diff options
author | joshua <joshua@joshuayun.com> | 2023-12-30 23:54:31 -0500 |
---|---|---|
committer | joshua <joshua@joshuayun.com> | 2023-12-30 23:54:31 -0500 |
commit | 86608c6770cf08c138a2bdab5855072f64be09ef (patch) | |
tree | 494a61b3ef37e76f9235a0d10f5c93d97290a35f /Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_uart_ex.c | |
download | sdr-software-master.tar.gz |
Diffstat (limited to 'Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_uart_ex.c')
-rw-r--r-- | Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_uart_ex.c | 1044 |
1 files changed, 1044 insertions, 0 deletions
diff --git a/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_uart_ex.c b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_uart_ex.c new file mode 100644 index 0000000..62d8235 --- /dev/null +++ b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_uart_ex.c @@ -0,0 +1,1044 @@ +/**
+ ******************************************************************************
+ * @file stm32h7xx_hal_uart_ex.c
+ * @author MCD Application Team
+ * @brief Extended UART HAL module driver.
+ * This file provides firmware functions to manage the following extended
+ * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
+ * + Initialization and de-initialization functions
+ * + Peripheral Control functions
+ *
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.
+ *
+ * This software is licensed under terms that can be found in the LICENSE file
+ * in the root directory of this software component.
+ * If no LICENSE file comes with this software, it is provided AS-IS.
+ *
+ ******************************************************************************
+ @verbatim
+ ==============================================================================
+ ##### UART peripheral extended features #####
+ ==============================================================================
+
+ (#) Declare a UART_HandleTypeDef handle structure.
+
+ (#) For the UART RS485 Driver Enable mode, initialize the UART registers
+ by calling the HAL_RS485Ex_Init() API.
+
+ (#) FIFO mode enabling/disabling and RX/TX FIFO threshold programming.
+
+ -@- When UART operates in FIFO mode, FIFO mode must be enabled prior
+ starting RX/TX transfers. Also RX/TX FIFO thresholds must be
+ configured prior starting RX/TX transfers.
+
+ @endverbatim
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32h7xx_hal.h"
+
+/** @addtogroup STM32H7xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup UARTEx UARTEx
+ * @brief UART Extended HAL module driver
+ * @{
+ */
+
+#ifdef HAL_UART_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup UARTEX_Private_Constants UARTEx Private Constants
+ * @{
+ */
+/* UART RX FIFO depth */
+#define RX_FIFO_DEPTH 16U
+
+/* UART TX FIFO depth */
+#define TX_FIFO_DEPTH 16U
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup UARTEx_Private_Functions UARTEx Private Functions
+ * @{
+ */
+static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
+static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart);
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
+ * @{
+ */
+
+/** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Extended Initialization and Configuration Functions
+ *
+@verbatim
+===============================================================================
+ ##### Initialization and Configuration functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
+ in asynchronous mode.
+ (+) For the asynchronous mode the parameters below can be configured:
+ (++) Baud Rate
+ (++) Word Length
+ (++) Stop Bit
+ (++) Parity: If the parity is enabled, then the MSB bit of the data written
+ in the data register is transmitted but is changed by the parity bit.
+ (++) Hardware flow control
+ (++) Receiver/transmitter modes
+ (++) Over Sampling Method
+ (++) One-Bit Sampling Method
+ (+) For the asynchronous mode, the following advanced features can be configured as well:
+ (++) TX and/or RX pin level inversion
+ (++) data logical level inversion
+ (++) RX and TX pins swap
+ (++) RX overrun detection disabling
+ (++) DMA disabling on RX error
+ (++) MSB first on communication line
+ (++) auto Baud rate detection
+ [..]
+ The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
+ procedures (details for the procedures are available in reference manual).
+
+@endverbatim
+
+ Depending on the frame length defined by the M1 and M0 bits (7-bit,
+ 8-bit or 9-bit), the possible UART formats are listed in the
+ following table.
+
+ Table 1. UART frame format.
+ +-----------------------------------------------------------------------+
+ | M1 bit | M0 bit | PCE bit | UART frame |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 0 | 0 | | SB | 8 bit data | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 1 | 0 | | SB | 9 bit data | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 1 | 0 | 0 | | SB | 7 bit data | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
+ +-----------------------------------------------------------------------+
+
+ * @{
+ */
+
+/**
+ * @brief Initialize the RS485 Driver enable feature according to the specified
+ * parameters in the UART_InitTypeDef and creates the associated handle.
