stop the TIM Input Capture and disable interrupt.
+ (+) Start the TIM Input Capture and enable DMA transfer.
+ (+) Stop the TIM Input Capture and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM Input Capture Time base according to the specified
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
+ * @param htim TIM Input Capture handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
+{
+ /* Check the TIM handle allocation */
+ if (htim == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+
+ if (htim->State == HAL_TIM_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->IC_MspInitCallback == NULL)
+ {
+ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->IC_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_IC_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Init the base time for the input capture */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM peripheral
+ * @param htim TIM Input Capture handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->IC_MspDeInitCallback == NULL)
+ {
+ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->IC_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_IC_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Change the TIM channels state */
+ TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM Input Capture MSP.
+ * @param htim TIM Input Capture handle
+ * @retval None
+ */
+__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_IC_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM Input Capture MSP.
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_IC_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the TIM Input Capture measurement.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ uint32_t tmpsmcr;
+ HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Input Capture measurement.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Disable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Input Capture measurement in interrupt mode.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+ uint32_t tmpsmcr;
+
+ HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ /* Check the TIM channel state */
+ if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Enable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Enable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Enable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Enable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Enable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Stops the TIM Input Capture measurement in interrupt mode.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Disable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Disable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Disable the TIM Capture/Compare 3 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Disable the TIM Capture/Compare 4 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Disable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Starts the TIM Input Capture measurement in DMA mode.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @param pData The destination Buffer address.
+ * @param Length The length of data to be transferred from TIM peripheral to memory.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+ uint32_t tmpsmcr;
+
+ HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+ assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel state */
+ if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY)
+ || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY))
+ {
+ return HAL_BUSY;
+ }
+ else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY)
+ && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY))
+ {
+ if ((pData == NULL) || (Length == 0U))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+
+ /* Enable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Capture/Compare 4 DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
+ if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
+ {
+ tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
+ if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+ }
+ else
+ {
+ __HAL_TIM_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Stops the TIM Input Capture measurement in DMA mode.
+ * @param htim TIM Input Capture handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+ assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channel */
+ TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Disable the TIM Capture/Compare 1 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Disable the TIM Capture/Compare 2 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Disable the TIM Capture/Compare 3 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Disable the TIM Capture/Compare 4 DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return status;
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
+ * @brief TIM One Pulse functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM One Pulse functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM One Pulse.
+ (+) De-initialize the TIM One Pulse.
+ (+) Start the TIM One Pulse.
+ (+) Stop the TIM One Pulse.
+ (+) Start the TIM One Pulse and enable interrupt.
+ (+) Stop the TIM One Pulse and disable interrupt.
+ (+) Start the TIM One Pulse and enable DMA transfer.
+ (+) Stop the TIM One Pulse and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM One Pulse Time Base according to the specified
+ * parameters in the TIM_HandleTypeDef and initializes the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
+ * @note When the timer instance is initialized in One Pulse mode, timer
+ * channels 1 and channel 2 are reserved and cannot be used for other
+ * purpose.
+ * @param htim TIM One Pulse handle
+ * @param OnePulseMode Select the One pulse mode.
+ * This parameter can be one of the following values:
+ * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
+ * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
+{
+ /* Check the TIM handle allocation */
+ if (htim == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_OPM_MODE(OnePulseMode));
+ assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+
+ if (htim->State == HAL_TIM_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->OnePulse_MspInitCallback == NULL)
+ {
+ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->OnePulse_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_OnePulse_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Configure the Time base in the One Pulse Mode */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Reset the OPM Bit */
+ htim->Instance->CR1 &= ~TIM_CR1_OPM;
+
+ /* Configure the OPM Mode */
+ htim->Instance->CR1 |= OnePulseMode;
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Initialize the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief DeInitializes the TIM One Pulse
+ * @param htim TIM One Pulse handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->OnePulse_MspDeInitCallback == NULL)
+ {
+ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->OnePulse_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
+ HAL_TIM_OnePulse_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Set the TIM channel state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM One Pulse MSP.
+ * @param htim TIM One Pulse handle
+ * @retval None
+ */
+__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OnePulse_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM One Pulse MSP.
+ * @param htim TIM One Pulse handle
+ * @retval None
+ */
+__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the TIM One Pulse signal generation.
+ * @note Though OutputChannel parameter is deprecated and ignored by the function
+ * it has been kept to avoid HAL_TIM API compatibility break.
+ * @note The pulse output channel is determined when calling
+ * @ref HAL_TIM_OnePulse_ConfigChannel().
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel See note above
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
+{
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(OutputChannel);
+
+ /* Check the TIM channels state */
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Capture compare and the Input Capture channels
+ (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
+ if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
+ if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
+ whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
+
+ No need to enable the counter, it's enabled automatically by hardware
+ (the counter starts in response to a stimulus and generate a pulse */
+
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM One Pulse signal generation.
+ * @note Though OutputChannel parameter is deprecated and ignored by the function
+ * it has been kept to avoid HAL_TIM API compatibility break.
+ * @note The pulse output channel is determined when calling
+ * @ref HAL_TIM_OnePulse_ConfigChannel().
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel See note above
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(OutputChannel);
+
+ /* Disable the Capture compare and the Input Capture channels
+ (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
+ if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
+ if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
+ whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
+
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM One Pulse signal generation in interrupt mode.
+ * @note Though OutputChannel parameter is deprecated and ignored by the function
+ * it has been kept to avoid HAL_TIM API compatibility break.
+ * @note The pulse output channel is determined when calling
+ * @ref HAL_TIM_OnePulse_ConfigChannel().
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel See note above
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
+{
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(OutputChannel);
+
+ /* Check the TIM channels state */
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+
+ /* Enable the Capture compare and the Input Capture channels
+ (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
+ if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
+ if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
+ whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
+
+ No need to enable the counter, it's enabled automatically by hardware
+ (the counter starts in response to a stimulus and generate a pulse */
+
+ /* Enable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+
+ /* Enable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Enable the main output */
+ __HAL_TIM_MOE_ENABLE(htim);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM One Pulse signal generation in interrupt mode.
+ * @note Though OutputChannel parameter is deprecated and ignored by the function
+ * it has been kept to avoid HAL_TIM API compatibility break.
+ * @note The pulse output channel is determined when calling
+ * @ref HAL_TIM_OnePulse_ConfigChannel().
+ * @param htim TIM One Pulse handle
+ * @param OutputChannel See note above
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(OutputChannel);
+
+ /* Disable the TIM Capture/Compare 1 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+
+ /* Disable the TIM Capture/Compare 2 interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+
+ /* Disable the Capture compare and the Input Capture channels
+ (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
+ if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
+ if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
+ whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
+ {
+ /* Disable the Main Output */
+ __HAL_TIM_MOE_DISABLE(htim);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
+ * @brief TIM Encoder functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM Encoder functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Initialize and configure the TIM Encoder.
+ (+) De-initialize the TIM Encoder.
+ (+) Start the TIM Encoder.
+ (+) Stop the TIM Encoder.
+ (+) Start the TIM Encoder and enable interrupt.
+ (+) Stop the TIM Encoder and disable interrupt.
+ (+) Start the TIM Encoder and enable DMA transfer.
+ (+) Stop the TIM Encoder and disable DMA transfer.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Initializes the TIM Encoder Interface and initialize the associated handle.
+ * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
+ * requires a timer reset to avoid unexpected direction
+ * due to DIR bit readonly in center aligned mode.
+ * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
+ * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together
+ * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
+ * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
+ * @note When the timer instance is initialized in Encoder mode, timer
+ * channels 1 and channel 2 are reserved and cannot be used for other
+ * purpose.
+ * @param htim TIM Encoder Interface handle
+ * @param sConfig TIM Encoder Interface configuration structure
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig)
+{
+ uint32_t tmpsmcr;
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Check the TIM handle allocation */
+ if (htim == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
+ assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
+ assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
+ assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
+ assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
+ assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
+ assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
+ assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
+ assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
+ assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
+ assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
+ assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
+ assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
+
+ if (htim->State == HAL_TIM_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ htim->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ /* Reset interrupt callbacks to legacy weak callbacks */
+ TIM_ResetCallback(htim);
+
+ if (htim->Encoder_MspInitCallback == NULL)
+ {
+ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
+ }
+ /* Init the low level hardware : GPIO, CLOCK, NVIC */
+ htim->Encoder_MspInitCallback(htim);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
+ HAL_TIM_Encoder_MspInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+
+ /* Set the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Reset the SMS and ECE bits */
+ htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
+
+ /* Configure the Time base in the Encoder Mode */
+ TIM_Base_SetConfig(htim->Instance, &htim->Init);
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = htim->Instance->SMCR;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmr1 = htim->Instance->CCMR1;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = htim->Instance->CCER;
+
+ /* Set the encoder Mode */
+ tmpsmcr |= sConfig->EncoderMode;
+
+ /* Select the Capture Compare 1 and the Capture Compare 2 as input */
+ tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
+ tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
+
+ /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
+ tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
+ tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
+ tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
+ tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
+
+ /* Set the TI1 and the TI2 Polarities */
+ tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
+ tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
+ tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
+
+ /* Write to TIMx SMCR */
+ htim->Instance->SMCR = tmpsmcr;
+
+ /* Write to TIMx CCMR1 */
+ htim->Instance->CCMR1 = tmpccmr1;
+
+ /* Write to TIMx CCER */
+ htim->Instance->CCER = tmpccer;
+
+ /* Initialize the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+
+ /* Initialize the TIM state*/
+ htim->State = HAL_TIM_STATE_READY;
+
+ return HAL_OK;
+}
+
+
+/**
+ * @brief DeInitializes the TIM Encoder interface
+ * @param htim TIM Encoder Interface handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Disable the TIM Peripheral Clock */
+ __HAL_TIM_DISABLE(htim);
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ if (htim->Encoder_MspDeInitCallback == NULL)
+ {
+ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ htim->Encoder_MspDeInitCallback(htim);
+#else
+ /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
+ HAL_TIM_Encoder_MspDeInit(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
+
+ /* Set the TIM channels state */
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
+
+ /* Change TIM state */
+ htim->State = HAL_TIM_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initializes the TIM Encoder Interface MSP.
+ * @param htim TIM Encoder Interface handle
+ * @retval None
+ */
+__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_Encoder_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes TIM Encoder Interface MSP.
