summaryrefslogtreecommitdiff
path: root/Drivers/STM32H7xx_HAL_Driver/Src/stm32h7xx_hal_adc.c
blob: 0153e7fa0489ae974adc1ea32b61679fe3165531 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
/**
  ******************************************************************************
  * @file    stm32h7xx_hal_adc.c
  * @author  MCD Application Team
  * @brief   This file provides firmware functions to manage the following
  *          functionalities of the Analog to Digital Converter (ADC)
  *          peripheral:
  *           + Peripheral Control functions
  *           + Peripheral State functions
  *          Other functions (extended functions) are available in file
  *          "stm32h7xx_hal_adc_ex.c".
  *
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2017 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  @verbatim
  ==============================================================================
                     ##### ADC peripheral features #####
  ==============================================================================
  [..]
  (+) 16-bit, 14-bit, 12-bit, 10-bit or 8-bit configurable resolution.
       Note: On devices STM32H72xx and STM32H73xx, these resolution are applicable to instances ADC1 and ADC2. 
       ADC3 is featuring resolutions 12-bit, 10-bit, 8-bit, 6-bit.

  (+) Interrupt generation at the end of regular conversion and in case of
      analog watchdog or overrun events.

  (+) Single and continuous conversion modes.

  (+) Scan mode for conversion of several channels sequentially.

  (+) Data alignment with in-built data coherency.

  (+) Programmable sampling time (channel wise)

  (+) External trigger (timer or EXTI) with configurable polarity

  (+) DMA request generation for transfer of conversions data of regular group.

  (+) Configurable delay between conversions in Dual interleaved mode.

  (+) ADC channels selectable single/differential input.

  (+) ADC offset shared on 4 offset instances.
  (+) ADC calibration

  (+) ADC conversion of regular group.

  (+) ADC supply requirements: 1.62 V to 3.6 V.

  (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to
      Vdda or to an external voltage reference).


                     ##### How to use this driver #####
  ==============================================================================
    [..]

     *** Configuration of top level parameters related to ADC ***
     ============================================================
     [..]

    (#) Enable the ADC interface
        (++) As prerequisite, ADC clock must be configured at RCC top level.

        (++) Two clock settings are mandatory:
             (+++) ADC clock (core clock, also possibly conversion clock).

             (+++) ADC clock (conversions clock).
                   Two possible clock sources: synchronous clock derived from AHB clock
                   or asynchronous clock derived from system clock, the PLL2 or the PLL3 running up to 400MHz.

             (+++) Example:
                   Into HAL_ADC_MspInit() (recommended code location) or with
                   other device clock parameters configuration:
               (+++) __HAL_RCC_ADC_CLK_ENABLE();                  (mandatory)

               RCC_ADCCLKSOURCE_PLL2 enable:                   (optional: if asynchronous clock selected)
               (+++) RCC_PeriphClkInitTypeDef   RCC_PeriphClkInit;
               (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
               (+++) PeriphClkInit.AdcClockSelection    = RCC_ADCCLKSOURCE_PLL2;
               (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);

        (++) ADC clock source and clock prescaler are configured at ADC level with
             parameter "ClockPrescaler" using function HAL_ADC_Init().

    (#) ADC pins configuration
         (++) Enable the clock for the ADC GPIOs
              using macro __HAL_RCC_GPIOx_CLK_ENABLE()
         (++) Configure these ADC pins in analog mode
              using function HAL_GPIO_Init()

    (#) Optionally, in case of usage of ADC with interruptions:
         (++) Configure the NVIC for ADC
              using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
         (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
              into the function of corresponding ADC interruption vector
              ADCx_IRQHandler().

    (#) Optionally, in case of usage of DMA:
         (++) Configure the DMA (DMA channel, mode normal or circular, ...)
              using function HAL_DMA_Init().
         (++) Configure the NVIC for DMA
              using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
         (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
              into the function of corresponding DMA interruption vector
              DMAx_Channelx_IRQHandler().

     *** Configuration of ADC, group regular, channels parameters ***
     ================================================================
     [..]

    (#) Configure the ADC parameters (resolution, data alignment, ...)
        and regular group parameters (conversion trigger, sequencer, ...)
        using function HAL_ADC_Init().

    (#) Configure the channels for regular group parameters (channel number,
        channel rank into sequencer, ..., into regular group)
        using function HAL_ADC_ConfigChannel().

    (#) Optionally, configure the analog watchdog parameters (channels
        monitored, thresholds, ...)
        using function HAL_ADC_AnalogWDGConfig().

     *** Execution of ADC conversions ***
     ====================================
     [..]

    (#) Optionally, perform an automatic ADC calibration to improve the
        conversion accuracy
        using function HAL_ADCEx_Calibration_Start().

    (#) ADC driver can be used among three modes: polling, interruption,
        transfer by DMA.

        (++) ADC conversion by polling:
          (+++) Activate the ADC peripheral and start conversions
                using function HAL_ADC_Start()
          (+++) Wait for ADC conversion completion
                using function HAL_ADC_PollForConversion()
          (+++) Retrieve conversion results
                using function HAL_ADC_GetValue()
          (+++) Stop conversion and disable the ADC peripheral
                using function HAL_ADC_Stop()

        (++) ADC conversion by interruption:
          (+++) Activate the ADC peripheral and start conversions
                using function HAL_ADC_Start_IT()
          (+++) Wait for ADC conversion completion by call of function
                HAL_ADC_ConvCpltCallback()
                (this function must be implemented in user program)
          (+++) Retrieve conversion results
                using function HAL_ADC_GetValue()
          (+++) Stop conversion and disable the ADC peripheral
                using function HAL_ADC_Stop_IT()

        (++) ADC conversion with transfer by DMA:
          (+++) Activate the ADC peripheral and start conversions
                using function HAL_ADC_Start_DMA()
          (+++) Wait for ADC conversion completion by call of function
                HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback()
                (these functions must be implemented in user program)
          (+++) Conversion results are automatically transferred by DMA into
                destination variable address.
          (+++) Stop conversion and disable the ADC peripheral
                using function HAL_ADC_Stop_DMA()

     [..]

    (@) Callback functions must be implemented in user program:
      (+@) HAL_ADC_ErrorCallback()
      (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog)
      (+@) HAL_ADC_ConvCpltCallback()
      (+@) HAL_ADC_ConvHalfCpltCallback

     *** Deinitialization of ADC ***
     ============================================================
     [..]

    (#) Disable the ADC interface
      (++) ADC clock can be hard reset and disabled at RCC top level.
        (++) Hard reset of ADC peripherals
             using macro __HAL_RCC_ADCx_FORCE_RESET(), __HAL_RCC_ADCx_RELEASE_RESET().
        (++) ADC clock disable
             using the equivalent macro/functions as configuration step.
             (+++) Example:
                   Into HAL_ADC_MspDeInit() (recommended code location) or with
                   other device clock parameters configuration:
               (+++) __HAL_RCC_ADC_CLK_DISABLE();                  (if not used anymore)
               RCC_ADCCLKSOURCE_CLKP restore:                      (optional)
               (+++) RCC_PeriphClkInitTypeDef   RCC_PeriphClkInit;
               (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
               (+++) PeriphClkInit.AdcClockSelection    = RCC_ADCCLKSOURCE_CLKP;
               (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);

    (#) ADC pins configuration
         (++) Disable the clock for the ADC GPIOs
              using macro __HAL_RCC_GPIOx_CLK_DISABLE()

    (#) Optionally, in case of usage of ADC with interruptions:
         (++) Disable the NVIC for ADC
              using function HAL_NVIC_EnableIRQ(ADCx_IRQn)

    (#) Optionally, in case of usage of DMA:
         (++) Deinitialize the DMA
              using function HAL_DMA_Init().
         (++) Disable the NVIC for DMA
              using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)

    [..]

    *** Callback registration ***
    =============================================
    [..]

     The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1,
     allows the user to configure dynamically the driver callbacks.
     Use Functions HAL_ADC_RegisterCallback()
     to register an interrupt callback.
    [..]

     Function HAL_ADC_RegisterCallback() allows to register following callbacks:
       (+) ConvCpltCallback               : ADC conversion complete callback
       (+) ConvHalfCpltCallback           : ADC conversion DMA half-transfer callback
       (+) LevelOutOfWindowCallback       : ADC analog watchdog 1 callback
       (+) ErrorCallback                  : ADC error callback
       (+) InjectedConvCpltCallback       : ADC group injected conversion complete callback
       (+) InjectedQueueOverflowCallback  : ADC group injected context queue overflow callback
       (+) LevelOutOfWindow2Callback      : ADC analog watchdog 2 callback
       (+) LevelOutOfWindow3Callback      : ADC analog watchdog 3 callback
       (+) EndOfSamplingCallback          : ADC end of sampling callback
       (+) MspInitCallback                : ADC Msp Init callback
       (+) MspDeInitCallback              : ADC Msp DeInit callback
     This function takes as parameters the HAL peripheral handle, the Callback ID
     and a pointer to the user callback function.
    [..]

     Use function HAL_ADC_UnRegisterCallback to reset a callback to the default
     weak function.
    [..]

     HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle,
     and the Callback ID.
     This function allows to reset following callbacks:
       (+) ConvCpltCallback               : ADC conversion complete callback
       (+) ConvHalfCpltCallback           : ADC conversion DMA half-transfer callback
       (+) LevelOutOfWindowCallback       : ADC analog watchdog 1 callback
       (+) ErrorCallback                  : ADC error callback
       (+) InjectedConvCpltCallback       : ADC group injected conversion complete callback
       (+) InjectedQueueOverflowCallback  : ADC group injected context queue overflow callback
       (+) LevelOutOfWindow2Callback      : ADC analog watchdog 2 callback
       (+) LevelOutOfWindow3Callback      : ADC analog watchdog 3 callback
       (+) EndOfSamplingCallback          : ADC end of sampling callback
       (+) MspInitCallback                : ADC Msp Init callback
       (+) MspDeInitCallback              : ADC Msp DeInit callback
     [..]

     By default, after the HAL_ADC_Init() and when the state is HAL_ADC_STATE_RESET
     all callbacks are set to the corresponding weak functions:
     examples HAL_ADC_ConvCpltCallback(), HAL_ADC_ErrorCallback().
     Exception done for MspInit and MspDeInit functions that are
     reset to the legacy weak functions in the HAL_ADC_Init()/ HAL_ADC_DeInit() only when
     these callbacks are null (not registered beforehand).
    [..]

