diff options
Diffstat (limited to 'Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_irda.c')
-rw-r--r-- | Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_irda.c | 2917 |
1 files changed, 2917 insertions, 0 deletions
diff --git a/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_irda.c b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_irda.c new file mode 100644 index 0000000..a62af72 --- /dev/null +++ b/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_irda.c @@ -0,0 +1,2917 @@ +/**
+ ******************************************************************************
+ * @file stm32h7xx_hal_irda.c
+ * @author MCD Application Team
+ * @brief IRDA HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the IrDA (Infrared Data Association) Peripheral
+ * (IRDA)
+ * + Initialization and de-initialization functions
+ * + IO operation functions
+ * + Peripheral State and Errors functions
+ * + Peripheral Control functions
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * Copyright (c) 2017 STMicroelectronics.
+ * All rights reserved.
+ *
+ * This software is licensed under terms that can be found in the LICENSE file
+ * in the root directory of this software component.
+ * If no LICENSE file comes with this software, it is provided AS-IS.
+ *
+ ******************************************************************************
+ @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ The IRDA HAL driver can be used as follows:
+
+ (#) Declare a IRDA_HandleTypeDef handle structure (eg. IRDA_HandleTypeDef hirda).
+ (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API
+ in setting the associated USART or UART in IRDA mode:
+ (++) Enable the USARTx/UARTx interface clock.
+ (++) USARTx/UARTx pins configuration:
+ (+++) Enable the clock for the USARTx/UARTx GPIOs.
+ (+++) Configure these USARTx/UARTx pins (TX as alternate function pull-up, RX as alternate function Input).
+ (++) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT()
+ and HAL_IRDA_Receive_IT() APIs):
+ (+++) Configure the USARTx/UARTx interrupt priority.
+ (+++) Enable the NVIC USARTx/UARTx IRQ handle.
+ (+++) The specific IRDA interrupts (Transmission complete interrupt,
+ RXNE interrupt and Error Interrupts) will be managed using the macros
+ __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
+
+ (++) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA()
+ and HAL_IRDA_Receive_DMA() APIs):
+ (+++) Declare a DMA handle structure for the Tx/Rx channel.
+ (+++) Enable the DMAx interface clock.
+ (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
+ (+++) Configure the DMA Tx/Rx channel.
+ (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle.
+ (+++) Configure the priority and enable the NVIC for the transfer
+ complete interrupt on the DMA Tx/Rx channel.
+
+ (#) Program the Baud Rate, Word Length and Parity and Mode(Receiver/Transmitter),
+ the normal or low power mode and the clock prescaler in the hirda handle Init structure.
+
+ (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API:
+ (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
+ by calling the customized HAL_IRDA_MspInit() API.
+
+ -@@- The specific IRDA interrupts (Transmission complete interrupt,
+ RXNE interrupt and Error Interrupts) will be managed using the macros
+ __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
+
+ (#) Three operation modes are available within this driver :
+
+ *** Polling mode IO operation ***
+ =================================
+ [..]
+ (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit()
+ (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive()
+
+ *** Interrupt mode IO operation ***
+ ===================================
+ [..]
+ (+) Send an amount of data in non-blocking mode using HAL_IRDA_Transmit_IT()
+ (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can
+ add his own code by customization of function pointer HAL_IRDA_TxCpltCallback()
+ (+) Receive an amount of data in non-blocking mode using HAL_IRDA_Receive_IT()
+ (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can
+ add his own code by customization of function pointer HAL_IRDA_RxCpltCallback()
+ (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can
+ add his own code by customization of function pointer HAL_IRDA_ErrorCallback()
+
+ *** DMA mode IO operation ***
+ ==============================
+ [..]
+ (+) Send an amount of data in non-blocking mode (DMA) using HAL_IRDA_Transmit_DMA()
+ (+) At transmission half of transfer HAL_IRDA_TxHalfCpltCallback() is executed and user can
+ add his own code by customization of function pointer HAL_IRDA_TxHalfCpltCallback()
+ (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can
+ add his own code by customization of function pointer HAL_IRDA_TxCpltCallback()
+ (+) Receive an amount of data in non-blocking mode (DMA) using HAL_IRDA_Receive_DMA()
+ (+) At reception half of transfer HAL_IRDA_RxHalfCpltCallback() is executed and user can
+ add his own code by customization of function pointer HAL_IRDA_RxHalfCpltCallback()
+ (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can
+ add his own code by customization of function pointer HAL_IRDA_RxCpltCallback()
+ (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can
+ add his own code by customization of function pointer HAL_IRDA_ErrorCallback()
+
+ *** IRDA HAL driver macros list ***
+ ====================================
+ [..]
+ Below the list of most used macros in IRDA HAL driver.
+
+ (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral
+ (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral
+ (+) __HAL_IRDA_GET_FLAG : Check whether the specified IRDA flag is set or not
+ (+) __HAL_IRDA_CLEAR_FLAG : Clear the specified IRDA pending flag
+ (+) __HAL_IRDA_ENABLE_IT: Enable the specified IRDA interrupt
+ (+) __HAL_IRDA_DISABLE_IT: Disable the specified IRDA interrupt
+ (+) __HAL_IRDA_GET_IT_SOURCE: Check whether or not the specified IRDA interrupt is enabled
+
+ [..]
+ (@) You can refer to the IRDA HAL driver header file for more useful macros
+
+ ##### Callback registration #####
+ ==================================
+
+ [..]
+ The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS when set to 1
+ allows the user to configure dynamically the driver callbacks.
+
+ [..]
+ Use Function HAL_IRDA_RegisterCallback() to register a user callback.
+ Function HAL_IRDA_RegisterCallback() allows to register following callbacks:
+ (+) TxHalfCpltCallback : Tx Half Complete Callback.
+ (+) TxCpltCallback : Tx Complete Callback.
+ (+) RxHalfCpltCallback : Rx Half Complete Callback.
+ (+) RxCpltCallback : Rx Complete Callback.
+ (+) ErrorCallback : Error Callback.
+ (+) AbortCpltCallback : Abort Complete Callback.
+ (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
+ (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
+ (+) MspInitCallback : IRDA MspInit.
+ (+) MspDeInitCallback : IRDA MspDeInit.
+ This function takes as parameters the HAL peripheral handle, the Callback ID
+ and a pointer to the user callback function.
+
+ [..]
+ Use function HAL_IRDA_UnRegisterCallback() to reset a callback to the default
+ weak (surcharged) function.
+ HAL_IRDA_UnRegisterCallback() takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+ This function allows to reset following callbacks:
+ (+) TxHalfCpltCallback : Tx Half Complete Callback.
+ (+) TxCpltCallback : Tx Complete Callback.
+ (+) RxHalfCpltCallback : Rx Half Complete Callback.
+ (+) RxCpltCallback : Rx Complete Callback.
+ (+) ErrorCallback : Error Callback.
+ (+) AbortCpltCallback : Abort Complete Callback.
+ (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
+ (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
+ (+) MspInitCallback : IRDA MspInit.
+ (+) MspDeInitCallback : IRDA MspDeInit.
+
+ [..]
+ By default, after the HAL_IRDA_Init() and when the state is HAL_IRDA_STATE_RESET
+ all callbacks are set to the corresponding weak (surcharged) functions:
+ examples HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxHalfCpltCallback().
+ Exception done for MspInit and MspDeInit functions that are respectively
+ reset to the legacy weak (surcharged) functions in the HAL_IRDA_Init()
+ and HAL_IRDA_DeInit() only when these callbacks are null (not registered beforehand).
+ If not, MspInit or MspDeInit are not null, the HAL_IRDA_Init() and HAL_IRDA_DeInit()
+ keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
+
+ [..]
+ Callbacks can be registered/unregistered in HAL_IRDA_STATE_READY state only.
+ Exception done MspInit/MspDeInit that can be registered/unregistered
+ in HAL_IRDA_STATE_READY or HAL_IRDA_STATE_RESET state, thus registered (user)
+ MspInit/DeInit callbacks can be used during the Init/DeInit.