+ * @param htim TIM Encoder Interface handle
+ * @retval None
+ */
+__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Starts the TIM Encoder Interface.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel(s) state */
+ if (Channel == TIM_CHANNEL_1)
+ {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+ else if (Channel == TIM_CHANNEL_2)
+ {
+ if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+ else
+ {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+
+ /* Enable the encoder interface channels */
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+ break;
+ }
+
+ default :
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+ break;
+ }
+ }
+ /* Enable the Peripheral */
+ __HAL_TIM_ENABLE(htim);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Encoder Interface.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channels 1 and 2
+ (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+ break;
+ }
+
+ default :
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+ break;
+ }
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel(s) state */
+ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
+ {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Encoder Interface in interrupt mode.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel(s) state */
+ if (Channel == TIM_CHANNEL_1)
+ {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+ else if (Channel == TIM_CHANNEL_2)
+ {
+ if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+ else
+ {
+ if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
+ || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+
+ /* Enable the encoder interface channels */
+ /* Enable the capture compare Interrupts 1 and/or 2 */
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+
+ default :
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
+ break;
+ }
+ }
+
+ /* Enable the Peripheral */
+ __HAL_TIM_ENABLE(htim);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Encoder Interface in interrupt mode.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be disabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channels 1 and 2
+ (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
+ if (Channel == TIM_CHANNEL_1)
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare Interrupts 1 */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ }
+ else if (Channel == TIM_CHANNEL_2)
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare Interrupts 2 */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ }
+ else
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare Interrupts 1 and 2 */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel(s) state */
+ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
+ {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Starts the TIM Encoder Interface in DMA mode.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @param pData1 The destination Buffer address for IC1.
+ * @param pData2 The destination Buffer address for IC2.
+ * @param Length The length of data to be transferred from TIM peripheral to memory.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
+ uint32_t *pData2, uint16_t Length)
+{
+ HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
+ HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Set the TIM channel(s) state */
+ if (Channel == TIM_CHANNEL_1)
+ {
+ if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
+ || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
+ {
+ return HAL_BUSY;
+ }
+ else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
+ && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
+ {
+ if ((pData1 == NULL) || (Length == 0U))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+ }
+ else if (Channel == TIM_CHANNEL_2)
+ {
+ if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
+ || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
+ {
+ return HAL_BUSY;
+ }
+ else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
+ && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
+ {
+ if ((pData2 == NULL) || (Length == 0U))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
+ || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
+ || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
+ || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
+ {
+ return HAL_BUSY;
+ }
+ else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
+ && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
+ && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
+ && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
+ {
+ if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
+ }
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+ }
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Input Capture DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+
+ /* Enable the Peripheral */
+ __HAL_TIM_ENABLE(htim);
+
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ /* Enable the TIM Input Capture DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+
+ /* Enable the Peripheral */
+ __HAL_TIM_ENABLE(htim);
+
+ break;
+ }
+
+ default:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
+ Length) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+
+ /* Enable the TIM Input Capture DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
+ /* Enable the TIM Input Capture DMA request */
+ __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
+
+ /* Enable the Capture compare channel */
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
+
+ /* Enable the Peripheral */
+ __HAL_TIM_ENABLE(htim);
+
+ break;
+ }
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Stops the TIM Encoder Interface in DMA mode.
+ * @param htim TIM Encoder Interface handle
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
+
+ /* Disable the Input Capture channels 1 and 2
+ (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
+ if (Channel == TIM_CHANNEL_1)
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare DMA Request 1 */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ }
+ else if (Channel == TIM_CHANNEL_2)
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare DMA Request 2 */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ }
+ else
+ {
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
+ TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
+
+ /* Disable the capture compare DMA Request 1 and 2 */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ }
+
+ /* Disable the Peripheral */
+ __HAL_TIM_DISABLE(htim);
+
+ /* Set the TIM channel(s) state */
+ if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
+ {
+ TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ else
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
+ * @brief TIM IRQ handler management
+ *
+@verbatim
+ ==============================================================================
+ ##### IRQ handler management #####
+ ==============================================================================
+ [..]
+ This section provides Timer IRQ handler function.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief This function handles TIM interrupts requests.
+ * @param htim TIM handle
+ * @retval None
+ */
+void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
+{
+ /* Capture compare 1 event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET)
+ {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET)
+ {
+ {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+
+ /* Input capture event */
+ if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
+ {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ /* Output compare event */
+ else
+ {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_OC_DelayElapsedCallback(htim);
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+ }
+ }
+ }
+ /* Capture compare 2 event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET)
+ {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET)
+ {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ /* Input capture event */
+ if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
+ {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ /* Output compare event */
+ else
+ {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_OC_DelayElapsedCallback(htim);
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+ }
+ }
+ /* Capture compare 3 event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET)
+ {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET)
+ {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ /* Input capture event */
+ if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
+ {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ /* Output compare event */
+ else
+ {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_OC_DelayElapsedCallback(htim);
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+ }
+ }
+ /* Capture compare 4 event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET)
+ {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET)
+ {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ /* Input capture event */
+ if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
+ {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ /* Output compare event */
+ else
+ {
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->OC_DelayElapsedCallback(htim);
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_OC_DelayElapsedCallback(htim);
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+ }
+ }
+ /* TIM Update event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
+ {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET)
+ {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PeriodElapsedCallback(htim);
+#else
+ HAL_TIM_PeriodElapsedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ }
+ /* TIM Break input event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET)
+ {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
+ {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->BreakCallback(htim);
+#else
+ HAL_TIMEx_BreakCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ }
+ /* TIM Break2 input event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK2) != RESET)
+ {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
+ {
+ __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->Break2Callback(htim);
+#else
+ HAL_TIMEx_Break2Callback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ }
+ /* TIM Trigger detection event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET)
+ {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET)
+ {
+ __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->TriggerCallback(htim);
+#else
+ HAL_TIM_TriggerCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ }
+ /* TIM commutation event */
+ if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET)
+ {
+ if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET)
+ {
+ __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->CommutationCallback(htim);
+#else
+ HAL_TIMEx_CommutCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+ }
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
+ * @brief TIM Peripheral Control functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Peripheral Control functions #####
+ ==============================================================================
+ [..]
+ This section provides functions allowing to:
+ (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
+ (+) Configure External Clock source.
+ (+) Configure Complementary channels, break features and dead time.
+ (+) Configure Master and the Slave synchronization.
+ (+) Configure the DMA Burst Mode.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the TIM Output Compare Channels according to the specified
+ * parameters in the TIM_OC_InitTypeDef.
+ * @param htim TIM Output Compare handle
+ * @param sConfig TIM Output Compare configuration structure
+ * @param Channel TIM Channels to configure
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @arg TIM_CHANNEL_5: TIM Channel 5 selected
+ * @arg TIM_CHANNEL_6: TIM Channel 6 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
+ const TIM_OC_InitTypeDef *sConfig,
+ uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CHANNELS(Channel));
+ assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
+ assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
+ /* Configure the TIM Channel 1 in Output Compare */
+ TIM_OC1_SetConfig(htim->Instance, sConfig);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ /* Configure the TIM Channel 2 in Output Compare */
+ TIM_OC2_SetConfig(htim->Instance, sConfig);
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
+
+ /* Configure the TIM Channel 3 in Output Compare */
+ TIM_OC3_SetConfig(htim->Instance, sConfig);
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
+
+ /* Configure the TIM Channel 4 in Output Compare */
+ TIM_OC4_SetConfig(htim->Instance, sConfig);
+ break;
+ }
+
+ case TIM_CHANNEL_5:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
+
+ /* Configure the TIM Channel 5 in Output Compare */
+ TIM_OC5_SetConfig(htim->Instance, sConfig);
+ break;
+ }
+
+ case TIM_CHANNEL_6:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
+
+ /* Configure the TIM Channel 6 in Output Compare */
+ TIM_OC6_SetConfig(htim->Instance, sConfig);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ __HAL_UNLOCK(htim);
+
+ return status;
+}
+
+/**
+ * @brief Initializes the TIM Input Capture Channels according to the specified
+ * parameters in the TIM_IC_InitTypeDef.
+ * @param htim TIM IC handle
+ * @param sConfig TIM Input Capture configuration structure
+ * @param Channel TIM Channel to configure
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
+ assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
+ assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
+ assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ if (Channel == TIM_CHANNEL_1)
+ {
+ /* TI1 Configuration */
+ TIM_TI1_SetConfig(htim->Instance,
+ sConfig->ICPolarity,
+ sConfig->ICSelection,
+ sConfig->ICFilter);
+
+ /* Reset the IC1PSC Bits */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
+
+ /* Set the IC1PSC value */
+ htim->Instance->CCMR1 |= sConfig->ICPrescaler;
+ }
+ else if (Channel == TIM_CHANNEL_2)
+ {
+ /* TI2 Configuration */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ TIM_TI2_SetConfig(htim->Instance,
+ sConfig->ICPolarity,
+ sConfig->ICSelection,
+ sConfig->ICFilter);
+
+ /* Reset the IC2PSC Bits */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
+
+ /* Set the IC2PSC value */
+ htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
+ }
+ else if (Channel == TIM_CHANNEL_3)
+ {
+ /* TI3 Configuration */
+ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
+
+ TIM_TI3_SetConfig(htim->Instance,
+ sConfig->ICPolarity,
+ sConfig->ICSelection,
+ sConfig->ICFilter);
+
+ /* Reset the IC3PSC Bits */
+ htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
+
+ /* Set the IC3PSC value */
+ htim->Instance->CCMR2 |= sConfig->ICPrescaler;
+ }
+ else if (Channel == TIM_CHANNEL_4)
+ {
+ /* TI4 Configuration */
+ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
+
+ TIM_TI4_SetConfig(htim->Instance,
+ sConfig->ICPolarity,
+ sConfig->ICSelection,
+ sConfig->ICFilter);
+
+ /* Reset the IC4PSC Bits */
+ htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
+
+ /* Set the IC4PSC value */
+ htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
+ }
+ else
+ {
+ status = HAL_ERROR;
+ }
+
+ __HAL_UNLOCK(htim);
+
+ return status;
+}
+
+/**
+ * @brief Initializes the TIM PWM channels according to the specified
+ * parameters in the TIM_OC_InitTypeDef.