     If MspInit or MspDeInit are not null, the HAL_ADC_Init()/ HAL_ADC_DeInit()
     keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
     [..]

     Callbacks can be registered/unregistered in HAL_ADC_STATE_READY state only.
     Exception done MspInit/MspDeInit functions that can be registered/unregistered
     in HAL_ADC_STATE_READY or HAL_ADC_STATE_RESET state,
     thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
    [..]

     Then, the user first registers the MspInit/MspDeInit user callbacks
     using HAL_ADC_RegisterCallback() before calling HAL_ADC_DeInit()
     or HAL_ADC_Init() function.
     [..]

     When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or
     not defined, the callback registration feature is not available and all callbacks
     are set to the corresponding weak functions.

  @endverbatim
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"

/** @addtogroup STM32H7xx_HAL_Driver
  * @{
  */

/** @defgroup ADC ADC
  * @brief ADC HAL module driver
  * @{
  */

#ifdef HAL_ADC_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

/** @defgroup ADC_Private_Constants ADC Private Constants
  * @{
  */
#define ADC_CFGR_FIELDS_1  ((uint32_t)(ADC_CFGR_RES    |\
                                       ADC_CFGR_CONT   | ADC_CFGR_OVRMOD  |\
                                       ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\
                                       ADC_CFGR_EXTEN  | ADC_CFGR_EXTSEL)) /*!< ADC_CFGR fields of parameters that can be updated
                                                                                  when no regular conversion is on-going */

#if defined(ADC_VER_V5_V90)
#define ADC3_CFGR_FIELDS_1  ((ADC3_CFGR_RES    | ADC3_CFGR_ALIGN   |\
                             ADC_CFGR_CONT   | ADC_CFGR_OVRMOD  |\
                             ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\
                             ADC_CFGR_EXTEN  | ADC_CFGR_EXTSEL))   /*!< ADC_CFGR fields of parameters that can be updated 
                                                                        when no regular conversion is on-going */
#endif

#define ADC_CFGR2_FIELDS  ((uint32_t)(ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR  |\
                                       ADC_CFGR2_OVSS | ADC_CFGR2_TROVS |\
                                       ADC_CFGR2_ROVSM))                     /*!< ADC_CFGR2 fields of parameters that can be updated when no conversion
                                                                                 (neither regular nor injected) is on-going  */

/* Timeout values for ADC operations (enable settling time,                   */
/*   disable settling time, ...).                                             */
/*   Values defined to be higher than worst cases: low clock frequency,       */
/*   maximum prescalers.                                                      */
#define ADC_ENABLE_TIMEOUT              (2UL)    /*!< ADC enable time-out value  */
#define ADC_DISABLE_TIMEOUT             (2UL)    /*!< ADC disable time-out value */

/* Timeout to wait for current conversion on going to be completed.           */
/* Timeout fixed to worst case, for 1 channel.                                */
/*   - maximum sampling time (830.5 adc_clk)                                  */
/*   - ADC resolution (Tsar 16 bits= 16.5 adc_clk)                            */
/*   - ADC clock with prescaler 256                                           */
/*     823 * 256 = 210688 clock cycles max                                    */
/* Unit: cycles of CPU clock.                                                 */
#define ADC_CONVERSION_TIME_MAX_CPU_CYCLES (210688UL)  /*!< ADC conversion completion time-out value */

/**
  * @}
  */

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/

/** @defgroup ADC_Exported_Functions ADC Exported Functions
  * @{
  */

/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions
  * @brief    ADC Initialization and Configuration functions
  *
@verbatim
 ===============================================================================
              ##### Initialization and de-initialization functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
      (+) Initialize and configure the ADC.
      (+) De-initialize the ADC.
@endverbatim
  * @{
  */

/**
  * @brief  Initialize the ADC peripheral and regular group according to
  *         parameters specified in structure "ADC_InitTypeDef".
  * @note   As prerequisite, ADC clock must be configured at RCC top level
  *         (refer to description of RCC configuration for ADC
  *         in header of this file).
  * @note   Possibility to update parameters on the fly:
  *         This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
  *         coming from ADC state reset. Following calls to this function can
  *         be used to reconfigure some parameters of ADC_InitTypeDef
  *         structure on the fly, without modifying MSP configuration. If ADC
  *         MSP has to be modified again, HAL_ADC_DeInit() must be called
  *         before HAL_ADC_Init().
  *         The setting of these parameters is conditioned to ADC state.
  *         For parameters constraints, see comments of structure
  *         "ADC_InitTypeDef".
  * @note   This function configures the ADC within 2 scopes: scope of entire
  *         ADC and scope of regular group. For parameters details, see comments
  *         of structure "ADC_InitTypeDef".
  * @note   Parameters related to common ADC registers (ADC clock mode) are set
  *         only if all ADCs are disabled.
  *         If this is not the case, these common parameters setting are
  *         bypassed without error reporting: it can be the intended behaviour in
  *         case of update of a parameter of ADC_InitTypeDef on the fly,
  *         without  disabling the other ADCs.
  * @param hadc ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  uint32_t tmpCFGR;
  uint32_t tmp_adc_reg_is_conversion_on_going;
  __IO uint32_t wait_loop_index = 0UL;
  uint32_t tmp_adc_is_conversion_on_going_regular;
  uint32_t tmp_adc_is_conversion_on_going_injected;

  /* Check ADC handle */
  if (hadc == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
  assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
  assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
  assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
  assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));
  assert_param(IS_ADC_CONVERSIONDATAMGT(hadc->Init.ConversionDataManagement));
  assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
  assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode));

  if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
  {
    assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
    assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));

    if (hadc->Init.DiscontinuousConvMode == ENABLE)
    {
      assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion));
    }
  }

  /* DISCEN and CONT bits cannot be set at the same time */
  assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == ENABLE)));

  /* Actions performed only if ADC is coming from state reset:                */
  /* - Initialization of ADC MSP                                              */
  if (hadc->State == HAL_ADC_STATE_RESET)
  {
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    /* Init the ADC Callback settings */
    hadc->ConvCpltCallback              = HAL_ADC_ConvCpltCallback;                 /* Legacy weak callback */
    hadc->ConvHalfCpltCallback          = HAL_ADC_ConvHalfCpltCallback;             /* Legacy weak callback */
    hadc->LevelOutOfWindowCallback      = HAL_ADC_LevelOutOfWindowCallback;         /* Legacy weak callback */
    hadc->ErrorCallback                 = HAL_ADC_ErrorCallback;                    /* Legacy weak callback */
    hadc->InjectedConvCpltCallback      = HAL_ADCEx_InjectedConvCpltCallback;       /* Legacy weak callback */
    hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback;  /* Legacy weak callback */
    hadc->LevelOutOfWindow2Callback     = HAL_ADCEx_LevelOutOfWindow2Callback;      /* Legacy weak callback */
    hadc->LevelOutOfWindow3Callback     = HAL_ADCEx_LevelOutOfWindow3Callback;      /* Legacy weak callback */
    hadc->EndOfSamplingCallback         = HAL_ADCEx_EndOfSamplingCallback;          /* Legacy weak callback */

    if (hadc->MspInitCallback == NULL)
    {
      hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit  */
    }

    /* Init the low level hardware */
    hadc->MspInitCallback(hadc);
#else
    /* Init the low level hardware */
    HAL_ADC_MspInit(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

    /* Set ADC error code to none */
    ADC_CLEAR_ERRORCODE(hadc);

    /* Initialize Lock */
    hadc->Lock = HAL_UNLOCKED;
  }

  /* - Exit from deep-power-down mode and ADC voltage regulator enable        */
  if (LL_ADC_IsDeepPowerDownEnabled(hadc->Instance) != 0UL)
  {
    /* Disable ADC deep power down mode */
    LL_ADC_DisableDeepPowerDown(hadc->Instance);

    /* System was in deep power down mode, calibration must
     be relaunched or a previously saved calibration factor
     re-applied once the ADC voltage regulator is enabled */
  }

  if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL)
  {
    /* Enable ADC internal voltage regulator */
    LL_ADC_EnableInternalRegulator(hadc->Instance);

    /* Note: Variable divided by 2 to compensate partially              */
    /*       CPU processing cycles, scaling in us split to not          */
    /*       exceed 32 bits register capacity and handle low frequency. */
    wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
    while (wait_loop_index != 0UL)
    {
      wait_loop_index--;
    }
  }

  /* Verification that ADC voltage regulator is correctly enabled, whether    */
  /* or not ADC is coming from state reset (if any potential problem of       */
  /* clocking, voltage regulator would not be enabled).                       */
  if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL)
  {
    /* Update ADC state machine to error */
    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);

    /* Set ADC error code to ADC peripheral internal error */
    SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);

    tmp_hal_status = HAL_ERROR;
  }

  /* Configuration of ADC parameters if previous preliminary actions are      */
  /* correctly completed and if there is no conversion on going on regular    */
  /* group (ADC may already be enabled at this point if HAL_ADC_Init() is     */
  /* called to update a parameter on the fly).                                */
  tmp_adc_reg_is_conversion_on_going = LL_ADC_REG_IsConversionOngoing(hadc->Instance);

  if (((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
      && (tmp_adc_reg_is_conversion_on_going == 0UL)
     )
  {
    /* Set ADC state */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_REG_BUSY,
                      HAL_ADC_STATE_BUSY_INTERNAL);

    /* Configuration of common ADC parameters                                 */

    /* Parameters update conditioned to ADC state:                            */
    /* Parameters that can be updated only when ADC is disabled:              */
    /*  - clock configuration                                                 */
    if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
    {
      if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
      {
        /* Reset configuration of ADC common register CCR:                      */
        /*                                                                      */
        /*   - ADC clock mode and ACC prescaler (CKMODE and PRESC bits)are set  */
        /*     according to adc->Init.ClockPrescaler. It selects the clock      */
        /*    source and sets the clock division factor.                        */
        /*                                                                      */
        /* Some parameters of this register are not reset, since they are set   */
        /* by other functions and must be kept in case of usage of this         */
        /* function on the fly (update of a parameter of ADC_InitTypeDef        */
        /* without needing to reconfigure all other ADC groups/channels         */
        /* parameters):                                                         */
        /*   - when multimode feature is available, multimode-related           */
        /*     parameters: MDMA, DMACFG, DELAY, DUAL (set by API                */
        /*     HAL_ADCEx_MultiModeConfigChannel() )                             */
        /*   - internal measurement paths: Vbat, temperature sensor, Vref       */
        /*     (set into HAL_ADC_ConfigChannel() or                             */
        /*     HAL_ADCEx_InjectedConfigChannel() )                              */
        LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(hadc->Instance), hadc->Init.ClockPrescaler);
      }
    }