+ In that case first register the MspInit/MspDeInit user callbacks
+ using HAL_IRDA_RegisterCallback() before calling HAL_IRDA_DeInit()
+ or HAL_IRDA_Init() function.
+
+ [..]
+ When The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available
+ and weak (surcharged) callbacks are used.
+
+ @endverbatim
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32h7xx_hal.h"
+
+/** @addtogroup STM32H7xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup IRDA IRDA
+ * @brief HAL IRDA module driver
+ * @{
+ */
+
+#ifdef HAL_IRDA_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup IRDA_Private_Constants IRDA Private Constants
+ * @{
+ */
+#define IRDA_TEACK_REACK_TIMEOUT 1000U /*!< IRDA TX or RX enable acknowledge time-out value */
+
+#define IRDA_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE \
+ | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)) /*!< UART or USART CR1 fields of parameters set by IRDA_SetConfig API */
+
+#define USART_BRR_MIN 0x10U /*!< USART BRR minimum authorized value */
+
+#define USART_BRR_MAX 0x0000FFFFU /*!< USART BRR maximum authorized value */
+/**
+ * @}
+ */
+
+/* Private macros ------------------------------------------------------------*/
+/** @defgroup IRDA_Private_Macros IRDA Private Macros
+ * @{
+ */
+/** @brief BRR division operation to set BRR register in 16-bit oversampling mode.
+ * @param __PCLK__ IRDA clock source.
+ * @param __BAUD__ Baud rate set by the user.
+ * @param __PRESCALER__ IRDA clock prescaler value.
+ * @retval Division result
+ */
+#define IRDA_DIV_SAMPLING16(__PCLK__, __BAUD__, __PRESCALER__) ((((__PCLK__)/IRDAPrescTable[(__PRESCALER__)])\
+ + ((__BAUD__)/2U)) / (__BAUD__))
+/**
+ * @}
+ */
+
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @addtogroup IRDA_Private_Functions
+ * @{
+ */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
+static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda);
+static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda);
+static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status,
+ uint32_t Tickstart, uint32_t Timeout);
+static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda);
+static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda);
+static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma);
+static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma);
+static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
+static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma);
+static void IRDA_DMAError(DMA_HandleTypeDef *hdma);
+static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma);
+static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
+static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
+static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
+static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
+static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda);
+static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda);
+static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda);
+/**
+ * @}
+ */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup IRDA_Exported_Functions IRDA Exported Functions
+ * @{
+ */
+
+/** @defgroup IRDA_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Initialization and Configuration functions #####
+ ==============================================================================
+ [..]
+ This subsection provides a set of functions allowing to initialize the USARTx
+ in asynchronous IRDA mode.
+ (+) For the asynchronous mode only these parameters can be configured:
+ (++) Baud Rate
+ (++) Word Length
+ (++) Parity: If the parity is enabled, then the MSB bit of the data written
+ in the data register is transmitted but is changed by the parity bit.
+ (++) Power mode
+ (++) Prescaler setting
+ (++) Receiver/transmitter modes
+
+ [..]
+ The HAL_IRDA_Init() API follows the USART asynchronous configuration procedures
+ (details for the procedures are available in reference manual).
+
+@endverbatim
+
+ Depending on the frame length defined by the M1 and M0 bits (7-bit,
+ 8-bit or 9-bit), the possible IRDA frame formats are listed in the
+ following table.
+
+ Table 1. IRDA frame format.
+ +-----------------------------------------------------------------------+
+ | M1 bit | M0 bit | PCE bit | IRDA frame |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 0 | 0 | | SB | 8 bit data | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 1 | 0 | | SB | 9 bit data | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 1 | 0 | 0 | | SB | 7 bit data | STB | |
+ |---------|---------|-----------|---------------------------------------|
+ | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
+ +-----------------------------------------------------------------------+
+
+ * @{
+ */
+
+/**
+ * @brief Initialize the IRDA mode according to the specified
+ * parameters in the IRDA_InitTypeDef and initialize the associated handle.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda)
+{
+ /* Check the IRDA handle allocation */
+ if (hirda == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the USART/UART associated to the IRDA handle */
+ assert_param(IS_IRDA_INSTANCE(hirda->Instance));
+
+ if (hirda->gState == HAL_IRDA_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ hirda->Lock = HAL_UNLOCKED;
+
+#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
+ IRDA_InitCallbacksToDefault(hirda);
+
+ if (hirda->MspInitCallback == NULL)
+ {
+ hirda->MspInitCallback = HAL_IRDA_MspInit;
+ }
+
+ /* Init the low level hardware */
+ hirda->MspInitCallback(hirda);
+#else
+ /* Init the low level hardware : GPIO, CLOCK */
+ HAL_IRDA_MspInit(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
+ }
+
+ hirda->gState = HAL_IRDA_STATE_BUSY;
+
+ /* Disable the Peripheral to update the configuration registers */
+ __HAL_IRDA_DISABLE(hirda);
+
+ /* Set the IRDA Communication parameters */
+ if (IRDA_SetConfig(hirda) == HAL_ERROR)
+ {
+ return HAL_ERROR;
+ }
+
+ /* In IRDA mode, the following bits must be kept cleared:
+ - LINEN, STOP and CLKEN bits in the USART_CR2 register,
+ - SCEN and HDSEL bits in the USART_CR3 register.*/
+ CLEAR_BIT(hirda->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
+ CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
+
+ /* set the UART/USART in IRDA mode */
+ hirda->Instance->CR3 |= USART_CR3_IREN;
+
+ /* Enable the Peripheral */
+ __HAL_IRDA_ENABLE(hirda);
+
+ /* TEACK and/or REACK to check before moving hirda->gState and hirda->RxState to Ready */
+ return (IRDA_CheckIdleState(hirda));
+}
+
+/**
+ * @brief DeInitialize the IRDA peripheral.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda)
+{
+ /* Check the IRDA handle allocation */
+ if (hirda == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check the USART/UART associated to the IRDA handle */
+ assert_param(IS_IRDA_INSTANCE(hirda->Instance));
+
+ hirda->gState = HAL_IRDA_STATE_BUSY;
+
+ /* DeInit the low level hardware */
+#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
+ if (hirda->MspDeInitCallback == NULL)
+ {
+ hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;
+ }
+ /* DeInit the low level hardware */
+ hirda->MspDeInitCallback(hirda);
+#else
+ HAL_IRDA_MspDeInit(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
+ /* Disable the Peripheral */
+ __HAL_IRDA_DISABLE(hirda);
+
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+ hirda->gState = HAL_IRDA_STATE_RESET;
+ hirda->RxState = HAL_IRDA_STATE_RESET;
+
+ /* Process Unlock */
+ __HAL_UNLOCK(hirda);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Initialize the IRDA MSP.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+__weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hirda);
+
+ /* NOTE: This function should not be modified, when the callback is needed,
+ the HAL_IRDA_MspInit can be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitialize the IRDA MSP.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+__weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hirda);
+
+ /* NOTE: This function should not be modified, when the callback is needed,
+ the HAL_IRDA_MspDeInit can be implemented in the user file
+ */
+}
+
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a User IRDA Callback
+ * To be used instead of the weak predefined callback
+ * @note The HAL_IRDA_RegisterCallback() may be called before HAL_IRDA_Init() in HAL_IRDA_STATE_RESET
+ * to register callbacks for HAL_IRDA_MSPINIT_CB_ID and HAL_IRDA_MSPDEINIT_CB_ID
+ * @param hirda irda handle
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
+ * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID
+ * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
+ * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID
+ * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID
+ * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
+ * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
+ * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
+ * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID
+ * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID
+ * @param pCallback pointer to the Callback function
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID,
+ pIRDA_CallbackTypeDef pCallback)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL)
+ {
+ /* Update the error code */
+ hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
+
+ return HAL_ERROR;
+ }
+
+ if (hirda->gState == HAL_IRDA_STATE_READY)
+ {
+ switch (CallbackID)
+ {
+ case HAL_IRDA_TX_HALFCOMPLETE_CB_ID :
+ hirda->TxHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_IRDA_TX_COMPLETE_CB_ID :
+ hirda->TxCpltCallback = pCallback;
+ break;
+
+ case HAL_IRDA_RX_HALFCOMPLETE_CB_ID :
+ hirda->RxHalfCpltCallback = pCallback;
+ break;
+
+ case HAL_IRDA_RX_COMPLETE_CB_ID :
+ hirda->RxCpltCallback = pCallback;
+ break;
+
+ case HAL_IRDA_ERROR_CB_ID :
+ hirda->ErrorCallback = pCallback;
+ break;
+
+ case HAL_IRDA_ABORT_COMPLETE_CB_ID :
+ hirda->AbortCpltCallback = pCallback;
+ break;
+
+ case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID :
+ hirda->AbortTransmitCpltCallback = pCallback;
+ break;
+
+ case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID :
+ hirda->AbortReceiveCpltCallback = pCallback;
+ break;
+
+ case HAL_IRDA_MSPINIT_CB_ID :
+ hirda->MspInitCallback = pCallback;
+ break;
+
+ case HAL_IRDA_MSPDEINIT_CB_ID :
+ hirda->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Update the error code */
+ hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (hirda->gState == HAL_IRDA_STATE_RESET)
+ {
+ switch (CallbackID)
+ {
+ case HAL_IRDA_MSPINIT_CB_ID :
+ hirda->MspInitCallback = pCallback;
+ break;
+
+ case HAL_IRDA_MSPDEINIT_CB_ID :
+ hirda->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Update the error code */
+ hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Update the error code */
+ hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ return status;
+}
+
+/**
+ * @brief Unregister an IRDA callback
+ * IRDA callback is redirected to the weak predefined callback
+ * @note The HAL_IRDA_UnRegisterCallback() may be called before HAL_IRDA_Init() in HAL_IRDA_STATE_RESET
+ * to un-register callbacks for HAL_IRDA_MSPINIT_CB_ID and HAL_IRDA_MSPDEINIT_CB_ID
+ * @param hirda irda handle
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
+ * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID
+ * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
+ * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID
+ * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID
+ * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
+ * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
+ * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
+ * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID
+ * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (HAL_IRDA_STATE_READY == hirda->gState)
+ {
+ switch (CallbackID)
+ {
+ case HAL_IRDA_TX_HALFCOMPLETE_CB_ID :
+ hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
+ break;
+
+ case HAL_IRDA_TX_COMPLETE_CB_ID :
+ hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */
+ break;
+
+ case HAL_IRDA_RX_HALFCOMPLETE_CB_ID :
+ hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
+ break;
+
+ case HAL_IRDA_RX_COMPLETE_CB_ID :
+ hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */
+ break;
+
+ case HAL_IRDA_ERROR_CB_ID :
+ hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */
+ break;
+
+ case HAL_IRDA_ABORT_COMPLETE_CB_ID :
+ hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
+ break;
+
+ case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID :
+ hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak
+ AbortTransmitCpltCallback */
+ break;
+
+ case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID :
+ hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak
+ AbortReceiveCpltCallback */
+ break;
+
+ case HAL_IRDA_MSPINIT_CB_ID :
+ hirda->MspInitCallback = HAL_IRDA_MspInit; /* Legacy weak MspInitCallback */
+ break;
+
+ case HAL_IRDA_MSPDEINIT_CB_ID :
+ hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; /* Legacy weak MspDeInitCallback */
+ break;
+
+ default :
+ /* Update the error code */
+ hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (HAL_IRDA_STATE_RESET == hirda->gState)
+ {
+ switch (CallbackID)
+ {
+ case HAL_IRDA_MSPINIT_CB_ID :
+ hirda->MspInitCallback = HAL_IRDA_MspInit;
+ break;
+
+ case HAL_IRDA_MSPDEINIT_CB_ID :
+ hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;
+ break;
+
+ default :
+ /* Update the error code */
+ hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Update the error code */
+ hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
+
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ return status;
+}
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
+
+/**
+ * @}
+ */
+
+/** @defgroup IRDA_Exported_Functions_Group2 IO operation functions
+ * @brief IRDA Transmit and Receive functions
+ *
+@verbatim
+ ===============================================================================
+ ##### IO operation functions #####
+ ===============================================================================
+ [..]
+ This subsection provides a set of functions allowing to manage the IRDA data transfers.
+
+ [..]
+ IrDA is a half duplex communication protocol. If the Transmitter is busy, any data
+ on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver
+ is busy, data on the TX from the USART to IrDA will not be encoded by IrDA.
+ While receiving data, transmission should be avoided as the data to be transmitted
+ could be corrupted.
+
+ [..]
+ (#) There are two modes of transfer:
+ (++) Blocking mode: the communication is performed in polling mode.
+ The HAL status of all data processing is returned by the same function
+ after finishing transfer.
+ (++) Non-Blocking mode: the communication is performed using Interrupts
+ or DMA, these API's return the HAL status.
+ The end of the data processing will be indicated through the
+ dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when
+ using DMA mode.
+ The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks
+ will be executed respectively at the end of the Transmit or Receive process
+ The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected
+
+ (#) Blocking mode APIs are :
+ (++) HAL_IRDA_Transmit()
+ (++) HAL_IRDA_Receive()
+
+ (#) Non Blocking mode APIs with Interrupt are :
+ (++) HAL_IRDA_Transmit_IT()
+ (++) HAL_IRDA_Receive_IT()
+ (++) HAL_IRDA_IRQHandler()
+
+ (#) Non Blocking mode functions with DMA are :
+ (++) HAL_IRDA_Transmit_DMA()
+ (++) HAL_IRDA_Receive_DMA()
+ (++) HAL_IRDA_DMAPause()
+ (++) HAL_IRDA_DMAResume()
+ (++) HAL_IRDA_DMAStop()
+
+ (#) A set of Transfer Complete Callbacks are provided in Non Blocking mode:
+ (++) HAL_IRDA_TxHalfCpltCallback()
+ (++) HAL_IRDA_TxCpltCallback()
+ (++) HAL_IRDA_RxHalfCpltCallback()
+ (++) HAL_IRDA_RxCpltCallback()
+ (++) HAL_IRDA_ErrorCallback()
+
+ (#) Non-Blocking mode transfers could be aborted using Abort API's :
+ (++) HAL_IRDA_Abort()
+ (++) HAL_IRDA_AbortTransmit()
+ (++) HAL_IRDA_AbortReceive()
+ (++) HAL_IRDA_Abort_IT()
+ (++) HAL_IRDA_AbortTransmit_IT()
+ (++) HAL_IRDA_AbortReceive_IT()
+
+ (#) For Abort services based on interrupts (HAL_IRDA_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
+ (++) HAL_IRDA_AbortCpltCallback()
+ (++) HAL_IRDA_AbortTransmitCpltCallback()
+ (++) HAL_IRDA_AbortReceiveCpltCallback()
+
+ (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
+ Errors are handled as follows :
+ (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
+ to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error
+ in Interrupt mode reception .
+ Received character is then retrieved and stored in Rx buffer, Error code is set to allow user
+ to identify error type, and HAL_IRDA_ErrorCallback() user callback is executed.
+ Transfer is kept ongoing on IRDA side.
+ If user wants to abort it, Abort services should be called by user.
+ (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
+ This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
+ Error code is set to allow user to identify error type, and
+ HAL_IRDA_ErrorCallback() user callback is executed.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Send an amount of data in blocking mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the sent data is handled as a set of u16. In this case, Size must reflect the number
+ * of u16 available through pData.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be sent.