+ * @param huart UART handle.
+ * @param Polarity Select the driver enable polarity.
+ * This parameter can be one of the following values:
+ * @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
+ * @arg @ref UART_DE_POLARITY_LOW DE signal is active low
+ * @param AssertionTime Driver Enable assertion time:
+ * 5-bit value defining the time between the activation of the DE (Driver Enable)
+ * signal and the beginning of the start bit. It is expressed in sample time
+ * units (1/8 or 1/16 bit time, depending on the oversampling rate)
+ * @param DeassertionTime Driver Enable deassertion time:
+ * 5-bit value defining the time between the end of the last stop bit, in a
+ * transmitted message, and the de-activation of the DE (Driver Enable) signal.
+ * It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
+ * oversampling rate).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
+ uint32_t DeassertionTime)
+{
+ uint32_t temp;
+
+ /* Check the UART handle allocation */
+ if (huart == NULL)
+ {
+ return HAL_ERROR;
+ }
+ /* Check the Driver Enable UART instance */
+ assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
+
+ /* Check the Driver Enable polarity */
+ assert_param(IS_UART_DE_POLARITY(Polarity));
+
+ /* Check the Driver Enable assertion time */
+ assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
+
+ /* Check the Driver Enable deassertion time */
+ assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
+
+ if (huart->gState == HAL_UART_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ huart->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
+ UART_InitCallbacksToDefault(huart);
+
+ if (huart->MspInitCallback == NULL)
+ {
+ huart->MspInitCallback = HAL_UART_MspInit;
+ }
+
+ /* Init the low level hardware */
+ huart->MspInitCallback(huart);
+#else
+ /* Init the low level hardware : GPIO, CLOCK, CORTEX */
+ HAL_UART_MspInit(huart);
+#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
+ }
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Disable the Peripheral */
+ __HAL_UART_DISABLE(huart);
+
+ /* Set the UART Communication parameters */
+ if (UART_SetConfig(huart) == HAL_ERROR)
+ {
+ return HAL_ERROR;
+ }
+
+ if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
+ {
+ UART_AdvFeatureConfig(huart);
+ }
+
+ /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
+ SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
+
+ /* Set the Driver Enable polarity */
+ MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
+
+ /* Set the Driver Enable assertion and deassertion times */
+ temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
+ temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
+ MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
+
+ /* Enable the Peripheral */
+ __HAL_UART_ENABLE(huart);
+
+ /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
+ return (UART_CheckIdleState(huart));
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
+ * @brief Extended functions
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ This subsection provides a set of Wakeup and FIFO mode related callback functions.
+
+ (#) Wakeup from Stop mode Callback:
+ (+) HAL_UARTEx_WakeupCallback()
+
+ (#) TX/RX Fifos Callbacks:
+ (+) HAL_UARTEx_RxFifoFullCallback()
+ (+) HAL_UARTEx_TxFifoEmptyCallback()
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief UART wakeup from Stop mode callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UARTEx_WakeupCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief UART RX Fifo full callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UARTEx_RxFifoFullCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UARTEx_RxFifoFullCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief UART TX Fifo empty callback.
+ * @param huart UART handle.
+ * @retval None
+ */
+__weak void HAL_UARTEx_TxFifoEmptyCallback(UART_HandleTypeDef *huart)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(huart);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_UARTEx_TxFifoEmptyCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
+ * @brief Extended Peripheral Control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..] This section provides the following functions:
+ (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
+ detection length to more than 4 bits for multiprocessor address mark wake up.
+ (+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
+ trigger: address match, Start Bit detection or RXNE bit status.
+ (+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
+ (+) HAL_UARTEx_DisableStopMode() API disables the above functionality
+ (+) HAL_UARTEx_EnableFifoMode() API enables the FIFO mode
+ (+) HAL_UARTEx_DisableFifoMode() API disables the FIFO mode
+ (+) HAL_UARTEx_SetTxFifoThreshold() API sets the TX FIFO threshold
+ (+) HAL_UARTEx_SetRxFifoThreshold() API sets the RX FIFO threshold
+
+ [..] This subsection also provides a set of additional functions providing enhanced reception
+ services to user. (For example, these functions allow application to handle use cases
+ where number of data to be received is unknown).