    /* Configuration of ADC:                                                  */
    /*  - resolution                               Init.Resolution            */
    /*  - external trigger to start conversion     Init.ExternalTrigConv      */
    /*  - external trigger polarity                Init.ExternalTrigConvEdge  */
    /*  - continuous conversion mode               Init.ContinuousConvMode    */
    /*  - overrun                                  Init.Overrun               */
    /*  - discontinuous mode                       Init.DiscontinuousConvMode */
    /*  - discontinuous mode channel count         Init.NbrOfDiscConversion   */
#if defined(ADC_VER_V5_3)

    tmpCFGR  = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode)           |
                hadc->Init.Overrun                                                    |
                hadc->Init.Resolution                                                 |
                ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));

#elif defined(ADC_VER_V5_V90)
    if (hadc->Instance == ADC3)
    {
      tmpCFGR  = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode)         |
                  hadc->Init.Overrun                                                     |
                  hadc->Init.DataAlign                                                   |
                  ((__LL_ADC12_RESOLUTION_TO_ADC3(hadc->Init.Resolution)  & (ADC_CFGR_RES_1 | ADC_CFGR_RES_0)) << 1UL)                                                   |
                  ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));
    }
    else
    {
      tmpCFGR  = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode)          |
                  hadc->Init.Overrun                                                    |
                  hadc->Init.Resolution                                                 |
                  ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));
    }

#else

    if ((HAL_GetREVID() > REV_ID_Y) && (ADC_RESOLUTION_8B == hadc->Init.Resolution))
    {
      /* for STM32H7 silicon rev.B and above , ADC_CFGR_RES value for 8bits resolution is : b111 */
      tmpCFGR  = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode)          |
                  hadc->Init.Overrun                                                    |
                  hadc->Init.Resolution | (ADC_CFGR_RES_1 | ADC_CFGR_RES_0)                |
                  ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));
    }
    else
    {

      tmpCFGR  = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode)          |
                  hadc->Init.Overrun                                                    |
                  hadc->Init.Resolution                                                 |
                  ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));
    }

#endif /* ADC_VER_V5_3 */

    if (hadc->Init.DiscontinuousConvMode == ENABLE)
    {
      tmpCFGR |= ADC_CFGR_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion);
    }

    /* Enable external trigger if trigger selection is different of software  */
    /* start.                                                                 */
    /* Note: This configuration keeps the hardware feature of parameter       */
    /*       ExternalTrigConvEdge "trigger edge none" equivalent to           */
    /*       software start.                                                  */
    if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
    {
      tmpCFGR |= ((hadc->Init.ExternalTrigConv & ADC_CFGR_EXTSEL)
                  | hadc->Init.ExternalTrigConvEdge
                 );
    }


#if defined(ADC_VER_V5_V90)
    if (hadc->Instance == ADC3)
    {
      /* Update Configuration Register CFGR */
      MODIFY_REG(hadc->Instance->CFGR, ADC3_CFGR_FIELDS_1, tmpCFGR);
      /* Configuration of sampling mode */
      MODIFY_REG(hadc->Instance->CFGR2, ADC3_CFGR2_BULB | ADC3_CFGR2_SMPTRIG, hadc->Init.SamplingMode);
    }
    else
    {
      /* Update Configuration Register CFGR */
      MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmpCFGR);
    }
#else
    /* Update Configuration Register CFGR */
    MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmpCFGR);
#endif

    /* Parameters update conditioned to ADC state:                            */
    /* Parameters that can be updated when ADC is disabled or enabled without */
    /* conversion on going on regular and injected groups:                    */
    /*  - Conversion data management      Init.ConversionDataManagement       */
    /*  - LowPowerAutoWait feature        Init.LowPowerAutoWait               */
    /*  - Oversampling parameters         Init.Oversampling                   */
    tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
    tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
    if ((tmp_adc_is_conversion_on_going_regular == 0UL)
        && (tmp_adc_is_conversion_on_going_injected == 0UL)
       )
    {
#if defined(ADC_VER_V5_V90)
      if (hadc->Instance == ADC3)
      {
        tmpCFGR = (
                    ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait)        |
                    ADC3_CFGR_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests));
      }
      else
      {
        tmpCFGR = (
                    ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait)        |
                    ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement));
      }
#else
      tmpCFGR = (
                  ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait)        |
                  ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement));
#endif

      MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_2, tmpCFGR);

      if (hadc->Init.OversamplingMode == ENABLE)
      {
#if defined(ADC_VER_V5_V90)
        if (hadc->Instance == ADC3)
        {
          assert_param(IS_ADC_OVERSAMPLING_RATIO_ADC3(hadc->Init.Oversampling.Ratio));
        }
        else
        {
          assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio));
        }
#else
        assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio));
#endif
        assert_param(IS_ADC_RIGHT_BIT_SHIFT(hadc->Init.Oversampling.RightBitShift));
        assert_param(IS_ADC_TRIGGERED_OVERSAMPLING_MODE(hadc->Init.Oversampling.TriggeredMode));
        assert_param(IS_ADC_REGOVERSAMPLING_MODE(hadc->Init.Oversampling.OversamplingStopReset));

        if ((hadc->Init.ExternalTrigConv == ADC_SOFTWARE_START)
            || (hadc->Init.ExternalTrigConvEdge == ADC_EXTERNALTRIGCONVEDGE_NONE))
        {
          /* Multi trigger is not applicable to software-triggered conversions */
          assert_param((hadc->Init.Oversampling.TriggeredMode == ADC_TRIGGEREDMODE_SINGLE_TRIGGER));
        }

#if defined(ADC_VER_V5_V90)
        if (hadc->Instance == ADC3)
        {
          /* Configuration of Oversampler:                                      */
          /*  - Oversampling Ratio                                              */
          /*  - Right bit shift                                                 */
          /*  - Triggered mode                                                  */
          /*  - Oversampling mode (continued/resumed)                           */
          MODIFY_REG(hadc->Instance->CFGR2,
                     ADC_CFGR2_OVSR  |
                     ADC_CFGR2_OVSS  |
                     ADC_CFGR2_TROVS |
                     ADC_CFGR2_ROVSM,
                     ADC_CFGR2_ROVSE                       |
                     hadc->Init.Oversampling.Ratio         |
                     hadc->Init.Oversampling.RightBitShift |
                     hadc->Init.Oversampling.TriggeredMode |
                     hadc->Init.Oversampling.OversamplingStopReset
                    );
        }
        else
        {

          /* Configuration of Oversampler:                                       */
          /*  - Oversampling Ratio                                               */
          /*  - Right bit shift                                                  */
          /*  - Left bit shift                                                   */
          /*  - Triggered mode                                                   */
          /*  - Oversampling mode (continued/resumed)                            */
          MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_FIELDS,
                     ADC_CFGR2_ROVSE                       |
                     ((hadc->Init.Oversampling.Ratio - 1UL)  << ADC_CFGR2_OVSR_Pos) |
                     hadc->Init.Oversampling.RightBitShift |
                     hadc->Init.Oversampling.TriggeredMode |
                     hadc->Init.Oversampling.OversamplingStopReset);
        }
#else
        /* Configuration of Oversampler:                                       */
        /*  - Oversampling Ratio                                               */
        /*  - Right bit shift                                                  */
        /*  - Left bit shift                                                   */
        /*  - Triggered mode                                                   */
        /*  - Oversampling mode (continued/resumed)                            */
        MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_FIELDS,
                   ADC_CFGR2_ROVSE                       |
                   ((hadc->Init.Oversampling.Ratio - 1UL) << ADC_CFGR2_OVSR_Pos) |
                   hadc->Init.Oversampling.RightBitShift |
                   hadc->Init.Oversampling.TriggeredMode |
                   hadc->Init.Oversampling.OversamplingStopReset);
#endif

      }
      else
      {
        /* Disable ADC oversampling scope on ADC group regular */
        CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSE);
      }

      /* Set the LeftShift parameter: it is applied to the final result with or without oversampling */
      MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_LSHIFT, hadc->Init.LeftBitShift);
#if defined(ADC_VER_V5_V90)
      if (hadc->Instance != ADC3)
      {
        /* Configure the BOOST Mode */
        ADC_ConfigureBoostMode(hadc);
      }
#else
      /* Configure the BOOST Mode */
      ADC_ConfigureBoostMode(hadc);
#endif
    }

    /* Configuration of regular group sequencer:                              */
    /* - if scan mode is disabled, regular channels sequence length is set to */
    /*   0x00: 1 channel converted (channel on regular rank 1)                */
    /*   Parameter "NbrOfConversion" is discarded.                            */
    /*   Note: Scan mode is not present by hardware on this device, but       */
    /*   emulated by software for alignment over all STM32 devices.           */
    /* - if scan mode is enabled, regular channels sequence length is set to  */
    /*   parameter "NbrOfConversion".                                         */

    if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE)
    {
      /* Set number of ranks in regular group sequencer */
      MODIFY_REG(hadc->Instance->SQR1, ADC_SQR1_L, (hadc->Init.NbrOfConversion - (uint8_t)1));
    }
    else
    {
      CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L);
    }

    /* Initialize the ADC state */
    /* Clear HAL_ADC_STATE_BUSY_INTERNAL bit, set HAL_ADC_STATE_READY bit */
    ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY);
  }
  else
  {
    /* Update ADC state machine to error */
    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);

    tmp_hal_status = HAL_ERROR;
  }

  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Deinitialize the ADC peripheral registers to their default reset
  *         values, with deinitialization of the ADC MSP.
  * @note   For devices with several ADCs: reset of ADC common registers is done
  *         only if all ADCs sharing the same common group are disabled.
  *         (function "HAL_ADC_MspDeInit()" is also called under the same conditions:
  *         all ADC instances use the same core clock at RCC level, disabling
  *         the core clock reset all ADC instances).
  *         If this is not the case, reset of these common parameters reset is
  *         bypassed without error reporting: it can be the intended behavior in
  *         case of reset of a single ADC while the other ADCs sharing the same
  *         common group is still running.
  * @note   By default, HAL_ADC_DeInit() set ADC in mode deep power-down:
  *         this saves more power by reducing leakage currents
  *         and is particularly interesting before entering MCU low-power modes.
  * @param hadc ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc)
{
  HAL_StatusTypeDef tmp_hal_status;