+ * @param htim TIM PWM handle
+ * @param sConfig TIM PWM configuration structure
+ * @param Channel TIM Channels to be configured
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @arg TIM_CHANNEL_5: TIM Channel 5 selected
+ * @arg TIM_CHANNEL_6: TIM Channel 6 selected
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
+ const TIM_OC_InitTypeDef *sConfig,
+ uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CHANNELS(Channel));
+ assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
+ assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
+ assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
+ /* Configure the Channel 1 in PWM mode */
+ TIM_OC1_SetConfig(htim->Instance, sConfig);
+
+ /* Set the Preload enable bit for channel1 */
+ htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
+
+ /* Configure the Output Fast mode */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
+ htim->Instance->CCMR1 |= sConfig->OCFastMode;
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ /* Configure the Channel 2 in PWM mode */
+ TIM_OC2_SetConfig(htim->Instance, sConfig);
+
+ /* Set the Preload enable bit for channel2 */
+ htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
+
+ /* Configure the Output Fast mode */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
+ htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
+
+ /* Configure the Channel 3 in PWM mode */
+ TIM_OC3_SetConfig(htim->Instance, sConfig);
+
+ /* Set the Preload enable bit for channel3 */
+ htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
+
+ /* Configure the Output Fast mode */
+ htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
+ htim->Instance->CCMR2 |= sConfig->OCFastMode;
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
+
+ /* Configure the Channel 4 in PWM mode */
+ TIM_OC4_SetConfig(htim->Instance, sConfig);
+
+ /* Set the Preload enable bit for channel4 */
+ htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
+
+ /* Configure the Output Fast mode */
+ htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
+ htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
+ break;
+ }
+
+ case TIM_CHANNEL_5:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
+
+ /* Configure the Channel 5 in PWM mode */
+ TIM_OC5_SetConfig(htim->Instance, sConfig);
+
+ /* Set the Preload enable bit for channel5*/
+ htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE;
+
+ /* Configure the Output Fast mode */
+ htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE;
+ htim->Instance->CCMR3 |= sConfig->OCFastMode;
+ break;
+ }
+
+ case TIM_CHANNEL_6:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
+
+ /* Configure the Channel 6 in PWM mode */
+ TIM_OC6_SetConfig(htim->Instance, sConfig);
+
+ /* Set the Preload enable bit for channel6 */
+ htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE;
+
+ /* Configure the Output Fast mode */
+ htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE;
+ htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U;
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ __HAL_UNLOCK(htim);
+
+ return status;
+}
+
+/**
+ * @brief Initializes the TIM One Pulse Channels according to the specified
+ * parameters in the TIM_OnePulse_InitTypeDef.
+ * @param htim TIM One Pulse handle
+ * @param sConfig TIM One Pulse configuration structure
+ * @param OutputChannel TIM output channel to configure
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @param InputChannel TIM input Channel to configure
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @note To output a waveform with a minimum delay user can enable the fast
+ * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
+ * output is forced in response to the edge detection on TIx input,
+ * without taking in account the comparison.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig,
+ uint32_t OutputChannel, uint32_t InputChannel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+ TIM_OC_InitTypeDef temp1;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
+ assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
+
+ if (OutputChannel != InputChannel)
+ {
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Extract the Output compare configuration from sConfig structure */
+ temp1.OCMode = sConfig->OCMode;
+ temp1.Pulse = sConfig->Pulse;
+ temp1.OCPolarity = sConfig->OCPolarity;
+ temp1.OCNPolarity = sConfig->OCNPolarity;
+ temp1.OCIdleState = sConfig->OCIdleState;
+ temp1.OCNIdleState = sConfig->OCNIdleState;
+
+ switch (OutputChannel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
+ TIM_OC1_SetConfig(htim->Instance, &temp1);
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ TIM_OC2_SetConfig(htim->Instance, &temp1);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ switch (InputChannel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
+ TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
+ sConfig->ICSelection, sConfig->ICFilter);
+
+ /* Reset the IC1PSC Bits */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
+
+ /* Select the Trigger source */
+ htim->Instance->SMCR &= ~TIM_SMCR_TS;
+ htim->Instance->SMCR |= TIM_TS_TI1FP1;
+
+ /* Select the Slave Mode */
+ htim->Instance->SMCR &= ~TIM_SMCR_SMS;
+ htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
+ break;
+ }
+
+ case TIM_CHANNEL_2:
+ {
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
+ sConfig->ICSelection, sConfig->ICFilter);
+
+ /* Reset the IC2PSC Bits */
+ htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
+
+ /* Select the Trigger source */
+ htim->Instance->SMCR &= ~TIM_SMCR_TS;
+ htim->Instance->SMCR |= TIM_TS_TI2FP2;
+
+ /* Select the Slave Mode */
+ htim->Instance->SMCR &= ~TIM_SMCR_SMS;
+ htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+ }
+
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return status;
+ }
+ else
+ {
+ return HAL_ERROR;
+ }
+}
+
+/**
+ * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABASE_CR1
+ * @arg TIM_DMABASE_CR2
+ * @arg TIM_DMABASE_SMCR
+ * @arg TIM_DMABASE_DIER
+ * @arg TIM_DMABASE_SR
+ * @arg TIM_DMABASE_EGR
+ * @arg TIM_DMABASE_CCMR1
+ * @arg TIM_DMABASE_CCMR2
+ * @arg TIM_DMABASE_CCER
+ * @arg TIM_DMABASE_CNT
+ * @arg TIM_DMABASE_PSC
+ * @arg TIM_DMABASE_ARR
+ * @arg TIM_DMABASE_RCR
+ * @arg TIM_DMABASE_CCR1
+ * @arg TIM_DMABASE_CCR2
+ * @arg TIM_DMABASE_CCR3
+ * @arg TIM_DMABASE_CCR4
+ * @arg TIM_DMABASE_BDTR
+ * @arg TIM_DMABASE_CCMR3
+ * @arg TIM_DMABASE_CCR5
+ * @arg TIM_DMABASE_CCR6
+ * @arg TIM_DMABASE_AF1
+ * @arg TIM_DMABASE_AF2
+ * @arg TIM_DMABASE_TISEL
+ *
+ * @param BurstRequestSrc TIM DMA Request sources
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
+ * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @note This function should be used only when BurstLength is equal to DMA data transfer length.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
+ uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t BurstLength)
+{
+ HAL_StatusTypeDef status;
+
+ status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
+ ((BurstLength) >> 8U) + 1U);
+
+
+
+ return status;
+}
+
+/**
+ * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABASE_CR1
+ * @arg TIM_DMABASE_CR2
+ * @arg TIM_DMABASE_SMCR
+ * @arg TIM_DMABASE_DIER
+ * @arg TIM_DMABASE_SR
+ * @arg TIM_DMABASE_EGR
+ * @arg TIM_DMABASE_CCMR1
+ * @arg TIM_DMABASE_CCMR2
+ * @arg TIM_DMABASE_CCER
+ * @arg TIM_DMABASE_CNT
+ * @arg TIM_DMABASE_PSC
+ * @arg TIM_DMABASE_ARR
+ * @arg TIM_DMABASE_RCR
+ * @arg TIM_DMABASE_CCR1
+ * @arg TIM_DMABASE_CCR2
+ * @arg TIM_DMABASE_CCR3
+ * @arg TIM_DMABASE_CCR4
+ * @arg TIM_DMABASE_BDTR
+ * @arg TIM_DMABASE_CCMR3
+ * @arg TIM_DMABASE_CCR5
+ * @arg TIM_DMABASE_CCR6
+ * @arg TIM_DMABASE_AF1
+ * @arg TIM_DMABASE_AF2
+ * @arg TIM_DMABASE_TISEL
+ *
+ * @param BurstRequestSrc TIM DMA Request sources
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
+ * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @param DataLength Data length. This parameter can be one value
+ * between 1 and 0xFFFF.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
+ uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
+ uint32_t BurstLength, uint32_t DataLength)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
+ assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
+ assert_param(IS_TIM_DMA_LENGTH(BurstLength));
+ assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
+
+ if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
+ {
+ return HAL_BUSY;
+ }
+ else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
+ {
+ if ((BurstBuffer == NULL) && (BurstLength > 0U))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
+ }
+ }
+ else
+ {
+ /* nothing to do */
+ }
+
+ switch (BurstRequestSrc)
+ {
+ case TIM_DMA_UPDATE:
+ {
+ /* Set the DMA Period elapsed callbacks */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
+ (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC1:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
+ (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC2:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
+ (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC3:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
+ (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC4:
+ {
+ /* Set the DMA compare callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
+ (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_COM:
+ {
+ /* Set the DMA commutation callbacks */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
+ (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_TRIGGER:
+ {
+ /* Set the DMA trigger callbacks */
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
+ (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Configure the DMA Burst Mode */
+ htim->Instance->DCR = (BurstBaseAddress | BurstLength);
+ /* Enable the TIM DMA Request */
+ __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Stops the TIM DMA Burst mode
+ * @param htim TIM handle
+ * @param BurstRequestSrc TIM DMA Request sources to disable
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
+
+ /* Abort the DMA transfer (at least disable the DMA stream) */
+ switch (BurstRequestSrc)
+ {
+ case TIM_DMA_UPDATE:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
+ break;
+ }
+ case TIM_DMA_CC1:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+ case TIM_DMA_CC2:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+ case TIM_DMA_CC3:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+ case TIM_DMA_CC4:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
+ case TIM_DMA_COM:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
+ break;
+ }
+ case TIM_DMA_TRIGGER:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
+ break;
+ }
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Disable the TIM Update DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABASE_CR1
+ * @arg TIM_DMABASE_CR2
+ * @arg TIM_DMABASE_SMCR
+ * @arg TIM_DMABASE_DIER
+ * @arg TIM_DMABASE_SR
+ * @arg TIM_DMABASE_EGR
+ * @arg TIM_DMABASE_CCMR1
+ * @arg TIM_DMABASE_CCMR2
+ * @arg TIM_DMABASE_CCER
+ * @arg TIM_DMABASE_CNT
+ * @arg TIM_DMABASE_PSC
+ * @arg TIM_DMABASE_ARR
+ * @arg TIM_DMABASE_RCR
+ * @arg TIM_DMABASE_CCR1
+ * @arg TIM_DMABASE_CCR2
+ * @arg TIM_DMABASE_CCR3
+ * @arg TIM_DMABASE_CCR4
+ * @arg TIM_DMABASE_BDTR
+ * @arg TIM_DMABASE_CCMR3
+ * @arg TIM_DMABASE_CCR5
+ * @arg TIM_DMABASE_CCR6
+ * @arg TIM_DMABASE_AF1
+ * @arg TIM_DMABASE_AF2
+ * @arg TIM_DMABASE_TISEL
+ *
+ * @param BurstRequestSrc TIM DMA Request sources
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
+ * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @note This function should be used only when BurstLength is equal to DMA data transfer length.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
+ uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength)
+{
+ HAL_StatusTypeDef status;
+
+ status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
+ ((BurstLength) >> 8U) + 1U);
+
+
+ return status;
+}
+
+/**
+ * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
+ * @param htim TIM handle
+ * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABASE_CR1
+ * @arg TIM_DMABASE_CR2
+ * @arg TIM_DMABASE_SMCR
+ * @arg TIM_DMABASE_DIER
+ * @arg TIM_DMABASE_SR
+ * @arg TIM_DMABASE_EGR
+ * @arg TIM_DMABASE_CCMR1
+ * @arg TIM_DMABASE_CCMR2
+ * @arg TIM_DMABASE_CCER
+ * @arg TIM_DMABASE_CNT
+ * @arg TIM_DMABASE_PSC
+ * @arg TIM_DMABASE_ARR
+ * @arg TIM_DMABASE_RCR
+ * @arg TIM_DMABASE_CCR1
+ * @arg TIM_DMABASE_CCR2
+ * @arg TIM_DMABASE_CCR3
+ * @arg TIM_DMABASE_CCR4
+ * @arg TIM_DMABASE_BDTR
+ * @arg TIM_DMABASE_CCMR3
+ * @arg TIM_DMABASE_CCR5
+ * @arg TIM_DMABASE_CCR6
+ * @arg TIM_DMABASE_AF1
+ * @arg TIM_DMABASE_AF2
+ * @arg TIM_DMABASE_TISEL
+ *
+ * @param BurstRequestSrc TIM DMA Request sources
+ * This parameter can be one of the following values:
+ * @arg TIM_DMA_UPDATE: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
+ * @param BurstBuffer The Buffer address.
