summaryrefslogtreecommitdiff
path: root/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c
blob: 35517d60ebc6aa62f4fb22b3aeed0a93e75b9467 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_mat_mult_f32.c
 * Description:  Floating-point matrix multiplication
 *
 * $Date:        18. March 2019
 * $Revision:    V1.6.0
 *
 * Target Processor: Cortex-M cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "arm_math.h"

/**
 * @ingroup groupMatrix
 */

/**
 * @defgroup MatrixMult Matrix Multiplication
 *
 * Multiplies two matrices.
 *
 * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"

 * Matrix multiplication is only defined if the number of columns of the
 * first matrix equals the number of rows of the second matrix.
 * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
 * in an <code>M x P</code> matrix.
 * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
 * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
 * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
 */


/**
 * @addtogroup MatrixMult
 * @{
 */

/**
 * @brief Floating-point matrix multiplication.
 * @param[in]       *pSrcA points to the first input matrix structure
 * @param[in]       *pSrcB points to the second input matrix structure
 * @param[out]      *pDst points to output matrix structure
 * @return     		The function returns either
 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
 */
#if defined(ARM_MATH_NEON)

#define GROUPOFROWS 8

arm_status arm_mat_mult_f32(
  const arm_matrix_instance_f32 * pSrcA,
  const arm_matrix_instance_f32 * pSrcB,
  arm_matrix_instance_f32 * pDst)
{
  float32_t *pIn1 = pSrcA->pData;                /* input data matrix pointer A */
  float32_t *pIn2 = pSrcB->pData;                /* input data matrix pointer B */
  float32_t *pInA = pSrcA->pData;                /* input data matrix pointer A  */
  float32_t *pOut = pDst->pData;                 /* output data matrix pointer */
  float32_t *px;                                 /* Temporary output data matrix pointer */
  float32_t sum;                                 /* Accumulator */
  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A */
  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */


  float32_t in1, in2, in3, in4;
  uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt;      /* loop counters */
  arm_status status;                             /* status of matrix multiplication */

  float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V;
  float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp;
  float32x2_t accum = vdup_n_f32(0);
  float32_t *pIn1B = pSrcA->pData;    
  float32_t *pIn1C = pSrcA->pData;    
  float32_t *pIn1D = pSrcA->pData;  
  float32_t *pIn1E = pSrcA->pData; 
  float32_t *pIn1F = pSrcA->pData; 
  float32_t *pIn1G = pSrcA->pData; 
  float32_t *pIn1H = pSrcA->pData;   

  float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH;                                 /* Temporary output data matrix pointer */
  float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7;

#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
  {
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* Row loop */
    rowCnt = row >> 3;

    while(rowCnt > 0)
    {
      /* Output pointer is set to starting address of the row being processed */
      px = pOut + GROUPOFROWS*i;
      pxB = px + numColsB;
      pxC = px + 2*numColsB;
      pxD = px + 3*numColsB;
      pxE = px + 4*numColsB;
      pxF = px + 5*numColsB;
      pxG = px + 6*numColsB;
      pxH = px + 7*numColsB;

      /* For every row wise process, the column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, the pIn2 pointer is set
       ** to the starting address of the pSrcB data */
      pIn2 = pSrcB->pData;

      j = 0U;

      /* Column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sum0 = 0.0f;
        sum1 = 0.0f;
        sum2 = 0.0f;
        sum3 = 0.0f;
        sum4 = 0.0f;
        sum5 = 0.0f;
        sum6 = 0.0f;
        sum7 = 0.0f;

        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
        pIn1 = pInA;
        pIn1B = pIn1 + numColsA;
        pIn1C = pIn1 + 2*numColsA;
        pIn1D = pIn1 + 3*numColsA;
        pIn1E = pIn1 + 4*numColsA;
        pIn1F = pIn1 + 5*numColsA;
        pIn1G = pIn1 + 6*numColsA;
        pIn1H = pIn1 + 7*numColsA;

        acc0 = vdupq_n_f32(0.0);
        acc1 = vdupq_n_f32(0.0);
        acc2 = vdupq_n_f32(0.0);
        acc3 = vdupq_n_f32(0.0);
        acc4 = vdupq_n_f32(0.0);
        acc5 = vdupq_n_f32(0.0);
        acc6 = vdupq_n_f32(0.0);
        acc7 = vdupq_n_f32(0.0);

        /* Compute 4 MACs simultaneously. */
        colCnt = numColsA >> 2U;