+ * @param Timeout Specify timeout value.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size, uint32_t Timeout)
+{
+ const uint8_t *pdata8bits;
+ const uint16_t *pdata16bits;
+ uint32_t tickstart;
+
+ /* Check that a Tx process is not already ongoing */
+ if (hirda->gState == HAL_IRDA_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hirda);
+
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+ hirda->gState = HAL_IRDA_STATE_BUSY_TX;
+
+ /* Init tickstart for timeout management */
+ tickstart = HAL_GetTick();
+
+ hirda->TxXferSize = Size;
+ hirda->TxXferCount = Size;
+
+ /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
+ if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
+ {
+ pdata8bits = NULL;
+ pdata16bits = (const uint16_t *) pData; /* Derogation R.11.3 */
+ }
+ else
+ {
+ pdata8bits = pData;
+ pdata16bits = NULL;
+ }
+
+ while (hirda->TxXferCount > 0U)
+ {
+ hirda->TxXferCount--;
+
+ if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
+ {
+ return HAL_TIMEOUT;
+ }
+ if (pdata8bits == NULL)
+ {
+ hirda->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU);
+ pdata16bits++;
+ }
+ else
+ {
+ hirda->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU);
+ pdata8bits++;
+ }
+ }
+
+ if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
+ {
+ return HAL_TIMEOUT;
+ }
+
+ /* At end of Tx process, restore hirda->gState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in blocking mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the received data is handled as a set of u16. In this case, Size must reflect the number
+ * of u16 available through pData.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be received.
+ * @param Timeout Specify timeout value.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
+{
+ uint8_t *pdata8bits;
+ uint16_t *pdata16bits;
+ uint16_t uhMask;
+ uint32_t tickstart;
+
+ /* Check that a Rx process is not already ongoing */
+ if (hirda->RxState == HAL_IRDA_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hirda);
+
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+ hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
+
+ /* Init tickstart for timeout management */
+ tickstart = HAL_GetTick();
+
+ hirda->RxXferSize = Size;
+ hirda->RxXferCount = Size;
+
+ /* Computation of the mask to apply to RDR register
+ of the UART associated to the IRDA */
+ IRDA_MASK_COMPUTATION(hirda);
+ uhMask = hirda->Mask;
+
+ /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
+ if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
+ {
+ pdata8bits = NULL;
+ pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */
+ }
+ else
+ {
+ pdata8bits = pData;
+ pdata16bits = NULL;
+ }
+
+ /* Check data remaining to be received */
+ while (hirda->RxXferCount > 0U)
+ {
+ hirda->RxXferCount--;
+
+ if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
+ {
+ return HAL_TIMEOUT;
+ }
+ if (pdata8bits == NULL)
+ {
+ *pdata16bits = (uint16_t)(hirda->Instance->RDR & uhMask);
+ pdata16bits++;
+ }
+ else
+ {
+ *pdata8bits = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask);
+ pdata8bits++;
+ }
+ }
+
+ /* At end of Rx process, restore hirda->RxState to Ready */
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Send an amount of data in interrupt mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the sent data is handled as a set of u16. In this case, Size must reflect the number
+ * of u16 available through pData.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be sent.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size)
+{
+ /* Check that a Tx process is not already ongoing */
+ if (hirda->gState == HAL_IRDA_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hirda);
+
+ hirda->pTxBuffPtr = pData;
+ hirda->TxXferSize = Size;
+ hirda->TxXferCount = Size;
+
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+ hirda->gState = HAL_IRDA_STATE_BUSY_TX;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ /* Enable the IRDA Transmit Data Register Empty Interrupt */
+ SET_BIT(hirda->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in interrupt mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the received data is handled as a set of u16. In this case, Size must reflect the number
+ * of u16 available through pData.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be received.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
+{
+ /* Check that a Rx process is not already ongoing */
+ if (hirda->RxState == HAL_IRDA_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hirda);
+
+ hirda->pRxBuffPtr = pData;
+ hirda->RxXferSize = Size;
+ hirda->RxXferCount = Size;
+
+ /* Computation of the mask to apply to the RDR register
+ of the UART associated to the IRDA */
+ IRDA_MASK_COMPUTATION(hirda);
+
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+ hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ if (hirda->Init.Parity != IRDA_PARITY_NONE)
+ {
+ /* Enable the IRDA Parity Error and Data Register not empty Interrupts */
+ SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE);
+ }
+ else
+ {
+ /* Enable the IRDA Data Register not empty Interrupts */
+ SET_BIT(hirda->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
+ }
+
+ /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
+ SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Send an amount of data in DMA mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the sent data is handled as a set of u16. In this case, Size must reflect the number
+ * of u16 available through pData.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @param pData pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be sent.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size)
+{
+ /* Check that a Tx process is not already ongoing */
+ if (hirda->gState == HAL_IRDA_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hirda);
+
+ hirda->pTxBuffPtr = pData;
+ hirda->TxXferSize = Size;
+ hirda->TxXferCount = Size;
+
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+ hirda->gState = HAL_IRDA_STATE_BUSY_TX;
+
+ /* Set the IRDA DMA transfer complete callback */
+ hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt;
+
+ /* Set the IRDA DMA half transfer complete callback */
+ hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt;
+
+ /* Set the DMA error callback */
+ hirda->hdmatx->XferErrorCallback = IRDA_DMAError;
+
+ /* Set the DMA abort callback */
+ hirda->hdmatx->XferAbortCallback = NULL;
+
+ /* Enable the IRDA transmit DMA channel */
+ if (HAL_DMA_Start_IT(hirda->hdmatx, (uint32_t)hirda->pTxBuffPtr, (uint32_t)&hirda->Instance->TDR, Size) == HAL_OK)
+ {
+ /* Clear the TC flag in the ICR register */
+ __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_TCF);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ /* Enable the DMA transfer for transmit request by setting the DMAT bit
+ in the USART CR3 register */
+ SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
+
+ return HAL_OK;
+ }
+ else
+ {
+ /* Set error code to DMA */
+ hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ /* Restore hirda->gState to ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @brief Receive an amount of data in DMA mode.
+ * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
+ * the received data is handled as a set of u16. In this case, Size must reflect the number
+ * of u16 available through pData.
+ * @note When the IRDA parity is enabled (PCE = 1), the received data contains
+ * the parity bit (MSB position).
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @param pData Pointer to data buffer (u8 or u16 data elements).
+ * @param Size Amount of data elements (u8 or u16) to be received.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
+{
+ /* Check that a Rx process is not already ongoing */
+ if (hirda->RxState == HAL_IRDA_STATE_READY)
+ {
+ if ((pData == NULL) || (Size == 0U))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hirda);
+
+ hirda->pRxBuffPtr = pData;
+ hirda->RxXferSize = Size;
+
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+ hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
+
+ /* Set the IRDA DMA transfer complete callback */
+ hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt;
+
+ /* Set the IRDA DMA half transfer complete callback */
+ hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt;
+
+ /* Set the DMA error callback */
+ hirda->hdmarx->XferErrorCallback = IRDA_DMAError;
+
+ /* Set the DMA abort callback */
+ hirda->hdmarx->XferAbortCallback = NULL;
+
+ /* Enable the DMA channel */
+ if (HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->RDR, (uint32_t)hirda->pRxBuffPtr, Size) == HAL_OK)
+ {
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ if (hirda->Init.Parity != IRDA_PARITY_NONE)
+ {
+ /* Enable the UART Parity Error Interrupt */
+ SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
+ }
+
+ /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
+ SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ /* Enable the DMA transfer for the receiver request by setting the DMAR bit
+ in the USART CR3 register */
+ SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
+
+ return HAL_OK;
+ }
+ else
+ {
+ /* Set error code to DMA */
+ hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ /* Restore hirda->RxState to ready */
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+
+/**
+ * @brief Pause the DMA Transfer.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda)
+{
+ /* Process Locked */
+ __HAL_LOCK(hirda);
+
+ if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
+ {
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
+ {
+ /* Disable the IRDA DMA Tx request */
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
+ }
+ }
+ if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
+ {
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
+ {
+ /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
+ CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ /* Disable the IRDA DMA Rx request */
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
+ }
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Resume the DMA Transfer.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda)
+{
+ /* Process Locked */
+ __HAL_LOCK(hirda);
+
+ if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
+ {
+ /* Enable the IRDA DMA Tx request */
+ SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
+ }
+ if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
+ {
+ /* Clear the Overrun flag before resuming the Rx transfer*/
+ __HAL_IRDA_CLEAR_OREFLAG(hirda);
+
+ /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
+ if (hirda->Init.Parity != IRDA_PARITY_NONE)
+ {
+ SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
+ }
+ SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ /* Enable the IRDA DMA Rx request */
+ SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Stop the DMA Transfer.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda)
+{
+ /* The Lock is not implemented on this API to allow the user application
+ to call the HAL IRDA API under callbacks HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback() /
+ HAL_IRDA_TxHalfCpltCallback / HAL_IRDA_RxHalfCpltCallback:
+ indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
+ interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
+ the stream and the corresponding call back is executed. */
+
+ /* Stop IRDA DMA Tx request if ongoing */
+ if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
+ {
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
+ {
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
+
+ /* Abort the IRDA DMA Tx channel */
+ if (hirda->hdmatx != NULL)
+ {
+ if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ IRDA_EndTxTransfer(hirda);
+ }
+ }
+
+ /* Stop IRDA DMA Rx request if ongoing */
+ if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
+ {
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
+ {
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the IRDA DMA Rx channel */
+ if (hirda->hdmarx != NULL)
+ {
+ if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ IRDA_EndRxTransfer(hirda);
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing transfers (blocking mode).
