1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_rms_q15.c
* Description: Root Mean Square of the elements of a Q15 vector
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
@ingroup groupStats
*/
/**
@addtogroup RMS
@{
*/
/**
@brief Root Mean Square of the elements of a Q15 vector.
@param[in] pSrc points to the input vector
@param[in] blockSize number of samples in input vector
@param[out] pResult root mean square value returned here
@return none
@par Scaling and Overflow Behavior
The function is implemented using a 64-bit internal accumulator.
The input is represented in 1.15 format.
Intermediate multiplication yields a 2.30 format, and this
result is added without saturation to a 64-bit accumulator in 34.30 format.
With 33 guard bits in the accumulator, there is no risk of overflow, and the
full precision of the intermediate multiplication is preserved.
Finally, the 34.30 result is truncated to 34.15 format by discarding the lower
15 bits, and then saturated to yield a result in 1.15 format.
*/
void arm_rms_q15(
const q15_t * pSrc,
uint32_t blockSize,
q15_t * pResult)
{
uint32_t blkCnt; /* Loop counter */
q63_t sum = 0; /* Temporary result storage */
q15_t in; /* Temporary variable to store input value */
#if defined (ARM_MATH_LOOPUNROLL) && defined (ARM_MATH_DSP)
q31_t in32; /* Temporary variable to store input value */
#endif
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = blockSize >> 2U;
while (blkCnt > 0U)
{
/* C = A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1] */
/* Compute sum of squares and store result in a temporary variable. */
#if defined (ARM_MATH_DSP)
in32 = read_q15x2_ia ((q15_t **) &pSrc);
sum = __SMLALD(in32, in32, sum);
in32 = read_q15x2_ia ((q15_t **) &pSrc);
sum = __SMLALD(in32, in32, sum);
#else
in = *pSrc++;
sum += ((q31_t) in * in);
in = *pSrc++;
sum += ((q31_t) in * in);
in = *pSrc++;
sum += ((q31_t) in * in);
in = *pSrc++;
sum += ((q31_t) in * in);
#endif /* #if defined (ARM_MATH_DSP) */
/* Decrement loop counter */
blkCnt--;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = blockSize % 0x4U;
#else
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U)
{
/* C = A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1] */
in = *pSrc++;
/* Compute sum of squares and store result in a temporary variable. */
sum += ((q31_t) in * in);
/* Decrement loop counter */
blkCnt--;
}
/* Truncating and saturating the accumulator to 1.15 format */
/* Store result in destination */
arm_sqrt_q15(__SSAT((sum / (q63_t)blockSize) >> 15, 16), pResult);
}
/**
@} end of RMS group
*/
|