+
+ (#) Compared to standard reception services which only consider number of received
+ data elements as reception completion criteria, these functions also consider additional events
+ as triggers for updating reception status to caller :
+ (+) Detection of inactivity period (RX line has not been active for a given period).
+ (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
+ for 1 frame time, after last received byte.
+ (++) RX inactivity detected by RTO, i.e. line has been in idle state
+ for a programmable time, after last received byte.
+ (+) Detection that a specific character has been received.
+
+ (#) There are two mode of transfer:
+ (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
+ or till IDLE event occurs. Reception is handled only during function execution.
+ When function exits, no data reception could occur. HAL status and number of actually received data elements,
+ are returned by function after finishing transfer.
+ (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
+ These API's return the HAL status.
+ The end of the data processing will be indicated through the
+ dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
+ The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
+ The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
+
+ (#) Blocking mode API:
+ (+) HAL_UARTEx_ReceiveToIdle()
+
+ (#) Non-Blocking mode API with Interrupt:
+ (+) HAL_UARTEx_ReceiveToIdle_IT()
+
+ (#) Non-Blocking mode API with DMA:
+ (+) HAL_UARTEx_ReceiveToIdle_DMA()
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief By default in multiprocessor mode, when the wake up method is set
+ * to address mark, the UART handles only 4-bit long addresses detection;
+ * this API allows to enable longer addresses detection (6-, 7- or 8-bit
+ * long).
+ * @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
+ * 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
+ * @param huart UART handle.
+ * @param AddressLength This parameter can be one of the following values:
+ * @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
+ * @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
+{
+ /* Check the UART handle allocation */
+ if (huart == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the address length parameter */
+ assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Disable the Peripheral */
+ __HAL_UART_DISABLE(huart);
+
+ /* Set the address length */
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
+
+ /* Enable the Peripheral */
+ __HAL_UART_ENABLE(huart);
+
+ /* TEACK and/or REACK to check before moving huart->gState to Ready */
+ return (UART_CheckIdleState(huart));
+}
+
+/**
+ * @brief Set Wakeup from Stop mode interrupt flag selection.
+ * @note It is the application responsibility to enable the interrupt used as
+ * usart_wkup interrupt source before entering low-power mode.
+ * @param huart UART handle.
+ * @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
+ * This parameter can be one of the following values:
+ * @arg @ref UART_WAKEUP_ON_ADDRESS
+ * @arg @ref UART_WAKEUP_ON_STARTBIT
+ * @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+ uint32_t tickstart;
+
+ /* check the wake-up from stop mode UART instance */
+ assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
+ /* check the wake-up selection parameter */
+ assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
+
+ /* Process Locked */
+ __HAL_LOCK(huart);
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Disable the Peripheral */
+ __HAL_UART_DISABLE(huart);
+
+ /* Set the wake-up selection scheme */
+ MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
+
+ if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
+ {
+ UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
+ }
+
+ /* Enable the Peripheral */
+ __HAL_UART_ENABLE(huart);
+
+ /* Init tickstart for timeout management */
+ tickstart = HAL_GetTick();
+
+ /* Wait until REACK flag is set */
+ if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
+ {
+ status = HAL_TIMEOUT;
+ }
+ else
+ {
+ /* Initialize the UART State */
+ huart->gState = HAL_UART_STATE_READY;
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return status;
+}
+
+/**
+ * @brief Enable UART Stop Mode.
