summaryrefslogtreecommitdiff
path: root/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c188
1 files changed, 188 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c b/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c
new file mode 100644
index 0000000..128ecb9
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c
@@ -0,0 +1,188 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_cmplx_mag_f32.c
+ * Description: Floating-point complex magnitude
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupCmplxMath
+ */
+
+/**
+ @defgroup cmplx_mag Complex Magnitude
+
+ Computes the magnitude of the elements of a complex data vector.
+
+ The <code>pSrc</code> points to the source data and
+ <code>pDst</code> points to the where the result should be written.
+ <code>numSamples</code> specifies the number of complex samples
+ in the input array and the data is stored in an interleaved fashion
+ (real, imag, real, imag, ...).
+ The input array has a total of <code>2*numSamples</code> values;
+ the output array has a total of <code>numSamples</code> values.
+
+ The underlying algorithm is used:
+
+ <pre>
+ for (n = 0; n < numSamples; n++) {
+ pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
+ }
+ </pre>
+
+ There are separate functions for floating-point, Q15, and Q31 data types.
+ */
+
+/**
+ @addtogroup cmplx_mag
+ @{
+ */
+
+/**
+ @brief Floating-point complex magnitude.
+ @param[in] pSrc points to input vector
+ @param[out] pDst points to output vector
+ @param[in] numSamples number of samples in each vector
+ @return none
+ */
+
+void arm_cmplx_mag_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples)
+{
+ uint32_t blkCnt; /* loop counter */
+ float32_t real, imag; /* Temporary variables to hold input values */
+
+#if defined(ARM_MATH_NEON)
+
+ float32x4x2_t vecA;
+ float32x4_t vRealA;
+ float32x4_t vImagA;
+ float32x4_t vMagSqA;
+
+ float32x4x2_t vecB;
+ float32x4_t vRealB;
+ float32x4_t vImagB;
+ float32x4_t vMagSqB;
+
+ /* Loop unrolling: Compute 8 outputs at a time */
+ blkCnt = numSamples >> 3;
+
+ while (blkCnt > 0U)
+ {
+ /* out = sqrt((real * real) + (imag * imag)) */
+
+ vecA = vld2q_f32(pSrc);
+ pSrc += 8;
+
+ vecB = vld2q_f32(pSrc);
+ pSrc += 8;
+
+ vRealA = vmulq_f32(vecA.val[0], vecA.val[0]);
+ vImagA = vmulq_f32(vecA.val[1], vecA.val[1]);
+ vMagSqA = vaddq_f32(vRealA, vImagA);
+
+ vRealB = vmulq_f32(vecB.val[0], vecB.val[0]);
+ vImagB = vmulq_f32(vecB.val[1], vecB.val[1]);
+ vMagSqB = vaddq_f32(vRealB, vImagB);
+
+ /* Store the result in the destination buffer. */
+ vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqA));
+ pDst += 4;
+
+ vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqB));
+ pDst += 4;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ blkCnt = numSamples & 7;
+
+#else
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
+
+ real = *pSrc++;
+ imag = *pSrc++;
+
+ /* store result in destination buffer. */
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ real = *pSrc++;
+ imag = *pSrc++;
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ real = *pSrc++;
+ imag = *pSrc++;
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ real = *pSrc++;
+ imag = *pSrc++;
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+#endif /* #if defined(ARM_MATH_NEON) */
+
+ while (blkCnt > 0U)
+ {
+ /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
+
+ real = *pSrc++;
+ imag = *pSrc++;
+
+ /* store result in destination buffer. */
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+}
+
+/**
+ @} end of cmplx_mag group
+ */