  /* Check ADC handle */
  if (hadc == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Set ADC state */
  SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);

  /* Stop potential conversion on going */
  tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);

  /* Disable ADC peripheral if conversions are effectively stopped            */
  /* Flush register JSQR: reset the queue sequencer when injected             */
  /* queue sequencer is enabled and ADC disabled.                             */
  /* The software and hardware triggers of the injected sequence are both     */
  /* internally disabled just after the completion of the last valid          */
  /* injected sequence.                                                       */
  SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQM);

  /* Disable ADC peripheral if conversions are effectively stopped */
  if (tmp_hal_status == HAL_OK)
  {
    /* Disable the ADC peripheral */
    tmp_hal_status = ADC_Disable(hadc);

    /* Check if ADC is effectively disabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Change ADC state */
      hadc->State = HAL_ADC_STATE_READY;
    }
  }

  /* Note: HAL ADC deInit is done independently of ADC conversion stop        */
  /*       and disable return status. In case of status fail, attempt to      */
  /*       perform deinitialization anyway and it is up user code in          */
  /*       in HAL_ADC_MspDeInit() to reset the ADC peripheral using           */
  /*       system RCC hard reset.                                             */

  /* ========== Reset ADC registers ========== */
  /* Reset register IER */
  __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3  | ADC_IT_AWD2 | ADC_IT_AWD1 |
                              ADC_IT_JQOVF | ADC_IT_OVR  |
                              ADC_IT_JEOS  | ADC_IT_JEOC |
                              ADC_IT_EOS   | ADC_IT_EOC  |
                              ADC_IT_EOSMP | ADC_IT_RDY));

  /* Reset register ISR */
  __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3  | ADC_FLAG_AWD2 | ADC_FLAG_AWD1 |
                              ADC_FLAG_JQOVF | ADC_FLAG_OVR  |
                              ADC_FLAG_JEOS  | ADC_FLAG_JEOC |
                              ADC_FLAG_EOS   | ADC_FLAG_EOC  |
                              ADC_FLAG_EOSMP | ADC_FLAG_RDY));

  /* Reset register CR */
  /* Bits ADC_CR_JADSTP, ADC_CR_ADSTP, ADC_CR_JADSTART, ADC_CR_ADSTART,
     ADC_CR_ADCAL, ADC_CR_ADDIS and ADC_CR_ADEN are in access mode "read-set":
     no direct reset applicable.
     Update CR register to reset value where doable by software */
  CLEAR_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN | ADC_CR_ADCALDIF);
  SET_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD);

  /* Reset register CFGR */
  CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_AWD1CH  | ADC_CFGR_JAUTO   | ADC_CFGR_JAWD1EN |
            ADC_CFGR_AWD1EN  | ADC_CFGR_AWD1SGL | ADC_CFGR_JQM     |
            ADC_CFGR_JDISCEN | ADC_CFGR_DISCNUM | ADC_CFGR_DISCEN  |
            ADC_CFGR_AUTDLY  | ADC_CFGR_CONT    | ADC_CFGR_OVRMOD  |
            ADC_CFGR_EXTEN   | ADC_CFGR_EXTSEL  |
            ADC_CFGR_RES     | ADC_CFGR_DMNGT);
  SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS);

  /* Reset register CFGR2 */
  CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSM  | ADC_CFGR2_TROVS   | ADC_CFGR2_OVSS |
            ADC_CFGR2_OVSR  | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSE);

  /* Reset register SMPR1 */
  CLEAR_BIT(hadc->Instance->SMPR1, ADC_SMPR1_FIELDS);

  /* Reset register SMPR2 */
  CLEAR_BIT(hadc->Instance->SMPR2, ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 | ADC_SMPR2_SMP16 |
            ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 | ADC_SMPR2_SMP13 |
            ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 | ADC_SMPR2_SMP10);

#if defined(ADC_VER_V5_V90)
  if (hadc->Instance == ADC3)
  {  
    /* Reset register LTR1 and HTR1 */
    CLEAR_BIT(hadc->Instance->LTR1_TR1, ADC3_TR1_HT1 | ADC3_TR1_LT1);
    CLEAR_BIT(hadc->Instance->HTR1_TR2, ADC3_TR2_HT2 | ADC3_TR2_LT2);

    /* Reset register LTR3 and HTR3 */
    CLEAR_BIT(hadc->Instance->RES1_TR3, ADC3_TR3_HT3 | ADC3_TR3_LT3);
  }
  else
  {  
    CLEAR_BIT(hadc->Instance->LTR1_TR1, ADC_LTR_LT);
    CLEAR_BIT(hadc->Instance->HTR1_TR2, ADC_HTR_HT);

    /* Reset register LTR2 and HTR2*/
    CLEAR_BIT(hadc->Instance->LTR2_DIFSEL, ADC_LTR_LT);
    CLEAR_BIT(hadc->Instance->HTR2_CALFACT, ADC_HTR_HT);

    /* Reset register LTR3 and HTR3 */
    CLEAR_BIT(hadc->Instance->LTR3_RES10, ADC_LTR_LT);
    CLEAR_BIT(hadc->Instance->HTR3_RES11, ADC_HTR_HT);
  }
#else
  /* Reset register LTR1 and HTR1 */
  CLEAR_BIT(hadc->Instance->LTR1, ADC_LTR_LT);
  CLEAR_BIT(hadc->Instance->HTR1, ADC_HTR_HT);

  /* Reset register LTR2 and HTR2*/
  CLEAR_BIT(hadc->Instance->LTR2, ADC_LTR_LT);
  CLEAR_BIT(hadc->Instance->HTR2, ADC_HTR_HT);

  /* Reset register LTR3 and HTR3 */
  CLEAR_BIT(hadc->Instance->LTR3, ADC_LTR_LT);
  CLEAR_BIT(hadc->Instance->HTR3, ADC_HTR_HT);
#endif /* ADC_VER_V5_V90 */


  /* Reset register SQR1 */
  CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_SQ4 | ADC_SQR1_SQ3 | ADC_SQR1_SQ2 |
            ADC_SQR1_SQ1 | ADC_SQR1_L);

  /* Reset register SQR2 */
  CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 |
            ADC_SQR2_SQ6 | ADC_SQR2_SQ5);

  /* Reset register SQR3 */
  CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ14 | ADC_SQR3_SQ13 | ADC_SQR3_SQ12 |
            ADC_SQR3_SQ11 | ADC_SQR3_SQ10);

  /* Reset register SQR4 */
  CLEAR_BIT(hadc->Instance->SQR4, ADC_SQR4_SQ16 | ADC_SQR4_SQ15);

  /* Register JSQR was reset when the ADC was disabled */

  /* Reset register DR */
  /* bits in access mode read only, no direct reset applicable*/

  /* Reset register OFR1 */
  CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_SSATE | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1);
  /* Reset register OFR2 */
  CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_SSATE | ADC_OFR2_OFFSET2_CH | ADC_OFR2_OFFSET2);
  /* Reset register OFR3 */
  CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_SSATE | ADC_OFR3_OFFSET3_CH | ADC_OFR3_OFFSET3);
  /* Reset register OFR4 */
  CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_SSATE | ADC_OFR4_OFFSET4_CH | ADC_OFR4_OFFSET4);

  /* Reset registers JDR1, JDR2, JDR3, JDR4 */
  /* bits in access mode read only, no direct reset applicable*/

  /* Reset register AWD2CR */
  CLEAR_BIT(hadc->Instance->AWD2CR, ADC_AWD2CR_AWD2CH);

  /* Reset register AWD3CR */
  CLEAR_BIT(hadc->Instance->AWD3CR, ADC_AWD3CR_AWD3CH);

#if defined(ADC_VER_V5_V90)
  if (hadc->Instance == ADC3)
  {
  /* Reset register DIFSEL */
  CLEAR_BIT(hadc->Instance->LTR2_DIFSEL, ADC_DIFSEL_DIFSEL);

  /* Reset register CALFACT */
  CLEAR_BIT(hadc->Instance->HTR2_CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S);
  }
  else
  {
    /* Reset register DIFSEL */
    CLEAR_BIT(hadc->Instance->DIFSEL_RES12, ADC_DIFSEL_DIFSEL);

    /* Reset register CALFACT */
    CLEAR_BIT(hadc->Instance->CALFACT_RES13, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S);
  }
#else
  /* Reset register DIFSEL */
  CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_DIFSEL);

  /* Reset register CALFACT */
  CLEAR_BIT(hadc->Instance->CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S);
#endif /* ADC_VER_V5_V90 */

  /* ========== Reset common ADC registers ========== */

  /* Software is allowed to change common parameters only when all the other
     ADCs are disabled.   */
  if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
  {
    /* Reset configuration of ADC common register CCR:
      - clock mode: CKMODE, PRESCEN
      - multimode related parameters(when this feature is available): DELAY, DUAL
       (set into  HAL_ADCEx_MultiModeConfigChannel() API)
      - internal measurement paths: Vbat, temperature sensor, Vref (set into
        HAL_ADC_ConfigChannel() or HAL_ADCEx_InjectedConfigChannel() )
    */
    ADC_CLEAR_COMMON_CONTROL_REGISTER(hadc);

    /* ========== Hard reset ADC peripheral ========== */
    /* Performs a global reset of the entire ADC peripherals instances        */
    /* sharing the same common ADC instance: ADC state is forced to           */
    /* a similar state as after device power-on.                              */
    /* Note: A possible implementation is to add RCC bus reset of ADC         */
    /* (for example, using macro                                              */
    /*  __HAL_RCC_ADC..._FORCE_RESET()/..._RELEASE_RESET()/..._CLK_DISABLE()) */
    /* in function "void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc)":         */

#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    if (hadc->MspDeInitCallback == NULL)
    {
      hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit  */
    }

    /* DeInit the low level hardware: RCC clock, NVIC */
    hadc->MspDeInitCallback(hadc);
#else
    /* DeInit the low level hardware: RCC clock, NVIC */
    HAL_ADC_MspDeInit(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

