1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
*
* $Date: 17. January 2013
* $Revision: V1.4.0
*
* Project: CMSIS DSP Library
* Title: arm_convolution_example_f32.c
*
* Description: Example code demonstrating Convolution of two input signals using fft.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
/**
* @ingroup groupExamples
*/
/**
* @defgroup ConvolutionExample Convolution Example
*
* \par Description:
* \par
* Demonstrates the convolution theorem with the use of the Complex FFT, Complex-by-Complex
* Multiplication, and Support Functions.
*
* \par Algorithm:
* \par
* The convolution theorem states that convolution in the time domain corresponds to
* multiplication in the frequency domain. Therefore, the Fourier transform of the convoution of
* two signals is equal to the product of their individual Fourier transforms.
* The Fourier transform of a signal can be evaluated efficiently using the Fast Fourier Transform (FFT).
* \par
* Two input signals, <code>a[n]</code> and <code>b[n]</code>, with lengths \c n1 and \c n2 respectively,
* are zero padded so that their lengths become \c N, which is greater than or equal to <code>(n1+n2-1)</code>
* and is a power of 4 as FFT implementation is radix-4.
* The convolution of <code>a[n]</code> and <code>b[n]</code> is obtained by taking the FFT of the input
* signals, multiplying the Fourier transforms of the two signals, and taking the inverse FFT of
* the multiplied result.
* \par
* This is denoted by the following equations:
* <pre> A[k] = FFT(a[n],N)
* B[k] = FFT(b[n],N)
* conv(a[n], b[n]) = IFFT(A[k] * B[k], N)</pre>
* where <code>A[k]</code> and <code>B[k]</code> are the N-point FFTs of the signals <code>a[n]</code>
* and <code>b[n]</code> respectively.
* The length of the convolved signal is <code>(n1+n2-1)</code>.
*
* \par Block Diagram:
* \par
* \image html Convolution.gif
*
* \par Variables Description:
* \par
* \li \c testInputA_f32 points to the first input sequence
* \li \c srcALen length of the first input sequence
* \li \c testInputB_f32 points to the second input sequence
* \li \c srcBLen length of the second input sequence
* \li \c outLen length of convolution output sequence, <code>(srcALen + srcBLen - 1)</code>
* \li \c AxB points to the output array where the product of individual FFTs of inputs is stored.
*
* \par CMSIS DSP Software Library Functions Used:
* \par
* - arm_fill_f32()
* - arm_copy_f32()
* - arm_cfft_radix4_init_f32()
* - arm_cfft_radix4_f32()
* - arm_cmplx_mult_cmplx_f32()
*
* <b> Refer </b>
* \link arm_convolution_example_f32.c \endlink
*
*/
/** \example arm_convolution_example_f32.c
*/
#include "arm_math.h"
#include "math_helper.h"
/* ----------------------------------------------------------------------
* Defines each of the tests performed
* ------------------------------------------------------------------- */
#define MAX_BLOCKSIZE 128
#define DELTA (0.000001f)
#define SNR_THRESHOLD 90
/* ----------------------------------------------------------------------
* Declare I/O buffers
* ------------------------------------------------------------------- */
float32_t Ak[MAX_BLOCKSIZE]; /* Input A */
float32_t Bk[MAX_BLOCKSIZE]; /* Input B */
float32_t AxB[MAX_BLOCKSIZE * 2]; /* Output */
/* ----------------------------------------------------------------------
* Test input data for Floating point Convolution example for 32-blockSize
* Generated by the MATLAB randn() function
* ------------------------------------------------------------------- */
float32_t testInputA_f32[64] =
{
-0.808920, 1.357369, 1.180861, -0.504544, 1.762637, -0.703285,
1.696966, 0.620571, -0.151093, -0.100235, -0.872382, -0.403579,
-0.860749, -0.382648, -1.052338, 0.128113, -0.646269, 1.093377,
-2.209198, 0.471706, 0.408901, 1.266242, 0.598252, 1.176827,
-0.203421, 0.213596, -0.851964, -0.466958, 0.021841, -0.698938,
-0.604107, 0.461778, -0.318219, 0.942520, 0.577585, 0.417619,
0.614665, 0.563679, -1.295073, -0.764437, 0.952194, -0.859222,
-0.618554, -2.268542, -1.210592, 1.655853, -2.627219, -0.994249,
-1.374704, 0.343799, 0.025619, 1.227481, -0.708031, 0.069355,
-1.845228, -1.570886, 1.010668, -1.802084, 1.630088, 1.286090,
-0.161050, -0.940794, 0.367961, 0.291907
};