+ * @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
+{
+ /* Process Locked */
+ __HAL_LOCK(huart);
+
+ /* Set UESM bit */
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Disable UART Stop Mode.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
+{
+ /* Process Locked */
+ __HAL_LOCK(huart);
+
+ /* Clear UESM bit */
+ ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Enable the FIFO mode.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UARTEx_EnableFifoMode(UART_HandleTypeDef *huart)
+{
+ uint32_t tmpcr1;
+
+ /* Check parameters */
+ assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
+
+ /* Process Locked */
+ __HAL_LOCK(huart);
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Save actual UART configuration */
+ tmpcr1 = READ_REG(huart->Instance->CR1);
+
+ /* Disable UART */
+ __HAL_UART_DISABLE(huart);
+
+ /* Enable FIFO mode */
+ SET_BIT(tmpcr1, USART_CR1_FIFOEN);
+ huart->FifoMode = UART_FIFOMODE_ENABLE;
+
+ /* Restore UART configuration */
+ WRITE_REG(huart->Instance->CR1, tmpcr1);
+
+ /* Determine the number of data to process during RX/TX ISR execution */
+ UARTEx_SetNbDataToProcess(huart);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Disable the FIFO mode.
+ * @param huart UART handle.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UARTEx_DisableFifoMode(UART_HandleTypeDef *huart)
+{
+ uint32_t tmpcr1;
+
+ /* Check parameters */
+ assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
+
+ /* Process Locked */
+ __HAL_LOCK(huart);
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Save actual UART configuration */
+ tmpcr1 = READ_REG(huart->Instance->CR1);
+
+ /* Disable UART */
+ __HAL_UART_DISABLE(huart);
+
+ /* Enable FIFO mode */
+ CLEAR_BIT(tmpcr1, USART_CR1_FIFOEN);
+ huart->FifoMode = UART_FIFOMODE_DISABLE;
+
+ /* Restore UART configuration */
+ WRITE_REG(huart->Instance->CR1, tmpcr1);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Set the TXFIFO threshold.
+ * @param huart UART handle.
+ * @param Threshold TX FIFO threshold value
+ * This parameter can be one of the following values:
+ * @arg @ref UART_TXFIFO_THRESHOLD_1_8
+ * @arg @ref UART_TXFIFO_THRESHOLD_1_4
+ * @arg @ref UART_TXFIFO_THRESHOLD_1_2
+ * @arg @ref UART_TXFIFO_THRESHOLD_3_4
+ * @arg @ref UART_TXFIFO_THRESHOLD_7_8
+ * @arg @ref UART_TXFIFO_THRESHOLD_8_8
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UARTEx_SetTxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold)
+{
+ uint32_t tmpcr1;
+
+ /* Check parameters */
+ assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
+ assert_param(IS_UART_TXFIFO_THRESHOLD(Threshold));
+
+ /* Process Locked */
+ __HAL_LOCK(huart);
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Save actual UART configuration */
+ tmpcr1 = READ_REG(huart->Instance->CR1);
+
+ /* Disable UART */
+ __HAL_UART_DISABLE(huart);
+
+ /* Update TX threshold configuration */
+ MODIFY_REG(huart->Instance->CR3, USART_CR3_TXFTCFG, Threshold);
+
+ /* Determine the number of data to process during RX/TX ISR execution */
+ UARTEx_SetNbDataToProcess(huart);
+
+ /* Restore UART configuration */
+ WRITE_REG(huart->Instance->CR1, tmpcr1);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Set the RXFIFO threshold.
+ * @param huart UART handle.
+ * @param Threshold RX FIFO threshold value
+ * This parameter can be one of the following values:
+ * @arg @ref UART_RXFIFO_THRESHOLD_1_8
+ * @arg @ref UART_RXFIFO_THRESHOLD_1_4
+ * @arg @ref UART_RXFIFO_THRESHOLD_1_2
+ * @arg @ref UART_RXFIFO_THRESHOLD_3_4
+ * @arg @ref UART_RXFIFO_THRESHOLD_7_8
+ * @arg @ref UART_RXFIFO_THRESHOLD_8_8
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UARTEx_SetRxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold)
+{
+ uint32_t tmpcr1;
+
+ /* Check the parameters */
+ assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
+ assert_param(IS_UART_RXFIFO_THRESHOLD(Threshold));
+
+ /* Process Locked */
+ __HAL_LOCK(huart);
+
+ huart->gState = HAL_UART_STATE_BUSY;
+
+ /* Save actual UART configuration */
+ tmpcr1 = READ_REG(huart->Instance->CR1);
+
+ /* Disable UART */
+ __HAL_UART_DISABLE(huart);
+
+ /* Update RX threshold configuration */
+ MODIFY_REG(huart->Instance->CR3, USART_CR3_RXFTCFG, Threshold);
+
+ /* Determine the number of data to process during RX/TX ISR execution */
+ UARTEx_SetNbDataToProcess(huart);
+
+ /* Restore UART configuration */
+ WRITE_REG(huart->Instance->CR1, tmpcr1);
+
+ huart->gState = HAL_UART_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(huart);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Receive an amount of data in blocking mode till either the expected number of data
+ * is received or an IDLE event occurs.