  }

  /* Set ADC error code to none */
  ADC_CLEAR_ERRORCODE(hadc);

  /* Reset injected channel configuration parameters */
  hadc->InjectionConfig.ContextQueue = 0;
  hadc->InjectionConfig.ChannelCount = 0;

  /* Set ADC state */
  hadc->State = HAL_ADC_STATE_RESET;

  /* Process unlocked */
  __HAL_UNLOCK(hadc);

  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Initialize the ADC MSP.
  * @param hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_MspInit must be implemented in the user file.
   */
}

/**
  * @brief  DeInitialize the ADC MSP.
  * @param hadc ADC handle
  * @note   All ADC instances use the same core clock at RCC level, disabling
  *         the core clock reset all ADC instances).
  * @retval None
  */
__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_MspDeInit must be implemented in the user file.
   */
}

#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
/**
  * @brief  Register a User ADC Callback
  *         To be used instead of the weak predefined callback
  * @param  hadc Pointer to a ADC_HandleTypeDef structure that contains
  *                the configuration information for the specified ADC.
  * @param  CallbackID ID of the callback to be registered
  *         This parameter can be one of the following values:
  *          @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID      ADC conversion complete callback ID
  *          @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID          ADC conversion DMA half-transfer callback ID
  *          @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID    ADC analog watchdog 1 callback ID
  *          @arg @ref HAL_ADC_ERROR_CB_ID                    ADC error callback ID
  *          @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID  ADC group injected conversion complete callback ID
  *          @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID        ADC group injected context queue overflow callback ID
  *          @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID    ADC analog watchdog 2 callback ID
  *          @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID    ADC analog watchdog 3 callback ID
  *          @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID          ADC end of sampling callback ID
  *          @arg @ref HAL_ADC_MSPINIT_CB_ID                  ADC Msp Init callback ID
  *          @arg @ref HAL_ADC_MSPDEINIT_CB_ID                ADC Msp DeInit callback ID
  * @param  pCallback pointer to the Callback function
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback)
{
  HAL_StatusTypeDef status = HAL_OK;

  if (pCallback == NULL)
  {
    /* Update the error code */
    hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;

    return HAL_ERROR;
  }

  if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
  {
    switch (CallbackID)
    {
      case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
        hadc->ConvCpltCallback = pCallback;
        break;

      case HAL_ADC_CONVERSION_HALF_CB_ID :
        hadc->ConvHalfCpltCallback = pCallback;
        break;

      case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
        hadc->LevelOutOfWindowCallback = pCallback;
        break;

      case HAL_ADC_ERROR_CB_ID :
        hadc->ErrorCallback = pCallback;
        break;

      case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
        hadc->InjectedConvCpltCallback = pCallback;
        break;

      case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID :
        hadc->InjectedQueueOverflowCallback = pCallback;
        break;

      case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID :
        hadc->LevelOutOfWindow2Callback = pCallback;
        break;

      case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID :
        hadc->LevelOutOfWindow3Callback = pCallback;
        break;

      case HAL_ADC_END_OF_SAMPLING_CB_ID :
        hadc->EndOfSamplingCallback = pCallback;
        break;

      case HAL_ADC_MSPINIT_CB_ID :
        hadc->MspInitCallback = pCallback;
        break;

      case HAL_ADC_MSPDEINIT_CB_ID :
        hadc->MspDeInitCallback = pCallback;
        break;

      default :
        /* Update the error code */
        hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;

        /* Return error status */
        status = HAL_ERROR;
        break;
    }
  }
  else if (HAL_ADC_STATE_RESET == hadc->State)
  {
    switch (CallbackID)
    {
      case HAL_ADC_MSPINIT_CB_ID :
        hadc->MspInitCallback = pCallback;
        break;

      case HAL_ADC_MSPDEINIT_CB_ID :
        hadc->MspDeInitCallback = pCallback;
        break;

      default :
        /* Update the error code */
        hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;

        /* Return error status */
        status = HAL_ERROR;
        break;
    }
  }
  else
  {
    /* Update the error code */
    hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;

    /* Return error status */
    status =  HAL_ERROR;
  }

  return status;
}

/**
  * @brief  Unregister a ADC Callback
  *         ADC callback is redirected to the weak predefined callback
  * @param  hadc Pointer to a ADC_HandleTypeDef structure that contains
  *                the configuration information for the specified ADC.
  * @param  CallbackID ID of the callback to be unregistered
  *         This parameter can be one of the following values:
  *          @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID      ADC conversion complete callback ID
  *          @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID          ADC conversion DMA half-transfer callback ID
  *          @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID    ADC analog watchdog 1 callback ID
  *          @arg @ref HAL_ADC_ERROR_CB_ID                    ADC error callback ID
  *          @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID  ADC group injected conversion complete callback ID
  *          @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID        ADC group injected context queue overflow callback ID
  *          @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID    ADC analog watchdog 2 callback ID
  *          @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID    ADC analog watchdog 3 callback ID
  *          @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID          ADC end of sampling callback ID
  *          @arg @ref HAL_ADC_MSPINIT_CB_ID                  ADC Msp Init callback ID
  *          @arg @ref HAL_ADC_MSPDEINIT_CB_ID                ADC Msp DeInit callback ID
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID)
{
  HAL_StatusTypeDef status = HAL_OK;

  if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
  {
    switch (CallbackID)
    {
      case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
        hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback;
        break;

      case HAL_ADC_CONVERSION_HALF_CB_ID :
        hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback;
        break;

      case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
        hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback;
        break;

      case HAL_ADC_ERROR_CB_ID :
        hadc->ErrorCallback = HAL_ADC_ErrorCallback;
        break;

      case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
        hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback;
        break;

      case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID :
        hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback;
        break;

      case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID :
        hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback;
        break;

      case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID :
        hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback;
        break;

      case HAL_ADC_END_OF_SAMPLING_CB_ID :
        hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback;
        break;

      case HAL_ADC_MSPINIT_CB_ID :
        hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit              */
        break;

      case HAL_ADC_MSPDEINIT_CB_ID :
        hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit            */
        break;

      default :
        /* Update the error code */
        hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;

        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else if (HAL_ADC_STATE_RESET == hadc->State)
  {
    switch (CallbackID)
    {
      case HAL_ADC_MSPINIT_CB_ID :
        hadc->MspInitCallback = HAL_ADC_MspInit;                   /* Legacy weak MspInit              */
        break;

      case HAL_ADC_MSPDEINIT_CB_ID :
        hadc->MspDeInitCallback = HAL_ADC_MspDeInit;               /* Legacy weak MspDeInit            */
        break;

      default :
        /* Update the error code */
        hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;

        /* Return error status */
        status =  HAL_ERROR;
        break;
    }
  }
  else
  {
    /* Update the error code */
    hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;

    /* Return error status */
    status =  HAL_ERROR;
  }

  return status;
}

#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

/**
  * @}
  */

/** @defgroup ADC_Exported_Functions_Group2 ADC Input and Output operation functions
  * @brief    ADC IO operation functions
  *
@verbatim
 ===============================================================================
                      ##### IO operation functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
      (+) Start conversion of regular group.
      (+) Stop conversion of regular group.
      (+) Poll for conversion complete on regular group.
      (+) Poll for conversion event.
      (+) Get result of regular channel conversion.
      (+) Start conversion of regular group and enable interruptions.
      (+) Stop conversion of regular group and disable interruptions.
      (+) Handle ADC interrupt request
      (+) Start conversion of regular group and enable DMA transfer.
      (+) Stop conversion of regular group and disable ADC DMA transfer.
@endverbatim
  * @{
  */

/**
  * @brief  Enable ADC, start conversion of regular group.
  * @note   Interruptions enabled in this function: None.
  * @note   Case of multimode enabled (when multimode feature is available):
  *           if ADC is Slave, ADC is enabled but conversion is not started,
  *           if ADC is master, ADC is enabled and multimode conversion is started.
  * @param hadc ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc)
{
  HAL_StatusTypeDef tmp_hal_status;
  const ADC_TypeDef *tmpADC_Master;
  uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Perform ADC enable and conversion start if no conversion is on going */
  if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
  {
    /* Process locked */
    __HAL_LOCK(hadc);

    /* Enable the ADC peripheral */
    tmp_hal_status = ADC_Enable(hadc);

    /* Start conversion if ADC is effectively enabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state                                                        */
      /* - Clear state bitfield related to regular group conversion results   */
      /* - Set state bitfield related to regular operation                    */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
                        HAL_ADC_STATE_REG_BUSY);

      /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
        - if ADC instance is master or if multimode feature is not available
        - if multimode setting is disabled (ADC instance slave in independent mode) */
      if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
          || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
         )
      {
        CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
      }

      /* Set ADC error code */
      /* Check if a conversion is on going on ADC group injected */
      if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
      {
        /* Reset ADC error code fields related to regular conversions only */
        CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
      }
      else
      {
        /* Reset all ADC error code fields */
        ADC_CLEAR_ERRORCODE(hadc);
      }

      /* Clear ADC group regular conversion flag and overrun flag               */
      /* (To ensure of no unknown state from potential previous ADC operations) */
      __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));

      /* Process unlocked */
      /* Unlock before starting ADC conversions: in case of potential         */
      /* interruption, to let the process to ADC IRQ Handler.                 */
      __HAL_UNLOCK(hadc);

      /* Enable conversion of regular group.                                  */
      /* If software start has been selected, conversion starts immediately.  */
      /* If external trigger has been selected, conversion will start at next */
      /* trigger event.                                                       */
      /* Case of multimode enabled (when multimode feature is available):     */
      /*  - if ADC is slave and dual regular conversions are enabled, ADC is  */
      /*    enabled only (conversion is not started),                         */
      /*  - if ADC is master, ADC is enabled and conversion is started.       */
      if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
          || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
          || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
          || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
         )
      {
        /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */
        if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL)
        {
          ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
        }

        /* Start ADC group regular conversion */
        LL_ADC_REG_StartConversion(hadc->Instance);
      }
      else
      {
        /* ADC instance is a multimode slave instance with multimode regular conversions enabled */
        SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
        /* if Master ADC JAUTO bit is set, update Slave State in setting
           HAL_ADC_STATE_INJ_BUSY bit and in resetting HAL_ADC_STATE_INJ_EOC bit */
        tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
        if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL)
        {
          ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
        }

