1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
/*
* Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* ----------------------------------------------------------------------
* Project: CMSIS NN Library
* Title: arm_depthwise_conv_u8_basic_ver1.c
* Description: u8 depthwise convolution function
*
* $Date: June, 2019
* $Revision: V.0.8.0
*
* Target : Cortex-M cores with DSP extension
*
* -------------------------------------------------------------------- */
#include "arm_math.h"
#include "arm_nnfunctions.h"
#include <stdint.h>
#include <stdio.h>
#define DILATION_X (1)
#define DILATION_Y (1)
/**
* @ingroup groupNN
*/
/**
* @addtogroup NNConv
* @{
*/
/**
* @brief uint8 depthwise convolution function with asymmetric quantization for even number of channel multiplier
* and input channels. Unless specified otherwise, arguments are mandatory. Both square and non-square inputs
* are accepted.
*
* @param[in] input Pointer to input tensor
* @param[in] input_x Width of input tensor
* @param[in] input_y Height of input tensor
* @param[in] input_ch Channels in input tensor
* @param[in] kernel Pointer to kernel weights
* @param[in] kernel_x Width of kernel
* @param[in] kernel_y Height of kernel
* @param[in] ch_mult Number of channel multiplier
* @param[in] pad_x Padding sizes x
* @param[in] pad_y Padding sizes y
* @param[in] stride_x Convolution stride along the width
* @param[in] stride_y Convolution stride along the height
* @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
* @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
* @param[in] bias Pointer to optional bias values. If no bias is
* availble, NULL is expected
* @param[in] input_offset Input tensor zero offset
* @param[in] filter_offset Kernel tensor zero offset
* @param[in] output_offset Output tensor zero offset
* @param[in,out] output Pointer to output tensor
* @param[in] output_x Width of output tensor
* @param[in] output_y Height of output tensor
* @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
* @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
* @param[in] out_shift Amount of right-shift for output
* @param[in] out_mult Output multiplier for requantization
* @return The function returns one of the following
* <code>ARM_MATH_SIZE_MISMATCH</code> - Not supported dimension of tensors
* <code>ARM_MATH_SUCCESS</code> - Successful operation
* <code>ARM_MATH_ARGUMENT_ERROR</code> - Implementation not available
*
* <b> Input constraints</b>
* ch_mult is multiple of 2
* kernel_x is multiple of 2
*
*/
arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
const uint16_t input_x,
const uint16_t input_y,
const uint16_t input_ch,
const uint8_t *kernel,
const uint16_t kernel_x,
const uint16_t kernel_y,
const int16_t ch_mult,
const int16_t pad_x,
const int16_t pad_y,
const int16_t stride_x,
const int16_t stride_y,
const int16_t dilation_x,
const int16_t dilation_y,
const int32_t *bias,
const int32_t input_offset,
const int32_t filter_offset,
const int32_t output_offset,
uint8_t *output,
const uint16_t output_x,
const uint16_t output_y,
const int32_t output_activation_min,
const int32_t output_activation_max,
const int32_t out_shift,
const int32_t out_mult)
{
arm_status status = ARM_MATH_SUCCESS;
#if defined (ARM_MATH_DSP)
int i_out = 0;
(void)dilation_x;
(void)dilation_y;
const int32_t input_offset_pkd = (input_offset & 0xFFFF) | (input_offset & 0xFFFF) << 16;
const int32_t kernel_offset_pkd = (filter_offset & 0xFFFF) | (filter_offset & 0xFFFF) << 16;
if (0 != ch_mult % 2 || 0 != kernel_x % 2)
{
return ARM_MATH_SIZE_MISMATCH;
}
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
{
const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
{
const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
{
for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult += 2)
{
const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
int32_t acc_0 = 0;
int32_t acc_1 = 0;
if (NULL != bias)
{
acc_0 = bias[idx_out_ch];
acc_1 = bias[idx_out_ch + 1];
}
for (int i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
{
const int32_t idx_y = base_idx_y + DILATION_Y * i_ker_y;
const int32_t y_in_range = (idx_y >= 0) && (idx_y < input_y);
for (int i_ker_x = 0; i_ker_x < kernel_x; i_ker_x += 2)
{
if (1 == y_in_range)
{
const int32_t idx_x = base_idx_x + DILATION_X * i_ker_x;
const int32_t idx_x1 = base_idx_x + DILATION_X * (i_ker_x + 1);
/* Range check for first input */
if (idx_x >= 0 && idx_x < input_x)
{
const int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
const int32_t ker_idx_0 =
(i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;
const int32_t ker_idx_1 = ker_idx_0 + input_ch * ch_mult;
int32_t input_pkd = input[idx_0] | (input[idx_0 + input_ch] << 16);
int32_t kernel_pkd = kernel[ker_idx_0] | (kernel[ker_idx_1] << 16);
input_pkd = __SADD16(input_pkd, input_offset_pkd);
kernel_pkd = __SADD16(kernel_pkd, kernel_offset_pkd);
/* Range check for second input */
if (idx_x1 >= input_x)
{
input_pkd &= 0xFFFF;
}
acc_0 = __SMLAD(input_pkd, kernel_pkd, acc_0);
kernel_pkd = kernel[ker_idx_0 + 1] | (kernel[ker_idx_1 + 1] << 16);
kernel_pkd = __SADD16(kernel_pkd, kernel_offset_pkd);
acc_1 = __SMLAD(input_pkd, kernel_pkd, acc_1);
}
}
}
}
/* Requantize and clamp output to provided range */
acc_0 = arm_nn_divide_by_power_of_two(arm_nn_sat_doubling_high_mult(
acc_0 * (1 << LEFT_SHIFT(out_shift)), out_mult),
RIGHT_SHIFT(out_shift));
acc_0 += output_offset;
if (output_activation_min > acc_0)
{
acc_0 = output_activation_min;
}
if (acc_0 > output_activation_max)
{
acc_0 = output_activation_max;
}
output[i_out++] = acc_0;
/* Requantize and clamp output to provided range */
acc_1 = arm_nn_divide_by_power_of_two(arm_nn_sat_doubling_high_mult(
acc_1 * (1 << LEFT_SHIFT(out_shift)), out_mult),
RIGHT_SHIFT(out_shift));
acc_1 += output_offset;
if (output_activation_min > acc_1)
{
acc_1 = output_activation_min;
}
if (acc_1 > output_activation_max)
{
acc_1 = output_activation_max;
}
output[i_out++] = acc_1;
}
}
}
}
#else
/* No available implementation. */
status = ARM_MATH_ARGUMENT_ERROR;
#endif
return status;
}
/**
* @} end of NNConv group
*/
|