float32_t testInputB_f32[64] =
{
0.933724, 0.046881, 1.316470, 0.438345, 0.332682, 2.094885,
0.512081, 0.035546, 0.050894, -2.320371, 0.168711, -1.830493,
-0.444834, -1.003242, -0.531494, -1.365600, -0.155420, -0.757692,
-0.431880, -0.380021, 0.096243, -0.695835, 0.558850, -1.648962,
0.020369, -0.363630, 0.887146, 0.845503, -0.252864, -0.330397,
1.269131, -1.109295, -1.027876, 0.135940, 0.116721, -0.293399,
-1.349799, 0.166078, -0.802201, 0.369367, -0.964568, -2.266011,
0.465178, 0.651222, -0.325426, 0.320245, -0.784178, -0.579456,
0.093374, 0.604778, -0.048225, 0.376297, -0.394412, 0.578182,
-1.218141, -1.387326, 0.692462, -0.631297, 0.153137, -0.638952,
0.635474, -0.970468, 1.334057, -0.111370
};
const float testRefOutput_f32[127] =
{
-0.818943, 1.229484, -0.533664, 1.016604, 0.341875, -1.963656,
5.171476, 3.478033, 7.616361, 6.648384, 0.479069, 1.792012,
-1.295591, -7.447818, 0.315830, -10.657445, -2.483469, -6.524236,
-7.380591, -3.739005, -8.388957, 0.184147, -1.554888, 3.786508,
-1.684421, 5.400610, -1.578126, 7.403361, 8.315999, 2.080267,
11.077776, 2.749673, 7.138962, 2.748762, 0.660363, 0.981552,
1.442275, 0.552721, -2.576892, 4.703989, 0.989156, 8.759344,
-0.564825, -3.994680, 0.954710, -5.014144, 6.592329, 1.599488,
-13.979146, -0.391891, -4.453369, -2.311242, -2.948764, 1.761415,
-0.138322, 10.433007, -2.309103, 4.297153, 8.535523, 3.209462,
8.695819, 5.569919, 2.514304, 5.582029, 2.060199, 0.642280,
7.024616, 1.686615, -6.481756, 1.343084, -3.526451, 1.099073,
-2.965764, -0.173723, -4.111484, 6.528384, -6.965658, 1.726291,
1.535172, 11.023435, 2.338401, -4.690188, 1.298210, 3.943885,
8.407885, 5.168365, 0.684131, 1.559181, 1.859998, 2.852417,
8.574070, -6.369078, 6.023458, 11.837963, -6.027632, 4.469678,
-6.799093, -2.674048, 6.250367, -6.809971, -3.459360, 9.112410,
-2.711621, -1.336678, 1.564249, -1.564297, -1.296760, 8.904013,
-3.230109, 6.878013, -7.819823, 3.369909, -1.657410, -2.007358,
-4.112825, 1.370685, -3.420525, -6.276605, 3.244873, -3.352638,
1.545372, 0.902211, 0.197489, -1.408732, 0.523390, 0.348440, 0
};
/* ----------------------------------------------------------------------
* Declare Global variables
* ------------------------------------------------------------------- */
uint32_t srcALen = 64; /* Length of Input A */
uint32_t srcBLen = 64; /* Length of Input B */
uint32_t outLen; /* Length of convolution output */
float32_t snr; /* output SNR */
int32_t main(void)
{
arm_status status; /* Status of the example */
arm_cfft_radix4_instance_f32 cfft_instance; /* CFFT Structure instance */
/* CFFT Structure instance pointer */
arm_cfft_radix4_instance_f32 *cfft_instance_ptr =
(arm_cfft_radix4_instance_f32*) &cfft_instance;
/* output length of convolution */
outLen = srcALen + srcBLen - 1;
/* Initialise the fft input buffers with all zeros */
arm_fill_f32(0.0, Ak, MAX_BLOCKSIZE);
arm_fill_f32(0.0, Bk, MAX_BLOCKSIZE);
/* Copy the input values to the fft input buffers */
arm_copy_f32(testInputA_f32, Ak, MAX_BLOCKSIZE/2);
arm_copy_f32(testInputB_f32, Bk, MAX_BLOCKSIZE/2);
/* Initialize the CFFT function to compute 64 point fft */
status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 0, 1);
/* Transform input a[n] from time domain to frequency domain A[k] */
arm_cfft_radix4_f32(cfft_instance_ptr, Ak);
/* Transform input b[n] from time domain to frequency domain B[k] */
arm_cfft_radix4_f32(cfft_instance_ptr, Bk);
/* Complex Multiplication of the two input buffers in frequency domain */
arm_cmplx_mult_cmplx_f32(Ak, Bk, AxB, MAX_BLOCKSIZE/2);
/* Initialize the CIFFT function to compute 64 point ifft */
status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 1, 1);
/* Transform the multiplication output from frequency domain to time domain,
that gives the convolved output */
arm_cfft_radix4_f32(cfft_instance_ptr, AxB);
/* SNR Calculation */
snr = arm_snr_f32((float32_t *)testRefOutput_f32, AxB, srcALen + srcBLen - 1);
/* Compare the SNR with threshold to test whether the
computed output is matched with the reference output values. */
if ( snr > SNR_THRESHOLD)
{
status = ARM_MATH_SUCCESS;
}
if ( status != ARM_MATH_SUCCESS)
{
while (1);
}
while (1); /* main function does not return */
}
/** \endlink */
|