+ * @note HAL_OK is returned if reception is completed (expected number of data has been received)
+ * or if reception is stopped after IDLE event (less than the expected number of data has been received)
+ * In this case, RxLen output parameter indicates number of data available in reception buffer.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
+ * of uint16_t available through pData.
+ * @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO
+ * is not empty. Read operations from the RDR register are performed when
+ * RXFNE flag is set. From hardware perspective, RXFNE flag and
+ * RXNE are mapped on the same bit-field.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
+ * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
+ * @param RxLen Number of data elements finally received
+ * (could be lower than Size, in case reception ends on IDLE event)
+ * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
+ uint32_t Timeout)
+{
+ uint8_t *pdata8bits;
+ uint16_t *pdata16bits;
+ uint16_t uhMask;
+ uint32_t tickstart;
+
+ /* Check that a Rx process is not already ongoing */
+ if (huart->RxState == HAL_UART_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ huart->ErrorCode = HAL_UART_ERROR_NONE;
+ huart->RxState = HAL_UART_STATE_BUSY_RX;
+ huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
+ huart->RxEventType = HAL_UART_RXEVENT_TC;
+
+ /* Init tickstart for timeout management */
+ tickstart = HAL_GetTick();
+
+ huart->RxXferSize = Size;
+ huart->RxXferCount = Size;
+
+ /* Computation of UART mask to apply to RDR register */
+ UART_MASK_COMPUTATION(huart);
+ uhMask = huart->Mask;
+
+ /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
+ if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
+ {
+ pdata8bits = NULL;
+ pdata16bits = (uint16_t *) pData;
+ }
+ else
+ {
+ pdata8bits = pData;
+ pdata16bits = NULL;
+ }
+
+ /* Initialize output number of received elements */
+ *RxLen = 0U;
+
+ /* as long as data have to be received */
+ while (huart->RxXferCount > 0U)
+ {
+ /* Check if IDLE flag is set */
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
+ {
+ /* Clear IDLE flag in ISR */
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
+
+ /* If Set, but no data ever received, clear flag without exiting loop */
+ /* If Set, and data has already been received, this means Idle Event is valid : End reception */
+ if (*RxLen > 0U)
+ {
+ huart->RxEventType = HAL_UART_RXEVENT_IDLE;
+ huart->RxState = HAL_UART_STATE_READY;
+
+ return HAL_OK;
+ }
+ }
+
+ /* Check if RXNE flag is set */
+ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
+ {
+ if (pdata8bits == NULL)
+ {
+ *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
+ pdata16bits++;
+ }
+ else
+ {
+ *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
+ pdata8bits++;
+ }
+ /* Increment number of received elements */
+ *RxLen += 1U;
+ huart->RxXferCount--;
+ }
+
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY)
+ {
+ if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
+ {
+ huart->RxState = HAL_UART_STATE_READY;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Set number of received elements in output parameter : RxLen */
+ *RxLen = huart->RxXferSize - huart->RxXferCount;
+ /* At end of Rx process, restore huart->RxState to Ready */
+ huart->RxState = HAL_UART_STATE_READY;
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in interrupt mode till either the expected number of data
+ * is received or an IDLE event occurs.
+ * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
+ * to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
+ * number of received data elements.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
+ * of uint16_t available through pData.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
+ * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
+{
+ HAL_StatusTypeDef status;
+
+ /* Check that a Rx process is not already ongoing */
+ if (huart->RxState == HAL_UART_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set Reception type to reception till IDLE Event*/
+ huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
+ huart->RxEventType = HAL_UART_RXEVENT_TC;
+
+ status = UART_Start_Receive_IT(huart, pData, Size);
+
+ /* Check Rx process has been successfully started */
+ if (status == HAL_OK)
+ {
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
+ }
+ else
+ {
+ /* In case of errors already pending when reception is started,
+ Interrupts may have already been raised and lead to reception abortion.