        /* Matrix multiplication */
        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
          a0V = vld1q_f32(pIn1);  
          a1V = vld1q_f32(pIn1B);  
          a2V = vld1q_f32(pIn1C); 
          a3V = vld1q_f32(pIn1D); 
          a4V = vld1q_f32(pIn1E); 
          a5V = vld1q_f32(pIn1F); 
          a6V = vld1q_f32(pIn1G); 
          a7V = vld1q_f32(pIn1H); 

	  pIn1 += 4;
          pIn1B += 4;
          pIn1C += 4;
          pIn1D += 4;
          pIn1E += 4;
          pIn1F += 4;
          pIn1G += 4;
          pIn1H += 4;
          
          temp[0] = *pIn2;
          pIn2 += numColsB;
          temp[1] = *pIn2;
          pIn2 += numColsB;
          temp[2] = *pIn2;
          pIn2 += numColsB;
          temp[3] = *pIn2;
          pIn2 += numColsB;

          acc0 = vmlaq_f32(acc0,a0V,temp);
          acc1 = vmlaq_f32(acc1,a1V,temp);
          acc2 = vmlaq_f32(acc2,a2V,temp);
          acc3 = vmlaq_f32(acc3,a3V,temp);
          acc4 = vmlaq_f32(acc4,a4V,temp);
          acc5 = vmlaq_f32(acc5,a5V,temp);
          acc6 = vmlaq_f32(acc6,a6V,temp);
          acc7 = vmlaq_f32(acc7,a7V,temp);

          /* Decrement the loop count */
          colCnt--;
        }

        accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
        sum0 += accum[0] + accum[1];

        accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
        sum1 += accum[0] + accum[1];

        accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
        sum2 += accum[0] + accum[1];

        accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
        sum3 += accum[0] + accum[1];

        accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4));
        sum4 += accum[0] + accum[1];

        accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5));
        sum5 += accum[0] + accum[1];

        accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6));
        sum6 += accum[0] + accum[1];

        accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7));
        sum7 += accum[0] + accum[1];

        /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
         ** No loop unrolling is used. */
        colCnt = numColsA & 3;

        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
          sum0 += *pIn1++ * (*pIn2);
          sum1 += *pIn1B++ * (*pIn2);
          sum2 += *pIn1C++ * (*pIn2);
          sum3 += *pIn1D++ * (*pIn2);
          sum4 += *pIn1E++ * (*pIn2);
          sum5 += *pIn1F++ * (*pIn2);
          sum6 += *pIn1G++ * (*pIn2);
          sum7 += *pIn1H++ * (*pIn2);
          pIn2 += numColsB;

          /* Decrement the loop counter */
          colCnt--;
        }

        /* Store the result in the destination buffer */
        *px++ = sum0;
        *pxB++ = sum1;
        *pxC++ = sum2;
        *pxD++ = sum3;
        *pxE++ = sum4;
        *pxF++ = sum5;
        *pxG++ = sum6;
        *pxH++ = sum7;

        /* Update the pointer pIn2 to point to the  starting address of the next column */
        j++;
        pIn2 = pSrcB->pData + j;

        /* Decrement the column loop counter */
        col--;

      } while (col > 0U);

      /* Update the pointer pInA to point to the  starting address of the next row */
      i = i + numColsB;
      pInA = pInA + GROUPOFROWS*numColsA;

      /* Decrement the row loop counter */
      rowCnt--;
    } 

    /*

    i was the index of a group of rows computed by previous loop.
    Now i is the index of a row since below code is computing row per row
    and no more group of row per group of rows.

    */

    i = GROUPOFROWS*i;
    rowCnt = row & 7;

    while(rowCnt > 0)
    {
      /* Output pointer is set to starting address of the row being processed */
      px = pOut + i;

      /* For every row wise process, the column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, the pIn2 pointer is set
       ** to the starting address of the pSrcB data */
      pIn2 = pSrcB->pData;

      j = 0U;

      /* Column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sum = 0.0f;

        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
        pIn1 = pInA;

        acc0 = vdupq_n_f32(0.0);

        /* Compute 4 MACs simultaneously. */
        colCnt = numColsA >> 2U;

        /* Matrix multiplication   */
        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
          a0V = vld1q_f32(pIn1);  // load & separate real/imag pSrcA (de-interleave 2)
          pIn1 += 4;
          
          temp[0] = *pIn2;
          pIn2 += numColsB;
          temp[1] = *pIn2;
          pIn2 += numColsB;
          temp[2] = *pIn2;
          pIn2 += numColsB;
          temp[3] = *pIn2;
          pIn2 += numColsB;

          acc0 = vmlaq_f32(acc0,a0V,temp);

          /* Decrement the loop count */
          colCnt--;
        }

        accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
        sum += accum[0] + accum[1];