      }
    }
    else
    {
      /* Process unlocked */
      __HAL_UNLOCK(hadc);
    }
  }
  else
  {
    tmp_hal_status = HAL_BUSY;
  }

  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Stop ADC conversion of regular group (and injected channels in
  *         case of auto_injection mode), disable ADC peripheral.
  * @note:  ADC peripheral disable is forcing stop of potential
  *         conversion on injected group. If injected group is under use, it
  *         should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
  * @param hadc ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc)
{
  HAL_StatusTypeDef tmp_hal_status;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Process locked */
  __HAL_LOCK(hadc);

  /* 1. Stop potential conversion on going, on ADC groups regular and injected */
  tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);

  /* Disable ADC peripheral if conversions are effectively stopped */
  if (tmp_hal_status == HAL_OK)
  {
    /* 2. Disable the ADC peripheral */
    tmp_hal_status = ADC_Disable(hadc);

    /* Check if ADC is effectively disabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                        HAL_ADC_STATE_READY);
    }
  }

  /* Process unlocked */
  __HAL_UNLOCK(hadc);

  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Wait for regular group conversion to be completed.
  * @note   ADC conversion flags EOS (end of sequence) and EOC (end of
  *         conversion) are cleared by this function, with an exception:
  *         if low power feature "LowPowerAutoWait" is enabled, flags are
  *         not cleared to not interfere with this feature until data register
  *         is read using function HAL_ADC_GetValue().
  * @note   This function cannot be used in a particular setup: ADC configured
  *         in DMA mode and polling for end of each conversion (ADC init
  *         parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
  *         In this case, DMA resets the flag EOC and polling cannot be
  *         performed on each conversion. Nevertheless, polling can still
  *         be performed on the complete sequence (ADC init
  *         parameter "EOCSelection" set to ADC_EOC_SEQ_CONV).
  * @param hadc ADC handle
  * @param Timeout Timeout value in millisecond.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout)
{
  uint32_t tickstart;
  uint32_t tmp_Flag_End;
  uint32_t tmp_cfgr;
  const ADC_TypeDef *tmpADC_Master;
  uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* If end of conversion selected to end of sequence conversions */
  if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV)
  {
    tmp_Flag_End = ADC_FLAG_EOS;
  }
  /* If end of conversion selected to end of unitary conversion */
  else /* ADC_EOC_SINGLE_CONV */
  {
    /* Verification that ADC configuration is compliant with polling for      */
    /* each conversion:                                                       */
    /* Particular case is ADC configured in DMA mode and ADC sequencer with   */
    /* several ranks and polling for end of each conversion.                  */
    /* For code simplicity sake, this particular case is generalized to       */
    /* ADC configured in DMA mode and and polling for end of each conversion. */
    if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
        || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
        || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
       )
    {
      /* Check DMNGT bit in handle ADC CFGR register */
      if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0) != 0UL)
      {
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
        return HAL_ERROR;
      }
      else
      {
        tmp_Flag_End = (ADC_FLAG_EOC);
      }
    }
    else
    {
      /* Check ADC DMA mode in multimode on ADC group regular */
      if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC)
      {
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
        return HAL_ERROR;
      }
      else
      {
        tmp_Flag_End = (ADC_FLAG_EOC);
      }
    }
  }

  /* Get tick count */
  tickstart = HAL_GetTick();

  /* Wait until End of unitary conversion or sequence conversions flag is raised */
  while ((hadc->Instance->ISR & tmp_Flag_End) == 0UL)
  {
    /* Check if timeout is disabled (set to infinite wait) */
    if (Timeout != HAL_MAX_DELAY)
    {
      if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL))
      {
        /* New check to avoid false timeout detection in case of preemption */
        if((hadc->Instance->ISR & tmp_Flag_End) == 0UL)
        {
          /* Update ADC state machine to timeout */
          SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);

          /* Process unlocked */
          __HAL_UNLOCK(hadc);

          return HAL_TIMEOUT;
        }
      }
    }
  }

  /* Update ADC state machine */
  SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);

  /* Determine whether any further conversion upcoming on group regular       */
  /* by external trigger, continuous mode or scan sequence on going.          */
  if ((LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
      && (hadc->Init.ContinuousConvMode == DISABLE)
     )
  {
    /* Check whether end of sequence is reached */
    if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS))
    {
      /* Set ADC state */
      CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);

      if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
      {
        SET_BIT(hadc->State, HAL_ADC_STATE_READY);
      }
    }
  }

  /* Get relevant register CFGR in ADC instance of ADC master or slave        */
  /* in function of multimode state (for devices with multimode               */
  /* available).                                                              */
  if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
      || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
      || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
      || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
     )
  {
    /* Retrieve handle ADC CFGR register */
    tmp_cfgr = READ_REG(hadc->Instance->CFGR);
  }
  else
  {
    /* Retrieve Master ADC CFGR register */
    tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
    tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
  }

  /* Clear polled flag */
  if (tmp_Flag_End == ADC_FLAG_EOS)
  {
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOS);
  }
  else
  {
    /* Clear end of conversion EOC flag of regular group if low power feature */
    /* "LowPowerAutoWait " is disabled, to not interfere with this feature    */
    /* until data register is read using function HAL_ADC_GetValue().         */
    if (READ_BIT(tmp_cfgr, ADC_CFGR_AUTDLY) == 0UL)
    {
      __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
    }
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Poll for ADC event.
  * @param hadc ADC handle
  * @param EventType the ADC event type.
  *          This parameter can be one of the following values:
  *            @arg @ref ADC_EOSMP_EVENT  ADC End of Sampling event
  *            @arg @ref ADC_AWD1_EVENT   ADC Analog watchdog 1 event (main analog watchdog, present on all STM32 devices)
  *            @arg @ref ADC_AWD2_EVENT   ADC Analog watchdog 2 event (additional analog watchdog, not present on all STM32 families)
  *            @arg @ref ADC_AWD3_EVENT   ADC Analog watchdog 3 event (additional analog watchdog, not present on all STM32 families)
  *            @arg @ref ADC_OVR_EVENT    ADC Overrun event
  *            @arg @ref ADC_JQOVF_EVENT  ADC Injected context queue overflow event
  * @param Timeout Timeout value in millisecond.
  * @note   The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR.
  *         Indeed, the latter is reset only if hadc->Init.Overrun field is set
  *         to ADC_OVR_DATA_OVERWRITTEN. Otherwise, data register may be potentially overwritten
  *         by a new converted data as soon as OVR is cleared.
  *         To reset OVR flag once the preserved data is retrieved, the user can resort
  *         to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout)
{
  uint32_t tickstart;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_EVENT_TYPE(EventType));

  /* Get tick count */
  tickstart = HAL_GetTick();

  /* Check selected event flag */
  while (__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL)
  {
    /* Check if timeout is disabled (set to infinite wait) */
    if (Timeout != HAL_MAX_DELAY)
    {
      if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL))
      {
        /* New check to avoid false timeout detection in case of preemption */
        if(__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL)
        {
          /* Update ADC state machine to timeout */
          SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);

          /* Process unlocked */
          __HAL_UNLOCK(hadc);

          return HAL_TIMEOUT;
        }
      }
    }
  }

  switch (EventType)
  {
    /* End Of Sampling event */
    case ADC_EOSMP_EVENT:
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP);

      /* Clear the End Of Sampling flag */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP);

      break;

    /* Analog watchdog (level out of window) event */
    /* Note: In case of several analog watchdog enabled, if needed to know      */
    /* which one triggered and on which ADCx, test ADC state of analog watchdog */
    /* flags HAL_ADC_STATE_AWD1/2/3 using function "HAL_ADC_GetState()".        */
    /* For example:                                                             */
    /*  " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) "          */
    /*  " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD2) != 0UL) "          */
    /*  " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD3) != 0UL) "          */

    /* Check analog watchdog 1 flag */
    case ADC_AWD_EVENT:
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);

      /* Clear ADC analog watchdog flag */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);

      break;

    /* Check analog watchdog 2 flag */
    case ADC_AWD2_EVENT:
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);

      /* Clear ADC analog watchdog flag */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);

      break;

    /* Check analog watchdog 3 flag */
    case ADC_AWD3_EVENT:
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);

      /* Clear ADC analog watchdog flag */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);

      break;

    /* Injected context queue overflow event */
    case ADC_JQOVF_EVENT:
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);

      /* Set ADC error code to Injected context queue overflow */
      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);

      /* Clear ADC Injected context queue overflow flag */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);

      break;

    /* Overrun event */
    default: /* Case ADC_OVR_EVENT */
      /* If overrun is set to overwrite previous data, overrun event is not     */
      /* considered as an error.                                                */
      /* (cf ref manual "Managing conversions without using the DMA and without */
      /* overrun ")                                                             */
      if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
      {
        /* Set ADC state */
        SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);

        /* Set ADC error code to overrun */
        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
      }
      else
      {
        /* Clear ADC Overrun flag only if Overrun is set to ADC_OVR_DATA_OVERWRITTEN
           otherwise, data register is potentially overwritten by new converted data as soon
           as OVR is cleared. */
        __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
      }
      break;
  }

  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Enable ADC, start conversion of regular group with interruption.
  * @note   Interruptions enabled in this function according to initialization
  *         setting : EOC (end of conversion), EOS (end of sequence),
  *         OVR overrun.
  *         Each of these interruptions has its dedicated callback function.
  * @note   Case of multimode enabled (when multimode feature is available):
  *         HAL_ADC_Start_IT() must be called for ADC Slave first, then for
  *         ADC Master.
  *         For ADC Slave, ADC is enabled only (conversion is not started).
  *         For ADC Master, ADC is enabled and multimode conversion is started.
  * @note   To guarantee a proper reset of all interruptions once all the needed
  *         conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure
  *         a correct stop of the IT-based conversions.
  * @note   By default, HAL_ADC_Start_IT() does not enable the End Of Sampling
  *         interruption. If required (e.g. in case of oversampling with trigger
  *         mode), the user must:
  *          1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP)
  *          2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP)
  *          before calling HAL_ADC_Start_IT().
  * @param hadc ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc)
{
  HAL_StatusTypeDef tmp_hal_status;
  const ADC_TypeDef *tmpADC_Master;
  uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Perform ADC enable and conversion start if no conversion is on going */
  if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
  {
    /* Process locked */
    __HAL_LOCK(hadc);