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable IRDA Interrupts (Tx and Rx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_Abort(IRDA_HandleTypeDef *hirda)
+{
+ /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
+ CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | \
+ USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ /* Disable the IRDA DMA Tx request if enabled */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
+ {
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
+
+ /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
+ if (hirda->hdmatx != NULL)
+ {
+ /* Set the IRDA DMA Abort callback to Null.
+ No call back execution at end of DMA abort procedure */
+ hirda->hdmatx->XferAbortCallback = NULL;
+
+ if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+ /* Disable the IRDA DMA Rx request if enabled */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
+ {
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
+ if (hirda->hdmarx != NULL)
+ {
+ /* Set the IRDA DMA Abort callback to Null.
+ No call back execution at end of DMA abort procedure */
+ hirda->hdmarx->XferAbortCallback = NULL;
+
+ if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+ /* Reset Tx and Rx transfer counters */
+ hirda->TxXferCount = 0U;
+ hirda->RxXferCount = 0U;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
+
+ /* Restore hirda->gState and hirda->RxState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ /* Reset Handle ErrorCode to No Error */
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing Transmit transfer (blocking mode).
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable IRDA Interrupts (Tx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef *hirda)
+{
+ /* Disable TXEIE and TCIE interrupts */
+ CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
+
+ /* Disable the IRDA DMA Tx request if enabled */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
+ {
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
+
+ /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
+ if (hirda->hdmatx != NULL)
+ {
+ /* Set the IRDA DMA Abort callback to Null.
+ No call back execution at end of DMA abort procedure */
+ hirda->hdmatx->XferAbortCallback = NULL;
+
+ if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+ /* Reset Tx transfer counter */
+ hirda->TxXferCount = 0U;
+
+ /* Restore hirda->gState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing Receive transfer (blocking mode).
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable IRDA Interrupts (Rx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_AbortReceive(IRDA_HandleTypeDef *hirda)
+{
+ /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
+ CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ /* Disable the IRDA DMA Rx request if enabled */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
+ {
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
+ if (hirda->hdmarx != NULL)
+ {
+ /* Set the IRDA DMA Abort callback to Null.
+ No call back execution at end of DMA abort procedure */
+ hirda->hdmarx->XferAbortCallback = NULL;
+
+ if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
+ {
+ if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
+ {
+ /* Set error code to DMA */
+ hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
+
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ }
+
+ /* Reset Rx transfer counter */
+ hirda->RxXferCount = 0U;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
+
+ /* Restore hirda->RxState to Ready */
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing transfers (Interrupt mode).
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable IRDA Interrupts (Tx and Rx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * - At abort completion, call user abort complete callback
+ * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
+ * considered as completed only when user abort complete callback is executed (not when exiting function).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_Abort_IT(IRDA_HandleTypeDef *hirda)
+{
+ uint32_t abortcplt = 1U;
+
+ /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
+ CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | \
+ USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ /* If DMA Tx and/or DMA Rx Handles are associated to IRDA Handle, DMA Abort complete callbacks should be initialised
+ before any call to DMA Abort functions */
+ /* DMA Tx Handle is valid */
+ if (hirda->hdmatx != NULL)
+ {
+ /* Set DMA Abort Complete callback if IRDA DMA Tx request if enabled.
+ Otherwise, set it to NULL */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
+ {
+ hirda->hdmatx->XferAbortCallback = IRDA_DMATxAbortCallback;
+ }
+ else
+ {
+ hirda->hdmatx->XferAbortCallback = NULL;
+ }
+ }
+ /* DMA Rx Handle is valid */
+ if (hirda->hdmarx != NULL)
+ {
+ /* Set DMA Abort Complete callback if IRDA DMA Rx request if enabled.
+ Otherwise, set it to NULL */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
+ {
+ hirda->hdmarx->XferAbortCallback = IRDA_DMARxAbortCallback;
+ }
+ else
+ {
+ hirda->hdmarx->XferAbortCallback = NULL;
+ }
+ }
+
+ /* Disable the IRDA DMA Tx request if enabled */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
+ {
+ /* Disable DMA Tx at UART level */
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
+
+ /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
+ if (hirda->hdmatx != NULL)
+ {
+ /* IRDA Tx DMA Abort callback has already been initialised :
+ will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
+
+ /* Abort DMA TX */
+ if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
+ {
+ hirda->hdmatx->XferAbortCallback = NULL;
+ }
+ else
+ {
+ abortcplt = 0U;
+ }
+ }
+ }
+
+ /* Disable the IRDA DMA Rx request if enabled */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
+ {
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
+ if (hirda->hdmarx != NULL)
+ {
+ /* IRDA Rx DMA Abort callback has already been initialised :
+ will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
+
+ /* Abort DMA RX */
+ if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
+ {
+ hirda->hdmarx->XferAbortCallback = NULL;
+ abortcplt = 1U;
+ }
+ else
+ {
+ abortcplt = 0U;
+ }
+ }
+ }
+
+ /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
+ if (abortcplt == 1U)
+ {
+ /* Reset Tx and Rx transfer counters */
+ hirda->TxXferCount = 0U;
+ hirda->RxXferCount = 0U;
+
+ /* Reset errorCode */
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
+
+ /* Restore hirda->gState and hirda->RxState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort complete callback */
+ hirda->AbortCpltCallback(hirda);
+#else
+ /* Call legacy weak Abort complete callback */
+ HAL_IRDA_AbortCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing Transmit transfer (Interrupt mode).
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable IRDA Interrupts (Tx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * - At abort completion, call user abort complete callback
+ * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
+ * considered as completed only when user abort complete callback is executed (not when exiting function).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef *hirda)
+{
+ /* Disable TXEIE and TCIE interrupts */
+ CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
+
+ /* Disable the IRDA DMA Tx request if enabled */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
+ {
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
+
+ /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
+ if (hirda->hdmatx != NULL)
+ {
+ /* Set the IRDA DMA Abort callback :
+ will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
+ hirda->hdmatx->XferAbortCallback = IRDA_DMATxOnlyAbortCallback;
+
+ /* Abort DMA TX */
+ if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
+ {
+ /* Call Directly hirda->hdmatx->XferAbortCallback function in case of error */
+ hirda->hdmatx->XferAbortCallback(hirda->hdmatx);
+ }
+ }
+ else
+ {
+ /* Reset Tx transfer counter */
+ hirda->TxXferCount = 0U;
+
+ /* Restore hirda->gState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Transmit Complete Callback */
+ hirda->AbortTransmitCpltCallback(hirda);
+#else
+ /* Call legacy weak Abort Transmit Complete Callback */
+ HAL_IRDA_AbortTransmitCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+ }
+ }
+ else
+ {
+ /* Reset Tx transfer counter */
+ hirda->TxXferCount = 0U;
+
+ /* Restore hirda->gState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Transmit Complete Callback */
+ hirda->AbortTransmitCpltCallback(hirda);
+#else
+ /* Call legacy weak Abort Transmit Complete Callback */
+ HAL_IRDA_AbortTransmitCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Abort ongoing Receive transfer (Interrupt mode).
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified UART module.
+ * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
+ * This procedure performs following operations :
+ * - Disable IRDA Interrupts (Rx)
+ * - Disable the DMA transfer in the peripheral register (if enabled)
+ * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
+ * - Set handle State to READY
+ * - At abort completion, call user abort complete callback
+ * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
+ * considered as completed only when user abort complete callback is executed (not when exiting function).
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef *hirda)
+{
+ /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
+ CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ /* Disable the IRDA DMA Rx request if enabled */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
+ {
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
+ if (hirda->hdmarx != NULL)
+ {
+ /* Set the IRDA DMA Abort callback :
+ will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
+ hirda->hdmarx->XferAbortCallback = IRDA_DMARxOnlyAbortCallback;
+
+ /* Abort DMA RX */
+ if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
+ {
+ /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
+ hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
+ }
+ }
+ else
+ {
+ /* Reset Rx transfer counter */
+ hirda->RxXferCount = 0U;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
+
+ /* Restore hirda->RxState to Ready */
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Receive Complete Callback */
+ hirda->AbortReceiveCpltCallback(hirda);
+#else
+ /* Call legacy weak Abort Receive Complete Callback */
+ HAL_IRDA_AbortReceiveCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+ }
+ }
+ else
+ {
+ /* Reset Rx transfer counter */
+ hirda->RxXferCount = 0U;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
+
+ /* Restore hirda->RxState to Ready */
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ /* As no DMA to be aborted, call directly user Abort complete callback */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Receive Complete Callback */
+ hirda->AbortReceiveCpltCallback(hirda);
+#else
+ /* Call legacy weak Abort Receive Complete Callback */
+ HAL_IRDA_AbortReceiveCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Handle IRDA interrupt request.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda)
+{
+ uint32_t isrflags = READ_REG(hirda->Instance->ISR);
+ uint32_t cr1its = READ_REG(hirda->Instance->CR1);
+ uint32_t cr3its;
+ uint32_t errorflags;
+ uint32_t errorcode;
+
+ /* If no error occurs */
+ errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE));
+ if (errorflags == 0U)
+ {
+ /* IRDA in mode Receiver ---------------------------------------------------*/
+ if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) && ((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U))
+ {
+ IRDA_Receive_IT(hirda);
+ return;
+ }
+ }
+
+ /* If some errors occur */
+ cr3its = READ_REG(hirda->Instance->CR3);
+ if ((errorflags != 0U)
+ && (((cr3its & USART_CR3_EIE) != 0U)
+ || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)) != 0U)))
+ {
+ /* IRDA parity error interrupt occurred -------------------------------------*/
+ if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
+ {
+ __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_PEF);
+
+ hirda->ErrorCode |= HAL_IRDA_ERROR_PE;
+ }
+
+ /* IRDA frame error interrupt occurred --------------------------------------*/
+ if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
+ {
+ __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_FEF);
+
+ hirda->ErrorCode |= HAL_IRDA_ERROR_FE;
+ }
+
+ /* IRDA noise error interrupt occurred --------------------------------------*/
+ if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
+ {
+ __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_NEF);
+
+ hirda->ErrorCode |= HAL_IRDA_ERROR_NE;
+ }
+
+ /* IRDA Over-Run interrupt occurred -----------------------------------------*/
+ if (((isrflags & USART_ISR_ORE) != 0U) &&
+ (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) || ((cr3its & USART_CR3_EIE) != 0U)))
+ {
+ __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF);
+
+ hirda->ErrorCode |= HAL_IRDA_ERROR_ORE;
+ }
+
+ /* Call IRDA Error Call back function if need be --------------------------*/
+ if (hirda->ErrorCode != HAL_IRDA_ERROR_NONE)
+ {
+ /* IRDA in mode Receiver ---------------------------------------------------*/
+ if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) && ((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U))
+ {
+ IRDA_Receive_IT(hirda);
+ }
+
+ /* If Overrun error occurs, or if any error occurs in DMA mode reception,
+ consider error as blocking */
+ errorcode = hirda->ErrorCode;
+ if ((HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) ||
+ ((errorcode & HAL_IRDA_ERROR_ORE) != 0U))
+ {
+ /* Blocking error : transfer is aborted
+ Set the IRDA state ready to be able to start again the process,
+ Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
+ IRDA_EndRxTransfer(hirda);
+
+ /* Disable the IRDA DMA Rx request if enabled */
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
+ {
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
+
+ /* Abort the IRDA DMA Rx channel */
+ if (hirda->hdmarx != NULL)
+ {
+ /* Set the IRDA DMA Abort callback :
+ will lead to call HAL_IRDA_ErrorCallback() at end of DMA abort procedure */
+ hirda->hdmarx->XferAbortCallback = IRDA_DMAAbortOnError;
+
+ /* Abort DMA RX */
+ if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
+ {
+ /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
+ hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
+ }
+ }
+ else
+ {
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered user error callback */
+ hirda->ErrorCallback(hirda);
+#else
+ /* Call legacy weak user error callback */
+ HAL_IRDA_ErrorCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+ }
+ }
+ else
+ {
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered user error callback */
+ hirda->ErrorCallback(hirda);
+#else
+ /* Call legacy weak user error callback */
+ HAL_IRDA_ErrorCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+ }
+ }
+ else
+ {
+ /* Non Blocking error : transfer could go on.
+ Error is notified to user through user error callback */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered user error callback */
+ hirda->ErrorCallback(hirda);
+#else
+ /* Call legacy weak user error callback */
+ HAL_IRDA_ErrorCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+ }
+ }
+ return;
+
+ } /* End if some error occurs */
+
+ /* IRDA in mode Transmitter ------------------------------------------------*/
+ if (((isrflags & USART_ISR_TXE_TXFNF) != 0U) && ((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U))
+ {
+ IRDA_Transmit_IT(hirda);
+ return;
+ }
+
+ /* IRDA in mode Transmitter (transmission end) -----------------------------*/
+ if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
+ {
+ IRDA_EndTransmit_IT(hirda);
+ return;
+ }
+
+}
+
+/**
+ * @brief Tx Transfer completed callback.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+__weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hirda);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_IRDA_TxCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Tx Half Transfer completed callback.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified USART module.
+ * @retval None
+ */
+__weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hirda);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Rx Transfer completed callback.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+__weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hirda);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_IRDA_RxCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief Rx Half Transfer complete callback.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+__weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hirda);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief IRDA error callback.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+__weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hirda);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_IRDA_ErrorCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief IRDA Abort Complete callback.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+__weak void HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef *hirda)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hirda);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_IRDA_AbortCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief IRDA Abort Complete callback.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+__weak void HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef *hirda)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hirda);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_IRDA_AbortTransmitCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @brief IRDA Abort Receive Complete callback.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+__weak void HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef *hirda)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hirda);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_IRDA_AbortReceiveCpltCallback can be implemented in the user file.
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup IRDA_Exported_Functions_Group4 Peripheral State and Error functions
+ * @brief IRDA State and Errors functions
+ *
+@verbatim
+ ==============================================================================
+ ##### Peripheral State and Error functions #####
+ ==============================================================================
+ [..]
+ This subsection provides a set of functions allowing to return the State of IrDA
+ communication process and also return Peripheral Errors occurred during communication process
+ (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state
+ of the IRDA peripheral handle.
+ (+) HAL_IRDA_GetError() checks in run-time errors that could occur during
+ communication.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Return the IRDA handle state.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval HAL state
+ */
+HAL_IRDA_StateTypeDef HAL_IRDA_GetState(const IRDA_HandleTypeDef *hirda)
+{
+ /* Return IRDA handle state */
+ uint32_t temp1;
+ uint32_t temp2;
+ temp1 = (uint32_t)hirda->gState;
+ temp2 = (uint32_t)hirda->RxState;
+
+ return (HAL_IRDA_StateTypeDef)(temp1 | temp2);
+}
+
+/**
+ * @brief Return the IRDA handle error code.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval IRDA Error Code
+ */
+uint32_t HAL_IRDA_GetError(const IRDA_HandleTypeDef *hirda)
+{
+ return hirda->ErrorCode;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup IRDA_Private_Functions IRDA Private Functions
+ * @{
+ */
+
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Initialize the callbacks to their default values.
+ * @param hirda IRDA handle.