        /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
         ** No loop unrolling is used. */
        colCnt = numColsA % 0x4U;

        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
          sum += *pIn1++ * (*pIn2);
          pIn2 += numColsB;

          /* Decrement the loop counter */
          colCnt--;
        }

        /* Store the result in the destination buffer */
        *px++ = sum;

        /* Update the pointer pIn2 to point to the  starting address of the next column */
        j++;
        pIn2 = pSrcB->pData + j;

        /* Decrement the column loop counter */
        col--;

      } while (col > 0U);


      /* Update the pointer pInA to point to the  starting address of the next row */
      i = i + numColsB;
      pInA = pInA + numColsA;

      /* Decrement the row loop counter */
      rowCnt--;

    } 
    /* Set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }

  /* Return to application */
  return (status);
}
#else
arm_status arm_mat_mult_f32(
  const arm_matrix_instance_f32 * pSrcA,
  const arm_matrix_instance_f32 * pSrcB,
        arm_matrix_instance_f32 * pDst)
{
  float32_t *pIn1 = pSrcA->pData;                /* Input data matrix pointer A */
  float32_t *pIn2 = pSrcB->pData;                /* Input data matrix pointer B */
  float32_t *pInA = pSrcA->pData;                /* Input data matrix pointer A */
  float32_t *pInB = pSrcB->pData;                /* Input data matrix pointer B */
  float32_t *pOut = pDst->pData;                 /* Output data matrix pointer */
  float32_t *px;                                 /* Temporary output data matrix pointer */
  float32_t sum;                                 /* Accumulator */
  uint16_t numRowsA = pSrcA->numRows;            /* Number of rows of input matrix A */
  uint16_t numColsB = pSrcB->numCols;            /* Number of columns of input matrix B */
  uint16_t numColsA = pSrcA->numCols;            /* Number of columns of input matrix A */
  uint32_t col, i = 0U, row = numRowsA, colCnt;  /* Loop counters */
  arm_status status;                             /* Status of matrix multiplication */

#ifdef ARM_MATH_MATRIX_CHECK

  /* Check for matrix mismatch condition */
  if ((pSrcA->numCols != pSrcB->numRows) ||
      (pSrcA->numRows != pDst->numRows)  ||
      (pSrcB->numCols != pDst->numCols)    )
  {
    /* Set status as ARM_MATH_SIZE_MISMATCH */
    status = ARM_MATH_SIZE_MISMATCH;
  }
  else

#endif /* #ifdef ARM_MATH_MATRIX_CHECK */

  {
    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
    /* row loop */
    do
    {
      /* Output pointer is set to starting address of row being processed */
      px = pOut + i;

      /* For every row wise process, column loop counter is to be initiated */
      col = numColsB;

      /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
      pIn2 = pSrcB->pData;

      /* column loop */
      do
      {
        /* Set the variable sum, that acts as accumulator, to zero */
        sum = 0.0f;

        /* Initialize pointer pIn1 to point to starting address of column being processed */
        pIn1 = pInA;

#if defined (ARM_MATH_LOOPUNROLL)

        /* Loop unrolling: Compute 4 MACs at a time. */
        colCnt = numColsA >> 2U;

        /* matrix multiplication */
        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */

          /* Perform the multiply-accumulates */
          sum += *pIn1++ * *pIn2;
          pIn2 += numColsB;

          sum += *pIn1++ * *pIn2;
          pIn2 += numColsB;

          sum += *pIn1++ * *pIn2;
          pIn2 += numColsB;

          sum += *pIn1++ * *pIn2;
          pIn2 += numColsB;

          /* Decrement loop counter */
          colCnt--;
        }

        /* Loop unrolling: Compute remaining MACs */
        colCnt = numColsA % 0x4U;

#else

        /* Initialize cntCnt with number of columns */
        colCnt = numColsA;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */

        while (colCnt > 0U)
        {
          /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */

          /* Perform the multiply-accumulates */
          sum += *pIn1++ * *pIn2;
          pIn2 += numColsB;

          /* Decrement loop counter */
          colCnt--;
        }

        /* Store result in destination buffer */
        *px++ = sum;

        /* Decrement column loop counter */
        col--;

        /* Update pointer pIn2 to point to starting address of next column */
        pIn2 = pInB + (numColsB - col);

      } while (col > 0U);

      /* Update pointer pInA to point to starting address of next row */
      i = i + numColsB;
      pInA = pInA + numColsA;

      /* Decrement row loop counter */
      row--;

    } while (row > 0U);

    /* Set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;
  }

  /* Return to application */
  return (status);
}

#endif /* #if defined(ARM_MATH_NEON) */

/**
 * @} end of MatrixMult group
 */