    /* Enable the ADC peripheral */
    tmp_hal_status = ADC_Enable(hadc);

    /* Start conversion if ADC is effectively enabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state                                                        */
      /* - Clear state bitfield related to regular group conversion results   */
      /* - Set state bitfield related to regular operation                    */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
                        HAL_ADC_STATE_REG_BUSY);

      /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
        - if ADC instance is master or if multimode feature is not available
        - if multimode setting is disabled (ADC instance slave in independent mode) */
      if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
          || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
         )
      {
        CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
      }

      /* Set ADC error code */
      /* Check if a conversion is on going on ADC group injected */
      if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL)
      {
        /* Reset ADC error code fields related to regular conversions only */
        CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
      }
      else
      {
        /* Reset all ADC error code fields */
        ADC_CLEAR_ERRORCODE(hadc);
      }

      /* Clear ADC group regular conversion flag and overrun flag               */
      /* (To ensure of no unknown state from potential previous ADC operations) */
      __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));

      /* Process unlocked */
      /* Unlock before starting ADC conversions: in case of potential         */
      /* interruption, to let the process to ADC IRQ Handler.                 */
      __HAL_UNLOCK(hadc);

      /* Disable all interruptions before enabling the desired ones */
      __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));

      /* Enable ADC end of conversion interrupt */
      switch (hadc->Init.EOCSelection)
      {
        case ADC_EOC_SEQ_CONV:
          __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOS);
          break;
        /* case ADC_EOC_SINGLE_CONV */
        default:
          __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC);
          break;
      }

      /* Enable ADC overrun interrupt */
      /* If hadc->Init.Overrun is set to ADC_OVR_DATA_PRESERVED, only then is
         ADC_IT_OVR enabled; otherwise data overwrite is considered as normal
         behavior and no CPU time is lost for a non-processed interruption */
      if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
      {
        __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
      }

      /* Enable conversion of regular group.                                  */
      /* If software start has been selected, conversion starts immediately.  */
      /* If external trigger has been selected, conversion will start at next */
      /* trigger event.                                                       */
      /* Case of multimode enabled (when multimode feature is available):     */
      /*  - if ADC is slave and dual regular conversions are enabled, ADC is  */
      /*    enabled only (conversion is not started),                         */
      /*  - if ADC is master, ADC is enabled and conversion is started.       */
      if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
          || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
          || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
          || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
         )
      {
        /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */
        if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL)
        {
          ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);

          /* Enable as well injected interruptions in case
           HAL_ADCEx_InjectedStart_IT() has not been called beforehand. This
           allows to start regular and injected conversions when JAUTO is
           set with a single call to HAL_ADC_Start_IT() */
          switch (hadc->Init.EOCSelection)
          {
            case ADC_EOC_SEQ_CONV:
              __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
              __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
              break;
            /* case ADC_EOC_SINGLE_CONV */
            default:
              __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);
              __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
              break;
          }
        }

        /* Start ADC group regular conversion */
        LL_ADC_REG_StartConversion(hadc->Instance);
      }
      else
      {
        /* ADC instance is a multimode slave instance with multimode regular conversions enabled */
        SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
        /* if Master ADC JAUTO bit is set, Slave injected interruptions
           are enabled nevertheless (for same reason as above) */
        tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
        if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL)
        {
          /* First, update Slave State in setting HAL_ADC_STATE_INJ_BUSY bit
             and in resetting HAL_ADC_STATE_INJ_EOC bit */
          ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
          /* Next, set Slave injected interruptions */
          switch (hadc->Init.EOCSelection)
          {
            case ADC_EOC_SEQ_CONV:
              __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
              __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
              break;
            /* case ADC_EOC_SINGLE_CONV */
            default:
              __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);
              __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
              break;
          }
        }
      }
    }
    else
    {
      /* Process unlocked */
      __HAL_UNLOCK(hadc);
    }

  }
  else
  {
    tmp_hal_status = HAL_BUSY;
  }

  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Stop ADC conversion of regular group (and injected group in
  *         case of auto_injection mode), disable interrution of
  *         end-of-conversion, disable ADC peripheral.
  * @param hadc ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc)
{
  HAL_StatusTypeDef tmp_hal_status;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Process locked */
  __HAL_LOCK(hadc);

  /* 1. Stop potential conversion on going, on ADC groups regular and injected */
  tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);

  /* Disable ADC peripheral if conversions are effectively stopped */
  if (tmp_hal_status == HAL_OK)
  {
    /* Disable ADC end of conversion interrupt for regular group */
    /* Disable ADC overrun interrupt */
    __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));

    /* 2. Disable the ADC peripheral */
    tmp_hal_status = ADC_Disable(hadc);

    /* Check if ADC is effectively disabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                        HAL_ADC_STATE_READY);
    }
  }

  /* Process unlocked */
  __HAL_UNLOCK(hadc);

  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Enable ADC, start conversion of regular group and transfer result through DMA.
  * @note   Interruptions enabled in this function:
  *         overrun (if applicable), DMA half transfer, DMA transfer complete.
  *         Each of these interruptions has its dedicated callback function.
  * @note   Case of multimode enabled (when multimode feature is available): HAL_ADC_Start_DMA()
  *         is designed for single-ADC mode only. For multimode, the dedicated
  *         HAL_ADCEx_MultiModeStart_DMA() function must be used.
  * @param hadc ADC handle
  * @param pData Destination Buffer address.
  * @param Length Number of data to be transferred from ADC peripheral to memory
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length)
{
  HAL_StatusTypeDef tmp_hal_status;
  uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Perform ADC enable and conversion start if no conversion is on going */
  if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
  {
    /* Process locked */
    __HAL_LOCK(hadc);

    /* Ensure that multimode regular conversions are not enabled.   */
    /* Otherwise, dedicated API HAL_ADCEx_MultiModeStart_DMA() must be used.  */
    if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
        || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
        || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
       )
    {
      /* Enable the ADC peripheral */
      tmp_hal_status = ADC_Enable(hadc);

      /* Start conversion if ADC is effectively enabled */
      if (tmp_hal_status == HAL_OK)
      {
        /* Set ADC state                                                        */
        /* - Clear state bitfield related to regular group conversion results   */
        /* - Set state bitfield related to regular operation                    */
        ADC_STATE_CLR_SET(hadc->State,
                          HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
                          HAL_ADC_STATE_REG_BUSY);

        /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
          - if ADC instance is master or if multimode feature is not available
          - if multimode setting is disabled (ADC instance slave in independent mode) */
        if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
            || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
           )
        {
          CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
        }

        /* Check if a conversion is on going on ADC group injected */
        if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL)
        {
          /* Reset ADC error code fields related to regular conversions only */
          CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
        }
        else
        {
          /* Reset all ADC error code fields */
          ADC_CLEAR_ERRORCODE(hadc);
        }

        /* Set the DMA transfer complete callback */
        hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;

        /* Set the DMA half transfer complete callback */
        hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;

        /* Set the DMA error callback */
        hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;


        /* Manage ADC and DMA start: ADC overrun interruption, DMA start,     */
        /* ADC start (in case of SW start):                                   */

        /* Clear regular group conversion flag and overrun flag               */
        /* (To ensure of no unknown state from potential previous ADC         */
        /* operations)                                                        */
        __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));

        /* Process unlocked */
        /* Unlock before starting ADC conversions: in case of potential         */
        /* interruption, to let the process to ADC IRQ Handler.                 */
        __HAL_UNLOCK(hadc);

        /* With DMA, overrun event is always considered as an error even if
           hadc->Init.Overrun is set to ADC_OVR_DATA_OVERWRITTEN. Therefore,
           ADC_IT_OVR is enabled. */
        __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);

        /* Enable ADC DMA  mode*/
#if defined(ADC_VER_V5_V90)
        if (hadc->Instance == ADC3)
        {
          LL_ADC_REG_SetDMATransferMode(hadc->Instance, ADC3_CFGR_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests));
          LL_ADC_EnableDMAReq(hadc->Instance);
        }
        else
        {
          LL_ADC_REG_SetDataTransferMode(hadc->Instance, ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.ConversionDataManagement));
        }

#else
        LL_ADC_REG_SetDataTransferMode(hadc->Instance, (uint32_t)hadc->Init.ConversionDataManagement);
#endif


        /* Start the DMA channel */
        tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);

        /* Enable conversion of regular group.                                  */
        /* If software start has been selected, conversion starts immediately.  */
        /* If external trigger has been selected, conversion will start at next */
        /* trigger event.                                                       */
        /* Start ADC group regular conversion */
        LL_ADC_REG_StartConversion(hadc->Instance);
      }
      else
      {
        /* Process unlocked */
        __HAL_UNLOCK(hadc);
      }

    }
    else
    {
      tmp_hal_status = HAL_ERROR;
      /* Process unlocked */
      __HAL_UNLOCK(hadc);
    }
  }
  else
  {
    tmp_hal_status = HAL_BUSY;
  }

  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Stop ADC conversion of regular group (and injected group in
  *         case of auto_injection mode), disable ADC DMA transfer, disable
  *         ADC peripheral.
  * @note:  ADC peripheral disable is forcing stop of potential
  *         conversion on ADC group injected. If ADC group injected is under use, it
  *         should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
  * @note   Case of multimode enabled (when multimode feature is available):
  *         HAL_ADC_Stop_DMA() function is dedicated to single-ADC mode only.
  *         For multimode, the dedicated HAL_ADCEx_MultiModeStop_DMA() API must be used.
  * @param hadc ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc)
{
  HAL_StatusTypeDef tmp_hal_status;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Process locked */
  __HAL_LOCK(hadc);

  /* 1. Stop potential ADC group regular conversion on going */
  tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);

  /* Disable ADC peripheral if conversions are effectively stopped */
  if (tmp_hal_status == HAL_OK)
  {
    /* Disable ADC DMA (ADC DMA configuration of continuous requests is kept) */
    MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0 | ADC_CFGR_DMNGT_1, 0UL);

    /* Disable the DMA channel (in case of DMA in circular mode or stop       */
    /* while DMA transfer is on going)                                        */
    if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY)
    {
      tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);

      /* Check if DMA channel effectively disabled */
      if (tmp_hal_status != HAL_OK)
      {
        /* Update ADC state machine to error */
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
      }
    }

    /* Disable ADC overrun interrupt */
    __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);