+ (Overrun error for instance).
+ In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
+ status = HAL_ERROR;
+ }
+ }
+
+ return status;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in DMA mode till either the expected number
+ * of data is received or an IDLE event occurs.
+ * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
+ * to DMA services, transferring automatically received data elements in user reception buffer and
+ * calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
+ * reception phase as ended. In all cases, callback execution will indicate number of received data elements.
+ * @note When the UART parity is enabled (PCE = 1), the received data contain
+ * the parity bit (MSB position).
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
+ * of uint16_t available through pData.
+ * @param huart UART handle.
+ * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
+ * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
+{
+ HAL_StatusTypeDef status;
+
+ /* Check that a Rx process is not already ongoing */
+ if (huart->RxState == HAL_UART_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set Reception type to reception till IDLE Event*/
+ huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
+ huart->RxEventType = HAL_UART_RXEVENT_TC;
+
+ status = UART_Start_Receive_DMA(huart, pData, Size);
+
+ /* Check Rx process has been successfully started */
+ if (status == HAL_OK)
+ {
+ if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
+ {
+ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
+ ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
+ }
+ else
+ {
+ /* In case of errors already pending when reception is started,
+ Interrupts may have already been raised and lead to reception abortion.
+ (Overrun error for instance).
+ In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
+ status = HAL_ERROR;
+ }
+ }
+
+ return status;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Provide Rx Event type that has lead to RxEvent callback execution.
+ * @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
+ * of reception process is provided to application through calls of Rx Event callback (either default one
+ * HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
+ * Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
+ * to Rx Event callback execution.
+ * @note This function is expected to be called within the user implementation of Rx Event Callback,
+ * in order to provide the accurate value :
+ * In Interrupt Mode :
+ * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
+ * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
+ * received data is lower than expected one)
+ * In DMA Mode :
+ * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
+ * - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
+ * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
+ * received data is lower than expected one).
+ * In DMA mode, RxEvent callback could be called several times;
+ * When DMA is configured in Normal Mode, HT event does not stop Reception process;
+ * When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
+ * @param huart UART handle.
+ * @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values)
+ */
+HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart)
+{
+ /* Return Rx Event type value, as stored in UART handle */
+ return (huart->RxEventType);
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup UARTEx_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
+ * @param huart UART handle.
+ * @param WakeUpSelection UART wake up from stop mode parameters.
+ * @retval None
+ */
+static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
+{
+ assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
+
+ /* Set the USART address length */
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
+
+ /* Set the USART address node */
+ MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
+}
+
+/**
+ * @brief Calculate the number of data to process in RX/TX ISR.
+ * @note The RX FIFO depth and the TX FIFO depth is extracted from
+ * the UART configuration registers.
+ * @param huart UART handle.
+ * @retval None
+ */
+static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart)
+{
+ uint8_t rx_fifo_depth;
+ uint8_t tx_fifo_depth;
+ uint8_t rx_fifo_threshold;
+ uint8_t tx_fifo_threshold;
+ static const uint8_t numerator[] = {1U, 1U, 1U, 3U, 7U, 1U, 0U, 0U};
+ static const uint8_t denominator[] = {8U, 4U, 2U, 4U, 8U, 1U, 1U, 1U};
+
+ if (huart->FifoMode == UART_FIFOMODE_DISABLE)
+ {
+ huart->NbTxDataToProcess = 1U;
+ huart->NbRxDataToProcess = 1U;
+ }
+ else
+ {
+ rx_fifo_depth = RX_FIFO_DEPTH;
+ tx_fifo_depth = TX_FIFO_DEPTH;
+ rx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos);
+ tx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos);
+ huart->NbTxDataToProcess = ((uint16_t)tx_fifo_depth * numerator[tx_fifo_threshold]) /
+ (uint16_t)denominator[tx_fifo_threshold];
+ huart->NbRxDataToProcess = ((uint16_t)rx_fifo_depth * numerator[rx_fifo_threshold]) /
+ (uint16_t)denominator[rx_fifo_threshold];
+ }
+}
+/**
+ * @}
+ */
+
+#endif /* HAL_UART_MODULE_ENABLED */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
|