1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
*
*
* Project: CMSIS NN Library
* Title: arm_nnexamples_gru.cpp
*
* Description: Gated Recurrent Unit Example
*
* Target Processor: Cortex-M4/Cortex-M7
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Arm LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
/**
* @ingroup groupExamples
*/
/**
* @defgroup GRUExample Gated Recurrent Unit Example
*
* \par Description:
* \par
* Demonstrates a gated recurrent unit (GRU) example with the use of fully-connected,
* Tanh/Sigmoid activation functions.
*
* \par Model definition:
* \par
* GRU is a type of recurrent neural network (RNN). It contains two sigmoid gates and one hidden
* state.
* \par
* The computation can be summarized as:
* <pre>z[t] = sigmoid( W_z ⋅ {h[t-1],x[t]} )
* r[t] = sigmoid( W_r ⋅ {h[t-1],x[t]} )
* n[t] = tanh( W_n ⋅ [r[t] × {h[t-1], x[t]} )
* h[t] = (1 - z[t]) × h[t-1] + z[t] × n[t] </pre>
* \image html GRU.gif "Gate Recurrent Unit Diagram"
*
* \par Variables Description:
* \par
* \li \c update_gate_weights, \c reset_gate_weights, \c hidden_state_weights are weights corresponding to update gate (W_z), reset gate (W_r), and hidden state (W_n).
* \li \c update_gate_bias, \c reset_gate_bias, \c hidden_state_bias are layer bias arrays
* \li \c test_input1, \c test_input2, \c test_history are the inputs and initial history
*
* \par
* The buffer is allocated as:
* \par
* | reset | input | history | update | hidden_state |
* \par
* In this way, the concatination is automatically done since (reset, input) and (input, history)
* are physically concatinated in memory.
* \par
* The ordering of the weight matrix should be adjusted accordingly.
*
*
*
* \par CMSIS DSP Software Library Functions Used:
* \par
* - arm_fully_connected_mat_q7_vec_q15_opt()
* - arm_nn_activations_direct_q15()
* - arm_mult_q15()
* - arm_offset_q15()
* - arm_sub_q15()
* - arm_copy_q15()
*
* <b> Refer </b>
* \link arm_nnexamples_gru.cpp \endlink
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "arm_nnexamples_gru_test_data.h"
#include "arm_math.h"
#include "arm_nnfunctions.h"
#ifdef _RTE_
#include "RTE_Components.h"
#ifdef RTE_Compiler_EventRecorder
#include "EventRecorder.h"
#endif
#endif
#define DIM_HISTORY 32
#define DIM_INPUT 32
#define DIM_VEC 64
#define USE_X4
#ifndef USE_X4
static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X2;
static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X2;
static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X2;
#else
static q7_t update_gate_weights[DIM_VEC * DIM_HISTORY] = UPDATE_GATE_WEIGHT_X4;
static q7_t reset_gate_weights[DIM_VEC * DIM_HISTORY] = RESET_GATE_WEIGHT_X4;
static q7_t hidden_state_weights[DIM_VEC * DIM_HISTORY] = HIDDEN_STATE_WEIGHT_X4;
#endif
static q7_t update_gate_bias[DIM_HISTORY] = UPDATE_GATE_BIAS;
static q7_t reset_gate_bias[DIM_HISTORY] = RESET_GATE_BIAS;
static q7_t hidden_state_bias[DIM_HISTORY] = HIDDEN_STATE_BIAS;
static q15_t test_input1[DIM_INPUT] = INPUT_DATA1;
static q15_t test_input2[DIM_INPUT] = INPUT_DATA2;
static q15_t test_history[DIM_HISTORY] = HISTORY_DATA;
q15_t scratch_buffer[DIM_HISTORY * 4 + DIM_INPUT];
void gru_example(q15_t * scratch_input, uint16_t input_size, uint16_t history_size,
q7_t * weights_update, q7_t * weights_reset, q7_t * weights_hidden_state,
q7_t * bias_update, q7_t * bias_reset, q7_t * bias_hidden_state)
{
q15_t *reset = scratch_input;
q15_t *input = scratch_input + history_size;
q15_t *history = scratch_input + history_size + input_size;
q15_t *update = scratch_input + 2 * history_size + input_size;
q15_t *hidden_state = scratch_input + 3 * history_size + input_size;
// reset gate calculation
// the range of the output can be adjusted with bias_shift and output_shift
#ifndef USE_X4
arm_fully_connected_mat_q7_vec_q15(input, weights_reset, input_size + history_size, history_size, 0, 15, bias_reset,
reset, NULL);
#else
arm_fully_connected_mat_q7_vec_q15_opt(input, weights_reset, input_size + history_size, history_size, 0, 15,
bias_reset, reset, NULL);
#endif
// sigmoid function, the size of the integer bit-width should be consistent with out_shift
arm_nn_activations_direct_q15(reset, history_size, 0, ARM_SIGMOID);
arm_mult_q15(history, reset, reset, history_size);
// update gate calculation
// the range of the output can be adjusted with bias_shift and output_shift
#ifndef USE_X4
arm_fully_connected_mat_q7_vec_q15(input, weights_update, input_size + history_size, history_size, 0, 15,
bias_update, update, NULL);
#else
arm_fully_connected_mat_q7_vec_q15_opt(input, weights_update, input_size + history_size, history_size, 0, 15,
bias_update, update, NULL);
#endif
// sigmoid function, the size of the integer bit-width should be consistent with out_shift
arm_nn_activations_direct_q15(update, history_size, 0, ARM_SIGMOID);
// hidden state calculation
#ifndef USE_X4
arm_fully_connected_mat_q7_vec_q15(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
bias_hidden_state, hidden_state, NULL);
#else
arm_fully_connected_mat_q7_vec_q15_opt(reset, weights_hidden_state, input_size + history_size, history_size, 0, 15,
bias_hidden_state, hidden_state, NULL);
#endif
// tanh function, the size of the integer bit-width should be consistent with out_shift
arm_nn_activations_direct_q15(hidden_state, history_size, 0, ARM_TANH);
arm_mult_q15(update, hidden_state, hidden_state, history_size);
// we calculate z - 1 here
// so final addition becomes substraction
arm_offset_q15(update, 0x8000, update, history_size);
// multiply history
arm_mult_q15(history, update, update, history_size);
// calculate history_out
arm_sub_q15(hidden_state, update, history, history_size);
return;
}
int main()
{
#ifdef RTE_Compiler_EventRecorder
EventRecorderInitialize (EventRecordAll, 1); // initialize and start Event Recorder
#endif
printf("Start GRU execution\n");
int input_size = DIM_INPUT;
int history_size = DIM_HISTORY;
// copy over the input data
arm_copy_q15(test_input1, scratch_buffer + history_size, input_size);
arm_copy_q15(test_history, scratch_buffer + history_size + input_size, history_size);
gru_example(scratch_buffer, input_size, history_size,
update_gate_weights, reset_gate_weights, hidden_state_weights,
update_gate_bias, reset_gate_bias, hidden_state_bias);
printf("Complete first iteration on GRU\n");
arm_copy_q15(test_input2, scratch_buffer + history_size, input_size);
gru_example(scratch_buffer, input_size, history_size,
update_gate_weights, reset_gate_weights, hidden_state_weights,
update_gate_bias, reset_gate_bias, hidden_state_bias);
printf("Complete second iteration on GRU\n");
return 0;
}
|