+ * @param BurstLength DMA Burst length. This parameter can be one value
+ * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
+ * @param DataLength Data length. This parameter can be one value
+ * between 1 and 0xFFFF.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
+ uint32_t BurstRequestSrc, uint32_t *BurstBuffer,
+ uint32_t BurstLength, uint32_t DataLength)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
+ assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
+ assert_param(IS_TIM_DMA_LENGTH(BurstLength));
+ assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
+
+ if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
+ {
+ return HAL_BUSY;
+ }
+ else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
+ {
+ if ((BurstBuffer == NULL) && (BurstLength > 0U))
+ {
+ return HAL_ERROR;
+ }
+ else
+ {
+ htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
+ }
+ }
+ else
+ {
+ /* nothing to do */
+ }
+ switch (BurstRequestSrc)
+ {
+ case TIM_DMA_UPDATE:
+ {
+ /* Set the DMA Period elapsed callbacks */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
+ DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC1:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
+ DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC2:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
+ DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC3:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
+ DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_CC4:
+ {
+ /* Set the DMA capture callbacks */
+ htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
+ htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
+ DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_COM:
+ {
+ /* Set the DMA commutation callbacks */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
+ DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ case TIM_DMA_TRIGGER:
+ {
+ /* Set the DMA trigger callbacks */
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
+
+ /* Set the DMA error callback */
+ htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
+
+ /* Enable the DMA stream */
+ if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
+ DataLength) != HAL_OK)
+ {
+ /* Return error status */
+ return HAL_ERROR;
+ }
+ break;
+ }
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Configure the DMA Burst Mode */
+ htim->Instance->DCR = (BurstBaseAddress | BurstLength);
+
+ /* Enable the TIM DMA Request */
+ __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Stop the DMA burst reading
+ * @param htim TIM handle
+ * @param BurstRequestSrc TIM DMA Request sources to disable.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
+
+ /* Abort the DMA transfer (at least disable the DMA stream) */
+ switch (BurstRequestSrc)
+ {
+ case TIM_DMA_UPDATE:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
+ break;
+ }
+ case TIM_DMA_CC1:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
+ break;
+ }
+ case TIM_DMA_CC2:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
+ break;
+ }
+ case TIM_DMA_CC3:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
+ break;
+ }
+ case TIM_DMA_CC4:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
+ break;
+ }
+ case TIM_DMA_COM:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
+ break;
+ }
+ case TIM_DMA_TRIGGER:
+ {
+ (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
+ break;
+ }
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Disable the TIM Update DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
+
+ /* Change the DMA burst operation state */
+ htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Generate a software event
+ * @param htim TIM handle
+ * @param EventSource specifies the event source.
+ * This parameter can be one of the following values:
+ * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
+ * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
+ * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
+ * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
+ * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
+ * @arg TIM_EVENTSOURCE_COM: Timer COM event source
+ * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
+ * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
+ * @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source
+ * @note Basic timers can only generate an update event.
+ * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
+ * @note TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant
+ * only for timer instances supporting break input(s).
+ * @retval HAL status
+ */
+
+HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_EVENT_SOURCE(EventSource));
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ /* Change the TIM state */
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Set the event sources */
+ htim->Instance->EGR = EventSource;
+
+ /* Change the TIM state */
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the OCRef clear feature
+ * @param htim TIM handle
+ * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
+ * contains the OCREF clear feature and parameters for the TIM peripheral.
+ * @param Channel specifies the TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @arg TIM_CHANNEL_4: TIM Channel 4
+ * @arg TIM_CHANNEL_5: TIM Channel 5
+ * @arg TIM_CHANNEL_6: TIM Channel 6
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
+ const TIM_ClearInputConfigTypeDef *sClearInputConfig,
+ uint32_t Channel)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ switch (sClearInputConfig->ClearInputSource)
+ {
+ case TIM_CLEARINPUTSOURCE_NONE:
+ {
+ /* Clear the OCREF clear selection bit and the the ETR Bits */
+ CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
+ break;
+ }
+
+ case TIM_CLEARINPUTSOURCE_ETR:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
+ assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
+ assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
+
+ /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
+ if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
+ {
+ htim->State = HAL_TIM_STATE_READY;
+ __HAL_UNLOCK(htim);
+ return HAL_ERROR;
+ }
+
+ TIM_ETR_SetConfig(htim->Instance,
+ sClearInputConfig->ClearInputPrescaler,
+ sClearInputConfig->ClearInputPolarity,
+ sClearInputConfig->ClearInputFilter);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
+ {
+ /* Enable the OCREF clear feature for Channel 1 */
+ SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
+ }
+ else
+ {
+ /* Disable the OCREF clear feature for Channel 1 */
+ CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
+ }
+ break;
+ }
+ case TIM_CHANNEL_2:
+ {
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
+ {
+ /* Enable the OCREF clear feature for Channel 2 */
+ SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
+ }
+ else
+ {
+ /* Disable the OCREF clear feature for Channel 2 */
+ CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
+ }
+ break;
+ }
+ case TIM_CHANNEL_3:
+ {
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
+ {
+ /* Enable the OCREF clear feature for Channel 3 */
+ SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
+ }
+ else
+ {
+ /* Disable the OCREF clear feature for Channel 3 */
+ CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
+ }
+ break;
+ }
+ case TIM_CHANNEL_4:
+ {
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
+ {
+ /* Enable the OCREF clear feature for Channel 4 */
+ SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
+ }
+ else
+ {
+ /* Disable the OCREF clear feature for Channel 4 */
+ CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
+ }
+ break;
+ }
+ case TIM_CHANNEL_5:
+ {
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
+ {
+ /* Enable the OCREF clear feature for Channel 5 */
+ SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
+ }
+ else
+ {
+ /* Disable the OCREF clear feature for Channel 5 */
+ CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
+ }
+ break;
+ }
+ case TIM_CHANNEL_6:
+ {
+ if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
+ {
+ /* Enable the OCREF clear feature for Channel 6 */
+ SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
+ }
+ else
+ {
+ /* Disable the OCREF clear feature for Channel 6 */
+ CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return status;
+}
+
+/**
+ * @brief Configures the clock source to be used
+ * @param htim TIM handle
+ * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
+ * contains the clock source information for the TIM peripheral.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+ uint32_t tmpsmcr;
+
+ /* Process Locked */
+ __HAL_LOCK(htim);
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
+
+ /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
+ tmpsmcr = htim->Instance->SMCR;
+ tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
+ tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
+ htim->Instance->SMCR = tmpsmcr;
+
+ switch (sClockSourceConfig->ClockSource)
+ {
+ case TIM_CLOCKSOURCE_INTERNAL:
+ {
+ assert_param(IS_TIM_INSTANCE(htim->Instance));
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_ETRMODE1:
+ {
+ /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
+ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
+
+ /* Check ETR input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ /* Configure the ETR Clock source */
+ TIM_ETR_SetConfig(htim->Instance,
+ sClockSourceConfig->ClockPrescaler,
+ sClockSourceConfig->ClockPolarity,
+ sClockSourceConfig->ClockFilter);
+
+ /* Select the External clock mode1 and the ETRF trigger */
+ tmpsmcr = htim->Instance->SMCR;
+ tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
+ /* Write to TIMx SMCR */
+ htim->Instance->SMCR = tmpsmcr;
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_ETRMODE2:
+ {
+ /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
+ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
+
+ /* Check ETR input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ /* Configure the ETR Clock source */
+ TIM_ETR_SetConfig(htim->Instance,
+ sClockSourceConfig->ClockPrescaler,
+ sClockSourceConfig->ClockPolarity,
+ sClockSourceConfig->ClockFilter);
+ /* Enable the External clock mode2 */
+ htim->Instance->SMCR |= TIM_SMCR_ECE;
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_TI1:
+ {
+ /* Check whether or not the timer instance supports external clock mode 1 */
+ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
+
+ /* Check TI1 input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ TIM_TI1_ConfigInputStage(htim->Instance,
+ sClockSourceConfig->ClockPolarity,
+ sClockSourceConfig->ClockFilter);
+ TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_TI2:
+ {
+ /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
+ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
+
+ /* Check TI2 input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ TIM_TI2_ConfigInputStage(htim->Instance,
+ sClockSourceConfig->ClockPolarity,
+ sClockSourceConfig->ClockFilter);
+ TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_TI1ED:
+ {
+ /* Check whether or not the timer instance supports external clock mode 1 */
+ assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
+
+ /* Check TI1 input conditioning related parameters */
+ assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
+ assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
+
+ TIM_TI1_ConfigInputStage(htim->Instance,
+ sClockSourceConfig->ClockPolarity,
+ sClockSourceConfig->ClockFilter);
+ TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
+ break;
+ }
+
+ case TIM_CLOCKSOURCE_ITR0:
+ case TIM_CLOCKSOURCE_ITR1:
+ case TIM_CLOCKSOURCE_ITR2:
+ case TIM_CLOCKSOURCE_ITR3:
+ case TIM_CLOCKSOURCE_ITR4:
+ case TIM_CLOCKSOURCE_ITR5:
+ case TIM_CLOCKSOURCE_ITR6:
+ case TIM_CLOCKSOURCE_ITR7:
+ case TIM_CLOCKSOURCE_ITR8:
+ {
+ /* Check whether or not the timer instance supports internal trigger input */
+ assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
+
+ TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return status;
+}
+
+/**
+ * @brief Selects the signal connected to the TI1 input: direct from CH1_input
+ * or a XOR combination between CH1_input, CH2_input & CH3_input
+ * @param htim TIM handle.