+ * @retval none
+ */
+void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda)
+{
+ /* Init the IRDA Callback settings */
+ hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
+ hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */
+ hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
+ hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */
+ hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */
+ hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
+ hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
+ hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
+
+}
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
+
+/**
+ * @brief Configure the IRDA peripheral.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
+{
+ uint32_t tmpreg;
+ IRDA_ClockSourceTypeDef clocksource;
+ HAL_StatusTypeDef ret = HAL_OK;
+ static const uint16_t IRDAPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U};
+ PLL2_ClocksTypeDef pll2_clocks;
+ PLL3_ClocksTypeDef pll3_clocks;
+ uint32_t pclk;
+
+ /* Check the communication parameters */
+ assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));
+ assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
+ assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
+ assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode));
+ assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler));
+ assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode));
+ assert_param(IS_IRDA_CLOCKPRESCALER(hirda->Init.ClockPrescaler));
+
+ /*-------------------------- USART CR1 Configuration -----------------------*/
+ /* Configure the IRDA Word Length, Parity and transfer Mode:
+ Set the M bits according to hirda->Init.WordLength value
+ Set PCE and PS bits according to hirda->Init.Parity value
+ Set TE and RE bits according to hirda->Init.Mode value */
+ tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ;
+
+ MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg);
+
+ /*-------------------------- USART CR3 Configuration -----------------------*/
+ MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode);
+
+ /*--------------------- USART clock PRESC Configuration ----------------*/
+ /* Configure
+ * - IRDA Clock Prescaler: set PRESCALER according to hirda->Init.ClockPrescaler value */
+ MODIFY_REG(hirda->Instance->PRESC, USART_PRESC_PRESCALER, hirda->Init.ClockPrescaler);
+
+ /*-------------------------- USART GTPR Configuration ----------------------*/
+ MODIFY_REG(hirda->Instance->GTPR, (uint16_t)USART_GTPR_PSC, (uint16_t)hirda->Init.Prescaler);
+
+ /*-------------------------- USART BRR Configuration -----------------------*/
+ IRDA_GETCLOCKSOURCE(hirda, clocksource);
+ tmpreg = 0U;
+ switch (clocksource)
+ {
+ case IRDA_CLOCKSOURCE_D2PCLK1:
+ pclk = HAL_RCC_GetPCLK1Freq();
+ tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
+ break;
+ case IRDA_CLOCKSOURCE_D2PCLK2:
+ pclk = HAL_RCC_GetPCLK2Freq();
+ tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
+ break;
+ case IRDA_CLOCKSOURCE_PLL2Q:
+ HAL_RCCEx_GetPLL2ClockFreq(&pll2_clocks);
+ tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pll2_clocks.PLL2_Q_Frequency,
+ hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
+ break;
+ case IRDA_CLOCKSOURCE_PLL3Q:
+ HAL_RCCEx_GetPLL3ClockFreq(&pll3_clocks);
+ tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pll3_clocks.PLL3_Q_Frequency, hirda->Init.BaudRate,
+ hirda->Init.ClockPrescaler));
+ break;
+ case IRDA_CLOCKSOURCE_CSI:
+ tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(CSI_VALUE, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
+ break;
+ case IRDA_CLOCKSOURCE_HSI:
+ tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(HSI_VALUE, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
+ break;
+ case IRDA_CLOCKSOURCE_LSE:
+ tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16((uint32_t)LSE_VALUE, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
+ break;
+ default:
+ ret = HAL_ERROR;
+ break;
+ }
+
+ /* USARTDIV must be greater than or equal to 0d16 */
+ if ((tmpreg >= USART_BRR_MIN) && (tmpreg <= USART_BRR_MAX))
+ {
+ hirda->Instance->BRR = (uint16_t)tmpreg;
+ }
+ else
+ {
+ ret = HAL_ERROR;
+ }
+
+ return ret;
+}
+
+/**
+ * @brief Check the IRDA Idle State.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda)
+{
+ uint32_t tickstart;
+
+ /* Initialize the IRDA ErrorCode */
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+
+ /* Init tickstart for timeout management */
+ tickstart = HAL_GetTick();
+
+ /* Check if the Transmitter is enabled */
+ if ((hirda->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
+ {
+ /* Wait until TEACK flag is set */
+ if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_TEACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK)
+ {
+ /* Timeout occurred */
+ return HAL_TIMEOUT;
+ }
+ }
+ /* Check if the Receiver is enabled */
+ if ((hirda->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
+ {
+ /* Wait until REACK flag is set */
+ if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_REACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK)
+ {
+ /* Timeout occurred */
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* Initialize the IRDA state*/
+ hirda->gState = HAL_IRDA_STATE_READY;
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Handle IRDA Communication Timeout. It waits
+ * until a flag is no longer in the specified status.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @param Flag Specifies the IRDA flag to check.
+ * @param Status The actual Flag status (SET or RESET)
+ * @param Tickstart Tick start value
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status,
+ uint32_t Tickstart, uint32_t Timeout)
+{
+ /* Wait until flag is set */
+ while ((__HAL_IRDA_GET_FLAG(hirda, Flag) ? SET : RESET) == Status)
+ {
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY)
+ {
+ if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
+ {
+ /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error)
+ interrupts for the interrupt process */
+ CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE));
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ hirda->gState = HAL_IRDA_STATE_READY;
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hirda);
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+
+/**
+ * @brief End ongoing Tx transfer on IRDA peripheral (following error detection or Transmit completion).
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda)
+{
+ /* Disable TXEIE and TCIE interrupts */
+ CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
+
+ /* At end of Tx process, restore hirda->gState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+}
+
+
+/**
+ * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda)
+{
+ /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
+ CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ /* At end of Rx process, restore hirda->RxState to Ready */
+ hirda->RxState = HAL_IRDA_STATE_READY;
+}
+
+
+/**
+ * @brief DMA IRDA transmit process complete callback.
+ * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma)
+{
+ IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
+
+ /* DMA Normal mode */
+ if (hdma->Init.Mode != DMA_CIRCULAR)
+ {
+ hirda->TxXferCount = 0U;
+
+ /* Disable the DMA transfer for transmit request by resetting the DMAT bit
+ in the IRDA CR3 register */
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
+
+ /* Enable the IRDA Transmit Complete Interrupt */
+ SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
+ }
+ /* DMA Circular mode */
+ else
+ {
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Tx complete callback */
+ hirda->TxCpltCallback(hirda);
+#else
+ /* Call legacy weak Tx complete callback */
+ HAL_IRDA_TxCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+ }
+
+}
+
+/**
+ * @brief DMA IRDA transmit process half complete callback.
+ * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma)
+{
+ IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
+
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Tx Half complete callback */
+ hirda->TxHalfCpltCallback(hirda);
+#else
+ /* Call legacy weak Tx complete callback */
+ HAL_IRDA_TxHalfCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+}
+
+/**
+ * @brief DMA IRDA receive process complete callback.
+ * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
+{
+ IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
+
+ /* DMA Normal mode */
+ if (hdma->Init.Mode != DMA_CIRCULAR)
+ {
+ hirda->RxXferCount = 0U;
+
+ /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
+ CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
+ in the IRDA CR3 register */
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
+
+ /* At end of Rx process, restore hirda->RxState to Ready */
+ hirda->RxState = HAL_IRDA_STATE_READY;
+ }
+
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Rx complete callback */
+ hirda->RxCpltCallback(hirda);
+#else
+ /* Call legacy weak Rx complete callback */
+ HAL_IRDA_RxCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA IRDA receive process half complete callback.
+ * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma)
+{
+ IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
+
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /*Call registered Rx Half complete callback*/
+ hirda->RxHalfCpltCallback(hirda);
+#else
+ /* Call legacy weak Rx Half complete callback */
+ HAL_IRDA_RxHalfCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+}
+
+/**
+ * @brief DMA IRDA communication error callback.
+ * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
+ * the configuration information for the specified DMA module.
