summaryrefslogtreecommitdiff
path: root/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_f32.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_f32.c715
1 files changed, 715 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_f32.c b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_f32.c
new file mode 100644
index 0000000..8e5c777
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/FilteringFunctions/arm_fir_f32.c
@@ -0,0 +1,715 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_fir_f32.c
+ * Description: Floating-point FIR filter processing function
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ @ingroup groupFilters
+ */
+
+/**
+ @defgroup FIR Finite Impulse Response (FIR) Filters
+
+ This set of functions implements Finite Impulse Response (FIR) filters
+ for Q7, Q15, Q31, and floating-point data types. Fast versions of Q15 and Q31 are also provided.
+ The functions operate on blocks of input and output data and each call to the function processes
+ <code>blockSize</code> samples through the filter. <code>pSrc</code> and
+ <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.
+
+ @par Algorithm
+ The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.
+ Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.
+ <pre>
+ y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
+ </pre>
+ @par
+ \image html FIR.GIF "Finite Impulse Response filter"
+ @par
+ <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
+ Coefficients are stored in time reversed order.
+ @par
+ <pre>
+ {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
+ </pre>
+ @par
+ <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
+ Samples in the state buffer are stored in the following order.
+ @par
+ <pre>
+ {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
+ </pre>
+ @par
+ Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.
+ The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,
+ to be avoided and yields a significant speed improvement.
+ The state variables are updated after each block of data is processed; the coefficients are untouched.
+
+ @par Instance Structure
+ The coefficients and state variables for a filter are stored together in an instance data structure.
+ A separate instance structure must be defined for each filter.
+ Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
+ There are separate instance structure declarations for each of the 4 supported data types.
+
+ @par Initialization Functions
+ There is also an associated initialization function for each data type.
+ The initialization function performs the following operations:
+ - Sets the values of the internal structure fields.
+ - Zeros out the values in the state buffer.
+ To do this manually without calling the init function, assign the follow subfields of the instance structure:
+ numTaps, pCoeffs, pState. Also set all of the values in pState to zero.
+ @par
+ Use of the initialization function is optional.
+ However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
+ To place an instance structure into a const data section, the instance structure must be manually initialized.
+ Set the values in the state buffer to zeros before static initialization.
+ The code below statically initializes each of the 4 different data type filter instance structures
+ <pre>
+ arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};
+ arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};
+ arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};
+ arm_fir_instance_q7 S = {numTaps, pState, pCoeffs};
+ </pre>
+ where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
+ <code>pCoeffs</code> is the address of the coefficient buffer.
+
+ @par Fixed-Point Behavior
+ Care must be taken when using the fixed-point versions of the FIR filter functions.
+ In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ Refer to the function specific documentation below for usage guidelines.
+ */
+
+/**
+ @addtogroup FIR
+ @{
+ */
+
+/**
+ @brief Processing function for floating-point FIR filter.
+ @param[in] S points to an instance of the floating-point FIR filter structure
+ @param[in] pSrc points to the block of input data
+ @param[out] pDst points to the block of output data
+ @param[in] blockSize number of samples to process