+ * @param TI1_Selection Indicate whether or not channel 1 is connected to the
+ * output of a XOR gate.
+ * This parameter can be one of the following values:
+ * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
+ * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
+ * pins are connected to the TI1 input (XOR combination)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
+{
+ uint32_t tmpcr2;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
+
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = htim->Instance->CR2;
+
+ /* Reset the TI1 selection */
+ tmpcr2 &= ~TIM_CR2_TI1S;
+
+ /* Set the TI1 selection */
+ tmpcr2 |= TI1_Selection;
+
+ /* Write to TIMxCR2 */
+ htim->Instance->CR2 = tmpcr2;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the TIM in Slave mode
+ * @param htim TIM handle.
+ * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
+ * contains the selected trigger (internal trigger input, filtered
+ * timer input or external trigger input) and the Slave mode
+ * (Disable, Reset, Gated, Trigger, External clock mode 1).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
+ assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
+
+ __HAL_LOCK(htim);
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
+ {
+ htim->State = HAL_TIM_STATE_READY;
+ __HAL_UNLOCK(htim);
+ return HAL_ERROR;
+ }
+
+ /* Disable Trigger Interrupt */
+ __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
+
+ /* Disable Trigger DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
+
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Configures the TIM in Slave mode in interrupt mode
+ * @param htim TIM handle.
+ * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
+ * contains the selected trigger (internal trigger input, filtered
+ * timer input or external trigger input) and the Slave mode
+ * (Disable, Reset, Gated, Trigger, External clock mode 1).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
+ const TIM_SlaveConfigTypeDef *sSlaveConfig)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
+ assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
+
+ __HAL_LOCK(htim);
+
+ htim->State = HAL_TIM_STATE_BUSY;
+
+ if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
+ {
+ htim->State = HAL_TIM_STATE_READY;
+ __HAL_UNLOCK(htim);
+ return HAL_ERROR;
+ }
+
+ /* Enable Trigger Interrupt */
+ __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
+
+ /* Disable Trigger DMA request */
+ __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
+
+ htim->State = HAL_TIM_STATE_READY;
+
+ __HAL_UNLOCK(htim);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Read the captured value from Capture Compare unit
+ * @param htim TIM handle.
+ * @param Channel TIM Channels to be enabled
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1 selected
+ * @arg TIM_CHANNEL_2: TIM Channel 2 selected
+ * @arg TIM_CHANNEL_3: TIM Channel 3 selected
+ * @arg TIM_CHANNEL_4: TIM Channel 4 selected
+ * @retval Captured value
+ */
+uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ uint32_t tmpreg = 0U;
+
+ switch (Channel)
+ {
+ case TIM_CHANNEL_1:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+
+ /* Return the capture 1 value */
+ tmpreg = htim->Instance->CCR1;
+
+ break;
+ }
+ case TIM_CHANNEL_2:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+
+ /* Return the capture 2 value */
+ tmpreg = htim->Instance->CCR2;
+
+ break;
+ }
+
+ case TIM_CHANNEL_3:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
+
+ /* Return the capture 3 value */
+ tmpreg = htim->Instance->CCR3;
+
+ break;
+ }
+
+ case TIM_CHANNEL_4:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
+
+ /* Return the capture 4 value */
+ tmpreg = htim->Instance->CCR4;
+
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ return tmpreg;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
+ * @brief TIM Callbacks functions
+ *
+@verbatim
+ ==============================================================================
+ ##### TIM Callbacks functions #####
+ ==============================================================================
+ [..]
+ This section provides TIM callback functions:
+ (+) TIM Period elapsed callback
+ (+) TIM Output Compare callback
+ (+) TIM Input capture callback
+ (+) TIM Trigger callback
+ (+) TIM Error callback
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Period elapsed callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Period elapsed half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Output Compare callback in non-blocking mode
+ * @param htim TIM OC handle
+ * @retval None
+ */
+__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Input Capture callback in non-blocking mode
+ * @param htim TIM IC handle
+ * @retval None
+ */
+__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_IC_CaptureCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Input Capture half complete callback in non-blocking mode
+ * @param htim TIM IC handle
+ * @retval None
+ */
+__weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief PWM Pulse finished callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief PWM Pulse finished half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Hall Trigger detection callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_TriggerCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Hall Trigger detection half complete callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Timer error callback in non-blocking mode
+ * @param htim TIM handle
+ * @retval None
+ */
+__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(htim);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_TIM_ErrorCallback could be implemented in the user file
+ */
+}
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a User TIM callback to be used instead of the weak predefined callback
+ * @param htim tim handle
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
+ * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
+ * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
+ * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
+ * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
+ * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
+ * @param pCallback pointer to the callback function
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
+ pTIM_CallbackTypeDef pCallback)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ if (htim->State == HAL_TIM_STATE_READY)
+ {
+ switch (CallbackID)
+ {
+ case HAL_TIM_BASE_MSPINIT_CB_ID :
+ htim->Base_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID :
+ htim->Base_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID :
+ htim->IC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID :
+ htim->IC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID :
+ htim->OC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID :
+ htim->OC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID :
+ htim->PWM_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID :
+ htim->PWM_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
+ htim->OnePulse_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
+ htim->OnePulse_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID :
+ htim->Encoder_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
+ htim->Encoder_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
+ htim->HallSensor_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
+ htim->HallSensor_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_CB_ID :
+ htim->PeriodElapsedCallback = pCallback;
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
+ htim->PeriodElapsedHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_TRIGGER_CB_ID :
+ htim->TriggerCallback = pCallback;
+ break;
+
+ case HAL_TIM_TRIGGER_HALF_CB_ID :
+ htim->TriggerHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_CAPTURE_CB_ID :
+ htim->IC_CaptureCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
+ htim->IC_CaptureHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
+ htim->OC_DelayElapsedCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
+ htim->PWM_PulseFinishedCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
+ htim->PWM_PulseFinishedHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_ERROR_CB_ID :
+ htim->ErrorCallback = pCallback;
+ break;
+
+ case HAL_TIM_COMMUTATION_CB_ID :
+ htim->CommutationCallback = pCallback;
+ break;
+
+ case HAL_TIM_COMMUTATION_HALF_CB_ID :
+ htim->CommutationHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_TIM_BREAK_CB_ID :
+ htim->BreakCallback = pCallback;
+ break;
+
+ case HAL_TIM_BREAK2_CB_ID :
+ htim->Break2Callback = pCallback;
+ break;
+
+ default :
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (htim->State == HAL_TIM_STATE_RESET)
+ {
+ switch (CallbackID)
+ {
+ case HAL_TIM_BASE_MSPINIT_CB_ID :
+ htim->Base_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID :
+ htim->Base_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID :
+ htim->IC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID :
+ htim->IC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID :
+ htim->OC_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID :
+ htim->OC_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID :
+ htim->PWM_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID :
+ htim->PWM_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
+ htim->OnePulse_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
+ htim->OnePulse_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID :
+ htim->Encoder_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
+ htim->Encoder_MspDeInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
+ htim->HallSensor_MspInitCallback = pCallback;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
+ htim->HallSensor_MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ return status;
+}
+
+/**
+ * @brief Unregister a TIM callback
+ * TIM callback is redirected to the weak predefined callback
+ * @param htim tim handle
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
+ * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
+ * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
+ * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
+ * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
+ * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
+ * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
+ * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
+ * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
+ * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
+ * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
+ * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
+ * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
+ * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
+ * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
+ * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
+ * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (htim->State == HAL_TIM_STATE_READY)
+ {
+ switch (CallbackID)
+ {
+ case HAL_TIM_BASE_MSPINIT_CB_ID :
+ /* Legacy weak Base MspInit Callback */
+ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID :
+ /* Legacy weak Base Msp DeInit Callback */
+ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID :
+ /* Legacy weak IC Msp Init Callback */
+ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID :
+ /* Legacy weak IC Msp DeInit Callback */
+ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID :
+ /* Legacy weak OC Msp Init Callback */
+ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID :
+ /* Legacy weak OC Msp DeInit Callback */
+ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID :
+ /* Legacy weak PWM Msp Init Callback */
+ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID :
+ /* Legacy weak PWM Msp DeInit Callback */
+ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
+ /* Legacy weak One Pulse Msp Init Callback */
+ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
+ /* Legacy weak One Pulse Msp DeInit Callback */
+ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID :
+ /* Legacy weak Encoder Msp Init Callback */
+ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
+ /* Legacy weak Encoder Msp DeInit Callback */
+ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
+ /* Legacy weak Hall Sensor Msp Init Callback */
+ htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
+ /* Legacy weak Hall Sensor Msp DeInit Callback */
+ htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_CB_ID :
+ /* Legacy weak Period Elapsed Callback */
+ htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback;
+ break;
+
+ case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
+ /* Legacy weak Period Elapsed half complete Callback */
+ htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback;
+ break;
+
+ case HAL_TIM_TRIGGER_CB_ID :
+ /* Legacy weak Trigger Callback */
+ htim->TriggerCallback = HAL_TIM_TriggerCallback;
+ break;
+
+ case HAL_TIM_TRIGGER_HALF_CB_ID :
+ /* Legacy weak Trigger half complete Callback */
+ htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback;
+ break;
+
+ case HAL_TIM_IC_CAPTURE_CB_ID :
+ /* Legacy weak IC Capture Callback */
+ htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback;
+ break;
+
+ case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
+ /* Legacy weak IC Capture half complete Callback */
+ htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback;
+ break;
+
+ case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
+ /* Legacy weak OC Delay Elapsed Callback */
+ htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback;
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
+ /* Legacy weak PWM Pulse Finished Callback */
+ htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback;
+ break;
+
+ case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
+ /* Legacy weak PWM Pulse Finished half complete Callback */
+ htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
+ break;
+
+ case HAL_TIM_ERROR_CB_ID :
+ /* Legacy weak Error Callback */
+ htim->ErrorCallback = HAL_TIM_ErrorCallback;
+ break;
+
+ case HAL_TIM_COMMUTATION_CB_ID :
+ /* Legacy weak Commutation Callback */
+ htim->CommutationCallback = HAL_TIMEx_CommutCallback;
+ break;
+
+ case HAL_TIM_COMMUTATION_HALF_CB_ID :
+ /* Legacy weak Commutation half complete Callback */
+ htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback;
+ break;
+
+ case HAL_TIM_BREAK_CB_ID :
+ /* Legacy weak Break Callback */
+ htim->BreakCallback = HAL_TIMEx_BreakCallback;
+ break;
+
+ case HAL_TIM_BREAK2_CB_ID :
+ /* Legacy weak Break2 Callback */
+ htim->Break2Callback = HAL_TIMEx_Break2Callback;
+ break;
+
+ default :
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (htim->State == HAL_TIM_STATE_RESET)
+ {
+ switch (CallbackID)
+ {
+ case HAL_TIM_BASE_MSPINIT_CB_ID :
+ /* Legacy weak Base MspInit Callback */
+ htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
+ break;
+
+ case HAL_TIM_BASE_MSPDEINIT_CB_ID :
+ /* Legacy weak Base Msp DeInit Callback */
+ htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
+ break;
+
+ case HAL_TIM_IC_MSPINIT_CB_ID :
+ /* Legacy weak IC Msp Init Callback */
+ htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
+ break;
+
+ case HAL_TIM_IC_MSPDEINIT_CB_ID :
+ /* Legacy weak IC Msp DeInit Callback */
+ htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
+ break;
+
+ case HAL_TIM_OC_MSPINIT_CB_ID :
+ /* Legacy weak OC Msp Init Callback */
+ htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
+ break;
+
+ case HAL_TIM_OC_MSPDEINIT_CB_ID :
+ /* Legacy weak OC Msp DeInit Callback */
+ htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
+ break;
+
+ case HAL_TIM_PWM_MSPINIT_CB_ID :
+ /* Legacy weak PWM Msp Init Callback */
+ htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
+ break;
+
+ case HAL_TIM_PWM_MSPDEINIT_CB_ID :
+ /* Legacy weak PWM Msp DeInit Callback */
+ htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
+ /* Legacy weak One Pulse Msp Init Callback */
+ htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
+ break;
+
+ case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
+ /* Legacy weak One Pulse Msp DeInit Callback */
+ htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
+ break;
+
+ case HAL_TIM_ENCODER_MSPINIT_CB_ID :
+ /* Legacy weak Encoder Msp Init Callback */
+ htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
+ break;
+
+ case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
+ /* Legacy weak Encoder Msp DeInit Callback */
+ htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
+ /* Legacy weak Hall Sensor Msp Init Callback */
+ htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
+ break;
+
+ case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
+ /* Legacy weak Hall Sensor Msp DeInit Callback */
+ htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
+ break;
+
+ default :
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ return status;
+}
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
+ * @brief TIM Peripheral State functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Peripheral State functions #####
+ ==============================================================================
+ [..]
+ This subsection permits to get in run-time the status of the peripheral
+ and the data flow.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Return the TIM Base handle state.
+ * @param htim TIM Base handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim)
+{
+ return htim->State;
+}
+
+/**
+ * @brief Return the TIM OC handle state.
+ * @param htim TIM Output Compare handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim)
+{
+ return htim->State;
+}
+
+/**
+ * @brief Return the TIM PWM handle state.
+ * @param htim TIM handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim)
+{
+ return htim->State;
+}
+
+/**
+ * @brief Return the TIM Input Capture handle state.
+ * @param htim TIM IC handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim)
+{
+ return htim->State;
+}
+
+/**
+ * @brief Return the TIM One Pulse Mode handle state.
+ * @param htim TIM OPM handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim)
+{
+ return htim->State;
+}
+
+/**
+ * @brief Return the TIM Encoder Mode handle state.
+ * @param htim TIM Encoder Interface handle
+ * @retval HAL state
+ */
+HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim)
+{
+ return htim->State;
+}
+
+/**
+ * @brief Return the TIM Encoder Mode handle state.
+ * @param htim TIM handle
+ * @retval Active channel
+ */
+HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim)
+{
+ return htim->Channel;
+}
+
+/**
+ * @brief Return actual state of the TIM channel.
+ * @param htim TIM handle
+ * @param Channel TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @arg TIM_CHANNEL_4: TIM Channel 4
+ * @arg TIM_CHANNEL_5: TIM Channel 5
+ * @arg TIM_CHANNEL_6: TIM Channel 6
+ * @retval TIM Channel state
+ */
+HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim, uint32_t Channel)
+{
+ HAL_TIM_ChannelStateTypeDef channel_state;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
+
+ channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
+
+ return channel_state;
+}
+
+/**
+ * @brief Return actual state of a DMA burst operation.
+ * @param htim TIM handle
+ * @retval DMA burst state
+ */
+HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
+
+ return htim->DMABurstState;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Private_Functions TIM Private Functions
+ * @{
+ */
+
+/**
+ * @brief TIM DMA error callback
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIM_DMAError(DMA_HandleTypeDef *hdma)
+{
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ else
+ {
+ htim->State = HAL_TIM_STATE_READY;
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->ErrorCallback(htim);
+#else
+ HAL_TIM_ErrorCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Delay Pulse complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
+{
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+
+ if (hdma->Init.Mode == DMA_NORMAL)
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+
+ if (hdma->Init.Mode == DMA_NORMAL)
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+
+ if (hdma->Init.Mode == DMA_NORMAL)
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+
+ if (hdma->Init.Mode == DMA_NORMAL)
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ }
+ else
+ {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PWM_PulseFinishedCallback(htim);
+#else
+ HAL_TIM_PWM_PulseFinishedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Delay Pulse half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
+{
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ }
+ else
+ {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PWM_PulseFinishedHalfCpltCallback(htim);
+#else
+ HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Capture complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
+{
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+
+ if (hdma->Init.Mode == DMA_NORMAL)
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+
+ if (hdma->Init.Mode == DMA_NORMAL)
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+
+ if (hdma->Init.Mode == DMA_NORMAL)
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+
+ if (hdma->Init.Mode == DMA_NORMAL)
+ {
+ TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
+ }
+ }
+ else
+ {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureCallback(htim);
+#else
+ HAL_TIM_IC_CaptureCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Capture half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
+{
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (hdma == htim->hdma[TIM_DMA_ID_CC1])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
+ }
+ else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
+ {
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
+ }
+ else
+ {
+ /* nothing to do */
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->IC_CaptureHalfCpltCallback(htim);
+#else
+ HAL_TIM_IC_CaptureHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+ htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
+}
+
+/**
+ * @brief TIM DMA Period Elapse complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
+{
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL)
+ {
+ htim->State = HAL_TIM_STATE_READY;
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PeriodElapsedCallback(htim);
+#else
+ HAL_TIM_PeriodElapsedCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Period Elapse half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
+{
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->PeriodElapsedHalfCpltCallback(htim);
+#else
+ HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Trigger callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
+{
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL)
+ {
+ htim->State = HAL_TIM_STATE_READY;
+ }
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->TriggerCallback(htim);
+#else
+ HAL_TIM_TriggerCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief TIM DMA Trigger half complete callback.
+ * @param hdma pointer to DMA handle.