+ * @retval None
+ */
+static void IRDA_DMAError(DMA_HandleTypeDef *hdma)
+{
+ IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
+
+ /* Stop IRDA DMA Tx request if ongoing */
+ if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
+ {
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
+ {
+ hirda->TxXferCount = 0U;
+ IRDA_EndTxTransfer(hirda);
+ }
+ }
+
+ /* Stop IRDA DMA Rx request if ongoing */
+ if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
+ {
+ if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
+ {
+ hirda->RxXferCount = 0U;
+ IRDA_EndRxTransfer(hirda);
+ }
+ }
+
+ hirda->ErrorCode |= HAL_IRDA_ERROR_DMA;
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered user error callback */
+ hirda->ErrorCallback(hirda);
+#else
+ /* Call legacy weak user error callback */
+ HAL_IRDA_ErrorCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+}
+
+/**
+ * @brief DMA IRDA communication abort callback, when initiated by HAL services on Error
+ * (To be called at end of DMA Abort procedure following error occurrence).
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma)
+{
+ IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
+ hirda->RxXferCount = 0U;
+ hirda->TxXferCount = 0U;
+
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered user error callback */
+ hirda->ErrorCallback(hirda);
+#else
+ /* Call legacy weak user error callback */
+ HAL_IRDA_ErrorCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+}
+
+/**
+ * @brief DMA IRDA Tx communication abort callback, when initiated by user
+ * (To be called at end of DMA Tx Abort procedure following user abort request).
+ * @note When this callback is executed, User Abort complete call back is called only if no
+ * Abort still ongoing for Rx DMA Handle.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
+{
+ IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
+
+ hirda->hdmatx->XferAbortCallback = NULL;
+
+ /* Check if an Abort process is still ongoing */
+ if (hirda->hdmarx != NULL)
+ {
+ if (hirda->hdmarx->XferAbortCallback != NULL)
+ {
+ return;
+ }
+ }
+
+ /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
+ hirda->TxXferCount = 0U;
+ hirda->RxXferCount = 0U;
+
+ /* Reset errorCode */
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
+
+ /* Restore hirda->gState and hirda->RxState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ /* Call user Abort complete callback */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort complete callback */
+ hirda->AbortCpltCallback(hirda);
+#else
+ /* Call legacy weak Abort complete callback */
+ HAL_IRDA_AbortCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+}
+
+
+/**
+ * @brief DMA IRDA Rx communication abort callback, when initiated by user
+ * (To be called at end of DMA Rx Abort procedure following user abort request).
+ * @note When this callback is executed, User Abort complete call back is called only if no
+ * Abort still ongoing for Tx DMA Handle.
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
+{
+ IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
+
+ hirda->hdmarx->XferAbortCallback = NULL;
+
+ /* Check if an Abort process is still ongoing */
+ if (hirda->hdmatx != NULL)
+ {
+ if (hirda->hdmatx->XferAbortCallback != NULL)
+ {
+ return;
+ }
+ }
+
+ /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
+ hirda->TxXferCount = 0U;
+ hirda->RxXferCount = 0U;
+
+ /* Reset errorCode */
+ hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
+
+ /* Restore hirda->gState and hirda->RxState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ /* Call user Abort complete callback */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort complete callback */
+ hirda->AbortCpltCallback(hirda);
+#else
+ /* Call legacy weak Abort complete callback */
+ HAL_IRDA_AbortCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+}
+
+
+/**
+ * @brief DMA IRDA Tx communication abort callback, when initiated by user by a call to
+ * HAL_IRDA_AbortTransmit_IT API (Abort only Tx transfer)
+ * (This callback is executed at end of DMA Tx Abort procedure following user abort request,
+ * and leads to user Tx Abort Complete callback execution).
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
+{
+ IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
+
+ hirda->TxXferCount = 0U;
+
+ /* Restore hirda->gState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+
+ /* Call user Abort complete callback */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Transmit Complete Callback */
+ hirda->AbortTransmitCpltCallback(hirda);
+#else
+ /* Call legacy weak Abort Transmit Complete Callback */
+ HAL_IRDA_AbortTransmitCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+}
+
+/**
+ * @brief DMA IRDA Rx communication abort callback, when initiated by user by a call to
+ * HAL_IRDA_AbortReceive_IT API (Abort only Rx transfer)
+ * (This callback is executed at end of DMA Rx Abort procedure following user abort request,
+ * and leads to user Rx Abort Complete callback execution).
+ * @param hdma DMA handle.
+ * @retval None
+ */
+static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
+{
+ IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ hirda->RxXferCount = 0U;
+
+ /* Clear the Error flags in the ICR register */
+ __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
+
+ /* Restore hirda->RxState to Ready */
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+ /* Call user Abort complete callback */
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Abort Receive Complete Callback */
+ hirda->AbortReceiveCpltCallback(hirda);
+#else
+ /* Call legacy weak Abort Receive Complete Callback */
+ HAL_IRDA_AbortReceiveCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+}
+
+/**
+ * @brief Send an amount of data in interrupt mode.
+ * @note Function is called under interruption only, once
+ * interruptions have been enabled by HAL_IRDA_Transmit_IT().
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda)
+{
+ const uint16_t *tmp;
+
+ /* Check that a Tx process is ongoing */
+ if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
+ {
+ if (hirda->TxXferCount == 0U)
+ {
+ /* Disable the IRDA Transmit Data Register Empty Interrupt */
+ CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
+
+ /* Enable the IRDA Transmit Complete Interrupt */
+ SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
+ }
+ else
+ {
+ if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
+ {
+ tmp = (const uint16_t *) hirda->pTxBuffPtr; /* Derogation R.11.3 */
+ hirda->Instance->TDR = (uint16_t)(*tmp & 0x01FFU);
+ hirda->pTxBuffPtr += 2U;
+ }
+ else
+ {
+ hirda->Instance->TDR = (uint8_t)(*hirda->pTxBuffPtr & 0xFFU);
+ hirda->pTxBuffPtr++;
+ }
+ hirda->TxXferCount--;
+ }
+ }
+}
+
+/**
+ * @brief Wrap up transmission in non-blocking mode.
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda)
+{
+ /* Disable the IRDA Transmit Complete Interrupt */
+ CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
+
+ /* Tx process is ended, restore hirda->gState to Ready */
+ hirda->gState = HAL_IRDA_STATE_READY;
+
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Tx complete callback */
+ hirda->TxCpltCallback(hirda);
+#else
+ /* Call legacy weak Tx complete callback */
+ HAL_IRDA_TxCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
+}
+
+/**
+ * @brief Receive an amount of data in interrupt mode.
+ * @note Function is called under interruption only, once
+ * interruptions have been enabled by HAL_IRDA_Receive_IT()
+ * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
+ * the configuration information for the specified IRDA module.
+ * @retval None
+ */
+static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda)
+{
+ uint16_t *tmp;
+ uint16_t uhMask = hirda->Mask;
+ uint16_t uhdata;
+
+ /* Check that a Rx process is ongoing */
+ if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
+ {
+ uhdata = (uint16_t) READ_REG(hirda->Instance->RDR);
+ if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
+ {
+ tmp = (uint16_t *) hirda->pRxBuffPtr; /* Derogation R.11.3 */
+ *tmp = (uint16_t)(uhdata & uhMask);
+ hirda->pRxBuffPtr += 2U;
+ }
+ else
+ {
+ *hirda->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
+ hirda->pRxBuffPtr++;
+ }
+
+ hirda->RxXferCount--;
+ if (hirda->RxXferCount == 0U)
+ {
+ /* Disable the IRDA Parity Error Interrupt and RXNE interrupt */
+ CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
+
+ /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
+ CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
+
+ /* Rx process is completed, restore hirda->RxState to Ready */
+ hirda->RxState = HAL_IRDA_STATE_READY;
+
+#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
+ /* Call registered Rx complete callback */
+ hirda->RxCpltCallback(hirda);
+#else
+ /* Call legacy weak Rx complete callback */
+ HAL_IRDA_RxCpltCallback(hirda);
+#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
+ }
+ }
+ else
+ {
+ /* Clear RXNE interrupt flag */
+ __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST);
+ }
+}
+
+/**
+ * @}
+ */
+
+#endif /* HAL_IRDA_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+
|