+ @return none
+ */
+#if defined(ARM_MATH_NEON)
+
+void arm_fir_f32(
+const arm_fir_instance_f32 * S,
+const float32_t * pSrc,
+float32_t * pDst,
+uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ const float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px; /* Temporary pointers for state buffer */
+ const float32_t *pb; /* Temporary pointers for coefficient buffer */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+
+ float32x4_t accv0,accv1,samples0,samples1,x0,x1,x2,xa,xb,x,b,accv;
+ uint32x4_t x0_u,x1_u,x2_u,xa_u,xb_u;
+ float32_t acc;
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+ /* Loop unrolling */
+ blkCnt = blockSize >> 3;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy 8 samples at a time into state buffers */
+ samples0 = vld1q_f32(pSrc);
+ vst1q_f32(pStateCurnt,samples0);
+
+ pStateCurnt += 4;
+ pSrc += 4 ;
+
+ samples1 = vld1q_f32(pSrc);
+ vst1q_f32(pStateCurnt,samples1);
+
+ pStateCurnt += 4;
+ pSrc += 4 ;
+
+ /* Set the accumulators to zero */
+ accv0 = vdupq_n_f32(0);
+ accv1 = vdupq_n_f32(0);
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ /* Loop unroling */
+ i = numTaps >> 2;
+
+ /* Perform the multiply-accumulates */
+ x0 = vld1q_f32(px);
+ x1 = vld1q_f32(px + 4);
+
+ while(i > 0)
+ {
+ /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
+ x2 = vld1q_f32(px + 8);
+ b = vld1q_f32(pb);
+ xa = x0;
+ xb = x1;
+ accv0 = vmlaq_n_f32(accv0,xa,b[0]);
+ accv1 = vmlaq_n_f32(accv1,xb,b[0]);
+
+ xa = vextq_f32(x0,x1,1);
+ xb = vextq_f32(x1,x2,1);
+
+ accv0 = vmlaq_n_f32(accv0,xa,b[1]);
+ accv1 = vmlaq_n_f32(accv1,xb,b[1]);
+
+ xa = vextq_f32(x0,x1,2);
+ xb = vextq_f32(x1,x2,2);
+
+ accv0 = vmlaq_n_f32(accv0,xa,b[2]);
+ accv1 = vmlaq_n_f32(accv1,xb,b[2]);
+
+ xa = vextq_f32(x0,x1,3);
+ xb = vextq_f32(x1,x2,3);
+
+ accv0 = vmlaq_n_f32(accv0,xa,b[3]);
+ accv1 = vmlaq_n_f32(accv1,xb,b[3]);
+
+ pb += 4;
+ x0 = x1;
+ x1 = x2;
+ px += 4;
+ i--;
+
+ }
+
+ /* Tail */
+ i = numTaps & 3;
+ x2 = vld1q_f32(px + 8);
+
+ /* Perform the multiply-accumulates */
+ switch(i)
+ {
+ case 3:
+ {
+ accv0 = vmlaq_n_f32(accv0,x0,*pb);
+ accv1 = vmlaq_n_f32(accv1,x1,*pb);
+
+ pb++;
+
+ xa = vextq_f32(x0,x1,1);
+ xb = vextq_f32(x1,x2,1);
+
+ accv0 = vmlaq_n_f32(accv0,xa,*pb);
+ accv1 = vmlaq_n_f32(accv1,xb,*pb);
+
+ pb++;
+
+ xa = vextq_f32(x0,x1,2);
+ xb = vextq_f32(x1,x2,2);
+
+ accv0 = vmlaq_n_f32(accv0,xa,*pb);
+ accv1 = vmlaq_n_f32(accv1,xb,*pb);
+
+ }
+ break;
+ case 2:
+ {
+ accv0 = vmlaq_n_f32(accv0,x0,*pb);
+ accv1 = vmlaq_n_f32(accv1,x1,*pb);
+
+ pb++;
+
+ xa = vextq_f32(x0,x1,1);
+ xb = vextq_f32(x1,x2,1);
+
+ accv0 = vmlaq_n_f32(accv0,xa,*pb);
+ accv1 = vmlaq_n_f32(accv1,xb,*pb);
+
+ }
+ break;
+ case 1:
+ {
+
+ accv0 = vmlaq_n_f32(accv0,x0,*pb);
+ accv1 = vmlaq_n_f32(accv1,x1,*pb);
+
+ }
+ break;
+ default:
+ break;
+ }
+
+ /* The result is stored in the destination buffer. */
+ vst1q_f32(pDst,accv0);
+ pDst += 4;
+ vst1q_f32(pDst,accv1);
+ pDst += 4;
+
+ /* Advance state pointer by 8 for the next 8 samples */
+ pState = pState + 8;
+
+ blkCnt--;
+ }
+
+ /* Tail */
+ blkCnt = blockSize & 0x7;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = pCoeffs;
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
+ acc += *px++ * *pb++;
+ i--;
+
+ } while (i > 0U);
+
+ /* The result is stored in the destination buffer. */
+ *pDst++ = acc;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ /* Copy numTaps number of values */
+ tapCnt = numTaps - 1U;
+
+ /* Copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+}
+#else
+void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ const float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px; /* Temporary pointer for state buffer */
+ const float32_t *pb; /* Temporary pointer for coefficient buffer */
+ float32_t acc0; /* Accumulator */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+
+#if defined (ARM_MATH_LOOPUNROLL)
+ float32_t acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
+ float32_t x0, x1, x2, x3, x4, x5, x6, x7; /* Temporary variables to hold state values */
+ float32_t c0; /* Temporary variable to hold coefficient value */
+#endif
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1U)]);
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 8 output values simultaneously.