+ * @retval None
+ */
+static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
+{
+ TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+ htim->TriggerHalfCpltCallback(htim);
+#else
+ HAL_TIM_TriggerHalfCpltCallback(htim);
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief Time Base configuration
+ * @param TIMx TIM peripheral
+ * @param Structure TIM Base configuration structure
+ * @retval None
+ */
+void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
+{
+ uint32_t tmpcr1;
+ tmpcr1 = TIMx->CR1;
+
+ /* Set TIM Time Base Unit parameters ---------------------------------------*/
+ if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
+ {
+ /* Select the Counter Mode */
+ tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
+ tmpcr1 |= Structure->CounterMode;
+ }
+
+ if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
+ {
+ /* Set the clock division */
+ tmpcr1 &= ~TIM_CR1_CKD;
+ tmpcr1 |= (uint32_t)Structure->ClockDivision;
+ }
+
+ /* Set the auto-reload preload */
+ MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
+
+ TIMx->CR1 = tmpcr1;
+
+ /* Set the Autoreload value */
+ TIMx->ARR = (uint32_t)Structure->Period ;
+
+ /* Set the Prescaler value */
+ TIMx->PSC = Structure->Prescaler;
+
+ if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
+ {
+ /* Set the Repetition Counter value */
+ TIMx->RCR = Structure->RepetitionCounter;
+ }
+
+ /* Generate an update event to reload the Prescaler
+ and the repetition counter (only for advanced timer) value immediately */
+ TIMx->EGR = TIM_EGR_UG;
+}
+
+/**
+ * @brief Timer Output Compare 1 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
+ * @retval None
+ */
+static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
+{
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC1E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmrx = TIMx->CCMR1;
+
+ /* Reset the Output Compare Mode Bits */
+ tmpccmrx &= ~TIM_CCMR1_OC1M;
+ tmpccmrx &= ~TIM_CCMR1_CC1S;
+ /* Select the Output Compare Mode */
+ tmpccmrx |= OC_Config->OCMode;
+
+ /* Reset the Output Polarity level */
+ tmpccer &= ~TIM_CCER_CC1P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= OC_Config->OCPolarity;
+
+ if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
+ {
+ /* Check parameters */
+ assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
+
+ /* Reset the Output N Polarity level */
+ tmpccer &= ~TIM_CCER_CC1NP;
+ /* Set the Output N Polarity */
+ tmpccer |= OC_Config->OCNPolarity;
+ /* Reset the Output N State */
+ tmpccer &= ~TIM_CCER_CC1NE;
+ }
+
+ if (IS_TIM_BREAK_INSTANCE(TIMx))
+ {
+ /* Check parameters */
+ assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
+ assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
+
+ /* Reset the Output Compare and Output Compare N IDLE State */
+ tmpcr2 &= ~TIM_CR2_OIS1;
+ tmpcr2 &= ~TIM_CR2_OIS1N;
+ /* Set the Output Idle state */
+ tmpcr2 |= OC_Config->OCIdleState;
+ /* Set the Output N Idle state */
+ tmpcr2 |= OC_Config->OCNIdleState;
+ }
+
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR1 = OC_Config->Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Timer Output Compare 2 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
+ * @retval None
+ */
+void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
+{
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
+
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC2E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmrx = TIMx->CCMR1;
+
+ /* Reset the Output Compare mode and Capture/Compare selection Bits */
+ tmpccmrx &= ~TIM_CCMR1_OC2M;
+ tmpccmrx &= ~TIM_CCMR1_CC2S;
+
+ /* Select the Output Compare Mode */
+ tmpccmrx |= (OC_Config->OCMode << 8U);
+
+ /* Reset the Output Polarity level */
+ tmpccer &= ~TIM_CCER_CC2P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (OC_Config->OCPolarity << 4U);
+
+ if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
+ {
+ assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
+
+ /* Reset the Output N Polarity level */
+ tmpccer &= ~TIM_CCER_CC2NP;
+ /* Set the Output N Polarity */
+ tmpccer |= (OC_Config->OCNPolarity << 4U);
+ /* Reset the Output N State */
+ tmpccer &= ~TIM_CCER_CC2NE;
+
+ }
+
+ if (IS_TIM_BREAK_INSTANCE(TIMx))
+ {
+ /* Check parameters */
+ assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
+ assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
+
+ /* Reset the Output Compare and Output Compare N IDLE State */
+ tmpcr2 &= ~TIM_CR2_OIS2;
+ tmpcr2 &= ~TIM_CR2_OIS2N;
+ /* Set the Output Idle state */
+ tmpcr2 |= (OC_Config->OCIdleState << 2U);
+ /* Set the Output N Idle state */
+ tmpcr2 |= (OC_Config->OCNIdleState << 2U);
+ }
+
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR2 = OC_Config->Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Timer Output Compare 3 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
+ * @retval None
+ */
+static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
+{
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
+
+ /* Disable the Channel 3: Reset the CC2E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC3E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmrx = TIMx->CCMR2;
+
+ /* Reset the Output Compare mode and Capture/Compare selection Bits */
+ tmpccmrx &= ~TIM_CCMR2_OC3M;
+ tmpccmrx &= ~TIM_CCMR2_CC3S;
+ /* Select the Output Compare Mode */
+ tmpccmrx |= OC_Config->OCMode;
+
+ /* Reset the Output Polarity level */
+ tmpccer &= ~TIM_CCER_CC3P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (OC_Config->OCPolarity << 8U);
+
+ if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
+ {
+ assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
+
+ /* Reset the Output N Polarity level */
+ tmpccer &= ~TIM_CCER_CC3NP;
+ /* Set the Output N Polarity */
+ tmpccer |= (OC_Config->OCNPolarity << 8U);
+ /* Reset the Output N State */
+ tmpccer &= ~TIM_CCER_CC3NE;
+ }
+
+ if (IS_TIM_BREAK_INSTANCE(TIMx))
+ {
+ /* Check parameters */
+ assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
+ assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
+
+ /* Reset the Output Compare and Output Compare N IDLE State */
+ tmpcr2 &= ~TIM_CR2_OIS3;
+ tmpcr2 &= ~TIM_CR2_OIS3N;
+ /* Set the Output Idle state */
+ tmpcr2 |= (OC_Config->OCIdleState << 4U);
+ /* Set the Output N Idle state */
+ tmpcr2 |= (OC_Config->OCNIdleState << 4U);
+ }
+
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR3 = OC_Config->Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Timer Output Compare 4 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
+ * @retval None
+ */
+static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
+{
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
+
+ /* Disable the Channel 4: Reset the CC4E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC4E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmrx = TIMx->CCMR2;
+
+ /* Reset the Output Compare mode and Capture/Compare selection Bits */
+ tmpccmrx &= ~TIM_CCMR2_OC4M;
+ tmpccmrx &= ~TIM_CCMR2_CC4S;
+
+ /* Select the Output Compare Mode */
+ tmpccmrx |= (OC_Config->OCMode << 8U);
+
+ /* Reset the Output Polarity level */
+ tmpccer &= ~TIM_CCER_CC4P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (OC_Config->OCPolarity << 12U);
+
+ if (IS_TIM_BREAK_INSTANCE(TIMx))
+ {
+ /* Check parameters */
+ assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
+
+ /* Reset the Output Compare IDLE State */
+ tmpcr2 &= ~TIM_CR2_OIS4;
+
+ /* Set the Output Idle state */
+ tmpcr2 |= (OC_Config->OCIdleState << 6U);
+ }
+
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR4 = OC_Config->Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Timer Output Compare 5 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
+ * @retval None
+ */
+static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx,
+ const TIM_OC_InitTypeDef *OC_Config)
+{
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
+
+ /* Disable the output: Reset the CCxE Bit */
+ TIMx->CCER &= ~TIM_CCER_CC5E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+ /* Get the TIMx CCMR1 register value */
+ tmpccmrx = TIMx->CCMR3;
+
+ /* Reset the Output Compare Mode Bits */
+ tmpccmrx &= ~(TIM_CCMR3_OC5M);
+ /* Select the Output Compare Mode */
+ tmpccmrx |= OC_Config->OCMode;
+
+ /* Reset the Output Polarity level */
+ tmpccer &= ~TIM_CCER_CC5P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (OC_Config->OCPolarity << 16U);
+
+ if (IS_TIM_BREAK_INSTANCE(TIMx))
+ {
+ /* Reset the Output Compare IDLE State */
+ tmpcr2 &= ~TIM_CR2_OIS5;
+ /* Set the Output Idle state */
+ tmpcr2 |= (OC_Config->OCIdleState << 8U);
+ }
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR3 */
+ TIMx->CCMR3 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR5 = OC_Config->Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Timer Output Compare 6 configuration
+ * @param TIMx to select the TIM peripheral
+ * @param OC_Config The output configuration structure
+ * @retval None
+ */
+static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx,
+ const TIM_OC_InitTypeDef *OC_Config)
+{
+ uint32_t tmpccmrx;
+ uint32_t tmpccer;
+ uint32_t tmpcr2;
+
+ /* Disable the output: Reset the CCxE Bit */
+ TIMx->CCER &= ~TIM_CCER_CC6E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+ /* Get the TIMx CCMR1 register value */
+ tmpccmrx = TIMx->CCMR3;
+
+ /* Reset the Output Compare Mode Bits */
+ tmpccmrx &= ~(TIM_CCMR3_OC6M);
+ /* Select the Output Compare Mode */
+ tmpccmrx |= (OC_Config->OCMode << 8U);
+
+ /* Reset the Output Polarity level */
+ tmpccer &= (uint32_t)~TIM_CCER_CC6P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (OC_Config->OCPolarity << 20U);
+
+ if (IS_TIM_BREAK_INSTANCE(TIMx))
+ {
+ /* Reset the Output Compare IDLE State */
+ tmpcr2 &= ~TIM_CR2_OIS6;
+ /* Set the Output Idle state */
+ tmpcr2 |= (OC_Config->OCIdleState << 10U);
+ }
+
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR3 */
+ TIMx->CCMR3 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR6 = OC_Config->Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Slave Timer configuration function
+ * @param htim TIM handle
+ * @param sSlaveConfig Slave timer configuration
+ * @retval None
+ */
+static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
+ const TIM_SlaveConfigTypeDef *sSlaveConfig)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+ uint32_t tmpsmcr;
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = htim->Instance->SMCR;
+
+ /* Reset the Trigger Selection Bits */
+ tmpsmcr &= ~TIM_SMCR_TS;
+ /* Set the Input Trigger source */
+ tmpsmcr |= sSlaveConfig->InputTrigger;
+
+ /* Reset the slave mode Bits */
+ tmpsmcr &= ~TIM_SMCR_SMS;
+ /* Set the slave mode */
+ tmpsmcr |= sSlaveConfig->SlaveMode;
+
+ /* Write to TIMx SMCR */
+ htim->Instance->SMCR = tmpsmcr;
+
+ /* Configure the trigger prescaler, filter, and polarity */
+ switch (sSlaveConfig->InputTrigger)
+ {
+ case TIM_TS_ETRF:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
+ assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
+ assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
+ /* Configure the ETR Trigger source */
+ TIM_ETR_SetConfig(htim->Instance,
+ sSlaveConfig->TriggerPrescaler,
+ sSlaveConfig->TriggerPolarity,
+ sSlaveConfig->TriggerFilter);
+ break;
+ }
+
+ case TIM_TS_TI1F_ED:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
+
+ if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ tmpccer = htim->Instance->CCER;
+ htim->Instance->CCER &= ~TIM_CCER_CC1E;
+ tmpccmr1 = htim->Instance->CCMR1;
+
+ /* Set the filter */
+ tmpccmr1 &= ~TIM_CCMR1_IC1F;
+ tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ htim->Instance->CCMR1 = tmpccmr1;
+ htim->Instance->CCER = tmpccer;
+ break;
+ }
+
+ case TIM_TS_TI1FP1:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
+ assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
+
+ /* Configure TI1 Filter and Polarity */
+ TIM_TI1_ConfigInputStage(htim->Instance,
+ sSlaveConfig->TriggerPolarity,
+ sSlaveConfig->TriggerFilter);
+ break;
+ }
+
+ case TIM_TS_TI2FP2:
+ {
+ /* Check the parameters */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+ assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
+ assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
+
+ /* Configure TI2 Filter and Polarity */
+ TIM_TI2_ConfigInputStage(htim->Instance,
+ sSlaveConfig->TriggerPolarity,
+ sSlaveConfig->TriggerFilter);
+ break;
+ }
+
+ case TIM_TS_ITR0:
+ case TIM_TS_ITR1:
+ case TIM_TS_ITR2:
+ case TIM_TS_ITR3:
+ case TIM_TS_ITR4:
+ case TIM_TS_ITR5:
+ case TIM_TS_ITR6:
+ case TIM_TS_ITR7:
+ case TIM_TS_ITR8:
+ case TIM_TS_ITR9:
+ case TIM_TS_ITR10:
+ case TIM_TS_ITR11:
+ case TIM_TS_ITR12:
+ case TIM_TS_ITR13:
+ {
+ /* Check the parameter */
+ assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
+ break;
+ }
+
+ default:
+ status = HAL_ERROR;
+ break;
+ }
+
+ return status;
+}
+
+/**
+ * @brief Configure the TI1 as Input.
+ * @param TIMx to select the TIM peripheral.
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @arg TIM_ICPOLARITY_BOTHEDGE
+ * @param TIM_ICSelection specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
+ * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
+ * (on channel2 path) is used as the input signal. Therefore CCMR1 must be
+ * protected against un-initialized filter and polarity values.
+ */
+void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
+ uint32_t TIM_ICFilter)
+{
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC1E;
+ tmpccmr1 = TIMx->CCMR1;
+ tmpccer = TIMx->CCER;
+
+ /* Select the Input */
+ if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
+ {
+ tmpccmr1 &= ~TIM_CCMR1_CC1S;
+ tmpccmr1 |= TIM_ICSelection;
+ }
+ else
+ {
+ tmpccmr1 |= TIM_CCMR1_CC1S_0;
+ }
+
+ /* Set the filter */
+ tmpccmr1 &= ~TIM_CCMR1_IC1F;
+ tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
+
+ /* Select the Polarity and set the CC1E Bit */
+ tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
+ tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the Polarity and Filter for TI1.
+ * @param TIMx to select the TIM peripheral.
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @arg TIM_ICPOLARITY_BOTHEDGE
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
+{
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ tmpccer = TIMx->CCER;
+ TIMx->CCER &= ~TIM_CCER_CC1E;
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Set the filter */
+ tmpccmr1 &= ~TIM_CCMR1_IC1F;
+ tmpccmr1 |= (TIM_ICFilter << 4U);
+
+ /* Select the Polarity and set the CC1E Bit */
+ tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
+ tmpccer |= TIM_ICPolarity;
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI2 as Input.
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @arg TIM_ICPOLARITY_BOTHEDGE
+ * @param TIM_ICSelection specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
+ * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
+ * (on channel1 path) is used as the input signal. Therefore CCMR1 must be
+ * protected against un-initialized filter and polarity values.
+ */
+static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
+ uint32_t TIM_ICFilter)
+{
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC2E;
+ tmpccmr1 = TIMx->CCMR1;
+ tmpccer = TIMx->CCER;
+
+ /* Select the Input */
+ tmpccmr1 &= ~TIM_CCMR1_CC2S;
+ tmpccmr1 |= (TIM_ICSelection << 8U);
+
+ /* Set the filter */
+ tmpccmr1 &= ~TIM_CCMR1_IC2F;
+ tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
+
+ /* Select the Polarity and set the CC2E Bit */
+ tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
+ tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1 ;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the Polarity and Filter for TI2.
+ * @param TIMx to select the TIM peripheral.
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @arg TIM_ICPOLARITY_BOTHEDGE
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
+{
+ uint32_t tmpccmr1;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC2E;
+ tmpccmr1 = TIMx->CCMR1;
+ tmpccer = TIMx->CCER;
+
+ /* Set the filter */
+ tmpccmr1 &= ~TIM_CCMR1_IC2F;
+ tmpccmr1 |= (TIM_ICFilter << 12U);
+
+ /* Select the Polarity and set the CC2E Bit */
+ tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
+ tmpccer |= (TIM_ICPolarity << 4U);
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1 ;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI3 as Input.
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @arg TIM_ICPOLARITY_BOTHEDGE
+ * @param TIM_ICSelection specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
+ * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
+ * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
+ * protected against un-initialized filter and polarity values.
+ */
+static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
+ uint32_t TIM_ICFilter)
+{
+ uint32_t tmpccmr2;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 3: Reset the CC3E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC3E;
+ tmpccmr2 = TIMx->CCMR2;
+ tmpccer = TIMx->CCER;
+
+ /* Select the Input */
+ tmpccmr2 &= ~TIM_CCMR2_CC3S;
+ tmpccmr2 |= TIM_ICSelection;
+
+ /* Set the filter */
+ tmpccmr2 &= ~TIM_CCMR2_IC3F;
+ tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
+
+ /* Select the Polarity and set the CC3E Bit */
+ tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
+ tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
+
+ /* Write to TIMx CCMR2 and CCER registers */
+ TIMx->CCMR2 = tmpccmr2;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI4 as Input.
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ICPolarity The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPOLARITY_RISING
+ * @arg TIM_ICPOLARITY_FALLING
+ * @arg TIM_ICPOLARITY_BOTHEDGE
+ * @param TIM_ICSelection specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
+ * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
+ * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
+ * @param TIM_ICFilter Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
+ * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
+ * protected against un-initialized filter and polarity values.
+ * @retval None
+ */
+static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
+ uint32_t TIM_ICFilter)
+{
+ uint32_t tmpccmr2;
+ uint32_t tmpccer;
+
+ /* Disable the Channel 4: Reset the CC4E Bit */
+ TIMx->CCER &= ~TIM_CCER_CC4E;
+ tmpccmr2 = TIMx->CCMR2;
+ tmpccer = TIMx->CCER;
+
+ /* Select the Input */
+ tmpccmr2 &= ~TIM_CCMR2_CC4S;
+ tmpccmr2 |= (TIM_ICSelection << 8U);
+
+ /* Set the filter */
+ tmpccmr2 &= ~TIM_CCMR2_IC4F;
+ tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
+
+ /* Select the Polarity and set the CC4E Bit */
+ tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
+ tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
+
+ /* Write to TIMx CCMR2 and CCER registers */
+ TIMx->CCMR2 = tmpccmr2;
+ TIMx->CCER = tmpccer ;
+}
+
+/**
+ * @brief Selects the Input Trigger source
+ * @param TIMx to select the TIM peripheral
+ * @param InputTriggerSource The Input Trigger source.
+ * This parameter can be one of the following values:
+ * @arg TIM_TS_ITR0: Internal Trigger 0
+ * @arg TIM_TS_ITR1: Internal Trigger 1
+ * @arg TIM_TS_ITR2: Internal Trigger 2
+ * @arg TIM_TS_ITR3: Internal Trigger 3
+ * @arg TIM_TS_ITR4: Internal Trigger 4 (*)
+ * @arg TIM_TS_ITR5: Internal Trigger 5
+ * @arg TIM_TS_ITR6: Internal Trigger 6
+ * @arg TIM_TS_ITR7: Internal Trigger 7
+ * @arg TIM_TS_ITR8: Internal Trigger 8 (*)
+ * @arg TIM_TS_ITR9: Internal Trigger 9 (*)
+ * @arg TIM_TS_ITR10: Internal Trigger 10 (*)
+ * @arg TIM_TS_ITR11: Internal Trigger 11 (*)
+ * @arg TIM_TS_ITR12: Internal Trigger 12 (*)
+ * @arg TIM_TS_ITR13: Internal Trigger 13 (*)
+ * @arg TIM_TS_TI1F_ED: TI1 Edge Detector
+ * @arg TIM_TS_TI1FP1: Filtered Timer Input 1
+ * @arg TIM_TS_TI2FP2: Filtered Timer Input 2
+ * @arg TIM_TS_ETRF: External Trigger input
+ *
+ * (*) Value not defined in all devices.
+ *
+ * @retval None
+ */
+static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
+{
+ uint32_t tmpsmcr;
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = TIMx->SMCR;
+ /* Reset the TS Bits */
+ tmpsmcr &= ~TIM_SMCR_TS;
+ /* Set the Input Trigger source and the slave mode*/
+ tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
+/**
+ * @brief Configures the TIMx External Trigger (ETR).
+ * @param TIMx to select the TIM peripheral
+ * @param TIM_ExtTRGPrescaler The external Trigger Prescaler.
+ * This parameter can be one of the following values:
+ * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
+ * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
+ * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
+ * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
+ * @param TIM_ExtTRGPolarity The external Trigger Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
+ * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
+ * @param ExtTRGFilter External Trigger Filter.
+ * This parameter must be a value between 0x00 and 0x0F
+ * @retval None
+ */
+void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
+ uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
+{
+ uint32_t tmpsmcr;
+
+ tmpsmcr = TIMx->SMCR;
+
+ /* Reset the ETR Bits */
+ tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
+
+ /* Set the Prescaler, the Filter value and the Polarity */
+ tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
+
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
+
+/**
+ * @brief Enables or disables the TIM Capture Compare Channel x.
+ * @param TIMx to select the TIM peripheral
+ * @param Channel specifies the TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_CHANNEL_1: TIM Channel 1
+ * @arg TIM_CHANNEL_2: TIM Channel 2
+ * @arg TIM_CHANNEL_3: TIM Channel 3
+ * @arg TIM_CHANNEL_4: TIM Channel 4
+ * @arg TIM_CHANNEL_5: TIM Channel 5 selected
+ * @arg TIM_CHANNEL_6: TIM Channel 6 selected
+ * @param ChannelState specifies the TIM Channel CCxE bit new state.
+ * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
+ * @retval None
+ */
+void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
+{
+ uint32_t tmp;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_CC1_INSTANCE(TIMx));
+ assert_param(IS_TIM_CHANNELS(Channel));
+
+ tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
+
+ /* Reset the CCxE Bit */
+ TIMx->CCER &= ~tmp;
+
+ /* Set or reset the CCxE Bit */
+ TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
+}
+
+#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Reset interrupt callbacks to the legacy weak callbacks.
+ * @param htim pointer to a TIM_HandleTypeDef structure that contains
+ * the configuration information for TIM module.
+ * @retval None
+ */
+void TIM_ResetCallback(TIM_HandleTypeDef *htim)
+{
+ /* Reset the TIM callback to the legacy weak callbacks */
+ htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback;
+ htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback;
+ htim->TriggerCallback = HAL_TIM_TriggerCallback;
+ htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback;
+ htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback;
+ htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback;
+ htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback;
+ htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback;
+ htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
+ htim->ErrorCallback = HAL_TIM_ErrorCallback;
+ htim->CommutationCallback = HAL_TIMEx_CommutCallback;
+ htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback;
+ htim->BreakCallback = HAL_TIMEx_BreakCallback;
+ htim->Break2Callback = HAL_TIMEx_Break2Callback;
+}
+#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+#endif /* HAL_TIM_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
|