+ * The variables acc0 ... acc7 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+
+ blkCnt = blockSize >> 3U;
+
+ while (blkCnt > 0U)
+ {
+ /* Copy 4 new input samples into the state buffer. */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set all accumulators to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+ acc4 = 0.0f;
+ acc5 = 0.0f;
+ acc6 = 0.0f;
+ acc7 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coefficient pointer */
+ pb = pCoeffs;
+
+ /* This is separated from the others to avoid
+ * a call to __aeabi_memmove which would be slower
+ */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Read the first 7 samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
+ x0 = *px++;
+ x1 = *px++;
+ x2 = *px++;
+ x3 = *px++;
+ x4 = *px++;
+ x5 = *px++;
+ x6 = *px++;
+
+ /* Loop unrolling: process 8 taps at a time. */
+ tapCnt = numTaps >> 3U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-3] sample */
+ x7 = *(px++);
+
+ /* acc0 += b[numTaps-1] * x[n-numTaps] */
+ acc0 += x0 * c0;
+
+ /* acc1 += b[numTaps-1] * x[n-numTaps-1] */
+ acc1 += x1 * c0;
+
+ /* acc2 += b[numTaps-1] * x[n-numTaps-2] */
+ acc2 += x2 * c0;
+
+ /* acc3 += b[numTaps-1] * x[n-numTaps-3] */
+ acc3 += x3 * c0;
+
+ /* acc4 += b[numTaps-1] * x[n-numTaps-4] */
+ acc4 += x4 * c0;
+
+ /* acc1 += b[numTaps-1] * x[n-numTaps-5] */
+ acc5 += x5 * c0;
+
+ /* acc2 += b[numTaps-1] * x[n-numTaps-6] */
+ acc6 += x6 * c0;
+
+ /* acc3 += b[numTaps-1] * x[n-numTaps-7] */
+ acc7 += x7 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *(px++);
+
+ /* Perform the multiply-accumulate */
+ acc0 += x1 * c0;
+ acc1 += x2 * c0;
+ acc2 += x3 * c0;
+ acc3 += x4 * c0;
+ acc4 += x5 * c0;
+ acc5 += x6 * c0;
+ acc6 += x7 * c0;
+ acc7 += x0 * c0;
+
+ /* Read the b[numTaps-3] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-5] sample */
+ x1 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x2 * c0;
+ acc1 += x3 * c0;
+ acc2 += x4 * c0;
+ acc3 += x5 * c0;
+ acc4 += x6 * c0;
+ acc5 += x7 * c0;
+ acc6 += x0 * c0;
+ acc7 += x1 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x2 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x3 * c0;
+ acc1 += x4 * c0;
+ acc2 += x5 * c0;
+ acc3 += x6 * c0;
+ acc4 += x7 * c0;
+ acc5 += x0 * c0;
+ acc6 += x1 * c0;
+ acc7 += x2 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x3 = *(px++);
+ /* Perform the multiply-accumulates */
+ acc0 += x4 * c0;
+ acc1 += x5 * c0;
+ acc2 += x6 * c0;
+ acc3 += x7 * c0;
+ acc4 += x0 * c0;
+ acc5 += x1 * c0;
+ acc6 += x2 * c0;
+ acc7 += x3 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x4 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x5 * c0;
+ acc1 += x6 * c0;
+ acc2 += x7 * c0;
+ acc3 += x0 * c0;
+ acc4 += x1 * c0;
+ acc5 += x2 * c0;
+ acc6 += x3 * c0;
+ acc7 += x4 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x5 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x6 * c0;
+ acc1 += x7 * c0;
+ acc2 += x0 * c0;
+ acc3 += x1 * c0;
+ acc4 += x2 * c0;
+ acc5 += x3 * c0;
+ acc6 += x4 * c0;
+ acc7 += x5 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x6 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x7 * c0;
+ acc1 += x0 * c0;
+ acc2 += x1 * c0;
+ acc3 += x2 * c0;
+ acc4 += x3 * c0;
+ acc5 += x4 * c0;
+ acc6 += x5 * c0;
+ acc7 += x6 * c0;
+
+ /* Decrement loop counter */
+ tapCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ tapCnt = numTaps % 0x8U;
+
+ while (tapCnt > 0U)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x7 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ acc0 += x0 * c0;
+ acc1 += x1 * c0;
+ acc2 += x2 * c0;
+ acc3 += x3 * c0;
+ acc4 += x4 * c0;
+ acc5 += x5 * c0;
+ acc6 += x6 * c0;
+ acc7 += x7 * c0;
+
+ /* Reuse the present sample states for next sample */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+ x3 = x4;
+ x4 = x5;
+ x5 = x6;
+ x6 = x7;
+
+ /* Decrement loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by 8 to process the next group of 8 samples */
+ pState = pState + 8;
+
+ /* The results in the 8 accumulators, store in the destination buffer. */
+ *pDst++ = acc0;
+ *pDst++ = acc1;
+ *pDst++ = acc2;
+ *pDst++ = acc3;
+ *pDst++ = acc4;
+ *pDst++ = acc5;
+ *pDst++ = acc6;
+ *pDst++ = acc7;
+
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining output samples */
+ blkCnt = blockSize % 0x8U;
+
+#else
+
+ /* Initialize blkCnt with number of taps */
+ blkCnt = blockSize;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (blkCnt > 0U)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = pCoeffs;
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
+ acc0 += *px++ * *pb++;
+
+ i--;
+ } while (i > 0U);
+
+ /* Store result in destination buffer. */
+ *pDst++ = acc0;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1U;
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ Now copy the last numTaps - 1 samples to the start of the state buffer.
+ This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 taps at a time */
+ tapCnt = (numTaps - 1U) >> 2U;
+
+ /* Copy data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1U) % 0x4U;
+
+#else
+
+ /* Initialize tapCnt with number of taps */
+ tapCnt = (numTaps - 1U);
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ /* Copy remaining data */
+ while (tapCnt > 0U)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement loop counter */
+ tapCnt--;
+ }
+
+}
+
+#endif /* #if defined(ARM_MATH_NEON) */
+/**
+* @} end of FIR group
+*/