    /* 2. Disable the ADC peripheral */
    /* Update "tmp_hal_status" only if DMA channel disabling passed,          */
    /* to keep in memory a potential failing status.                          */
    if (tmp_hal_status == HAL_OK)
    {
      tmp_hal_status = ADC_Disable(hadc);
    }
    else
    {
      (void)ADC_Disable(hadc);
    }

    /* Check if ADC is effectively disabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                        HAL_ADC_STATE_READY);
    }

  }

  /* Process unlocked */
  __HAL_UNLOCK(hadc);

  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Get ADC regular group conversion result.
  * @note   Reading register DR automatically clears ADC flag EOC
  *         (ADC group regular end of unitary conversion).
  * @note   This function does not clear ADC flag EOS
  *         (ADC group regular end of sequence conversion).
  *         Occurrence of flag EOS rising:
  *          - If sequencer is composed of 1 rank, flag EOS is equivalent
  *            to flag EOC.
  *          - If sequencer is composed of several ranks, during the scan
  *            sequence flag EOC only is raised, at the end of the scan sequence
  *            both flags EOC and EOS are raised.
  *         To clear this flag, either use function:
  *         in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
  *         model polling: @ref HAL_ADC_PollForConversion()
  *         or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS).
  * @param hadc ADC handle
  * @retval ADC group regular conversion data
  */
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Note: EOC flag is not cleared here by software because automatically     */
  /*       cleared by hardware when reading register DR.                      */

  /* Return ADC converted value */
  return hadc->Instance->DR;
}

/**
  * @brief  Handle ADC interrupt request.
  * @param hadc ADC handle
  * @retval None
  */
void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc)
{
  uint32_t overrun_error = 0UL; /* flag set if overrun occurrence has to be considered as an error */
  uint32_t tmp_isr = hadc->Instance->ISR;
  uint32_t tmp_ier = hadc->Instance->IER;
  uint32_t tmp_adc_inj_is_trigger_source_sw_start;
  uint32_t tmp_adc_reg_is_trigger_source_sw_start;
  uint32_t tmp_cfgr;
  const ADC_TypeDef *tmpADC_Master;
  uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));

  /* ========== Check End of Sampling flag for ADC group regular ========== */
  if (((tmp_isr & ADC_FLAG_EOSMP) == ADC_FLAG_EOSMP) && ((tmp_ier & ADC_IT_EOSMP) == ADC_IT_EOSMP))
  {
    /* Update state machine on end of sampling status if not in error state */
    if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
    {
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP);
    }

    /* End Of Sampling callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    hadc->EndOfSamplingCallback(hadc);
#else
    HAL_ADCEx_EndOfSamplingCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

    /* Clear regular group conversion flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP);
  }

  /* ====== Check ADC group regular end of unitary conversion sequence conversions ===== */
  if ((((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) ||
      (((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS)))
  {
    /* Update state machine on conversion status if not in error state */
    if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
    {
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
    }

    /* Determine whether any further conversion upcoming on group regular     */
    /* by external trigger, continuous mode or scan sequence on going         */
    /* to disable interruption.                                               */
    if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
    {
      /* Get relevant register CFGR in ADC instance of ADC master or slave    */
      /* in function of multimode state (for devices with multimode           */
      /* available).                                                          */
      if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
          || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
          || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
          || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
         )
      {
        /* check CONT bit directly in handle ADC CFGR register */
        tmp_cfgr = READ_REG(hadc->Instance->CFGR);
      }
      else
      {
        /* else need to check Master ADC CONT bit */
        tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
        tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
      }

      /* Carry on if continuous mode is disabled */
      if (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) != ADC_CFGR_CONT)
      {
        /* If End of Sequence is reached, disable interrupts */
        if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS))
        {
          /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit         */
          /* ADSTART==0 (no conversion on going)                              */
          if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
          {
            /* Disable ADC end of sequence conversion interrupt */
            /* Note: Overrun interrupt was enabled with EOC interrupt in      */
            /* HAL_Start_IT(), but is not disabled here because can be used   */
            /* by overrun IRQ process below.                                  */
            __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);

            /* Set ADC state */
            CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);

            if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
            {
              SET_BIT(hadc->State, HAL_ADC_STATE_READY);
            }
          }
          else
          {
            /* Change ADC state to error state */
            SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);

            /* Set ADC error code to ADC peripheral internal error */
            SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
          }
        }
      }
    }

    /* Conversion complete callback */
    /* Note: Into callback function "HAL_ADC_ConvCpltCallback()",             */
    /*       to determine if conversion has been triggered from EOC or EOS,   */
    /*       possibility to use:                                              */
    /*        " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) "                */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    hadc->ConvCpltCallback(hadc);
#else
    HAL_ADC_ConvCpltCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

    /* Clear regular group conversion flag */
    /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of         */
    /*       conversion flags clear induces the release of the preserved data.*/
    /*       Therefore, if the preserved data value is needed, it must be     */
    /*       read preliminarily into HAL_ADC_ConvCpltCallback().              */
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
  }

  /* ====== Check ADC group injected end of unitary conversion sequence conversions ===== */
  if ((((tmp_isr & ADC_FLAG_JEOC) == ADC_FLAG_JEOC) && ((tmp_ier & ADC_IT_JEOC) == ADC_IT_JEOC)) ||
      (((tmp_isr & ADC_FLAG_JEOS) == ADC_FLAG_JEOS) && ((tmp_ier & ADC_IT_JEOS) == ADC_IT_JEOS)))
  {
    /* Update state machine on conversion status if not in error state */
    if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
    {
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
    }

    /* Retrieve ADC configuration */
    tmp_adc_inj_is_trigger_source_sw_start = LL_ADC_INJ_IsTriggerSourceSWStart(hadc->Instance);
    tmp_adc_reg_is_trigger_source_sw_start = LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance);
    /* Get relevant register CFGR in ADC instance of ADC master or slave  */
    /* in function of multimode state (for devices with multimode         */
    /* available).                                                        */
    if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
        || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
        || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT)
        || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL)
       )
    {
      tmp_cfgr = READ_REG(hadc->Instance->CFGR);
    }
    else
    {
      tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
      tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
    }

    /* Disable interruption if no further conversion upcoming by injected     */
    /* external trigger or by automatic injected conversion with regular      */
    /* group having no further conversion upcoming (same conditions as        */
    /* regular group interruption disabling above),                           */
    /* and if injected scan sequence is completed.                            */
    if (tmp_adc_inj_is_trigger_source_sw_start != 0UL)
    {
      if ((READ_BIT(tmp_cfgr, ADC_CFGR_JAUTO) == 0UL) ||
          ((tmp_adc_reg_is_trigger_source_sw_start != 0UL) &&
           (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) == 0UL)))
      {
        /* If End of Sequence is reached, disable interrupts */
        if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS))
        {
          /* Particular case if injected contexts queue is enabled:             */
          /* when the last context has been fully processed, JSQR is reset      */
          /* by the hardware. Even if no injected conversion is planned to come */
          /* (queue empty, triggers are ignored), it can start again            */
          /* immediately after setting a new context (JADSTART is still set).   */
          /* Therefore, state of HAL ADC injected group is kept to busy.        */
          if (READ_BIT(tmp_cfgr, ADC_CFGR_JQM) == 0UL)
          {
            /* Allowed to modify bits ADC_IT_JEOC/ADC_IT_JEOS only if bit       */
            /* JADSTART==0 (no conversion on going)                             */
            if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL)
            {
              /* Disable ADC end of sequence conversion interrupt  */
              __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC | ADC_IT_JEOS);

              /* Set ADC state */
              CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);

              if ((hadc->State & HAL_ADC_STATE_REG_BUSY) == 0UL)
              {
                SET_BIT(hadc->State, HAL_ADC_STATE_READY);
              }
            }
            else
            {
              /* Update ADC state machine to error */
              SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);

              /* Set ADC error code to ADC peripheral internal error */
              SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
            }
          }
        }
      }
    }

    /* Injected Conversion complete callback */
    /* Note:  HAL_ADCEx_InjectedConvCpltCallback can resort to
              if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOS)) or
              if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOC)) to determine whether
              interruption has been triggered by end of conversion or end of
              sequence.    */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    hadc->InjectedConvCpltCallback(hadc);
#else
    HAL_ADCEx_InjectedConvCpltCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

    /* Clear injected group conversion flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC | ADC_FLAG_JEOS);
  }

  /* ========== Check Analog watchdog 1 flag ========== */
  if (((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1))
  {
    /* Set ADC state */
    SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);

    /* Level out of window 1 callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    hadc->LevelOutOfWindowCallback(hadc);
#else
    HAL_ADC_LevelOutOfWindowCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

    /* Clear ADC analog watchdog flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
  }

  /* ========== Check analog watchdog 2 flag ========== */
  if (((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2))
  {
    /* Set ADC state */
    SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);

    /* Level out of window 2 callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    hadc->LevelOutOfWindow2Callback(hadc);
#else
    HAL_ADCEx_LevelOutOfWindow2Callback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

    /* Clear ADC analog watchdog flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
  }

  /* ========== Check analog watchdog 3 flag ========== */
  if (((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3))
  {
    /* Set ADC state */
    SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);

    /* Level out of window 3 callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    hadc->LevelOutOfWindow3Callback(hadc);
#else
    HAL_ADCEx_LevelOutOfWindow3Callback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */

    /* Clear ADC analog watchdog flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
  }

  /* ========== Check Overrun flag ========== */
  if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR))
  {
    /* If overrun is set to overwrite previous data (default setting),        */
    /* overrun event is not considered as an error.                           */
    /* (cf ref manual "Managing conversions without using the DMA and without */
    /* overrun ")                                                             */
    /* Exception for usage with DMA overrun event always considered as an     */
    /* error.                                                                 */
    if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
    {
      overrun_error = 1UL;
    }
    else
    {
      /* Check DMA configuration */
      if (tmp_multimode_config != LL_ADC_MULTI_INDEPENDENT)
      {
        /* Multimode (when feature is available) is enabled,
           Common Control Register MDMA bits must be checked. */
        if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC)
        {
          overrun_error = 1UL;
        }
      }
      else
      {
        /* Multimode not set or feature not available or ADC independent */
        if ((hadc->Instance->CFGR & ADC_CFGR_DMNGT) != 0UL)
        {
          overrun_error = 1UL;
        }
      }
    }

    if (overrun_error == 1UL)
    {
      /* Change ADC state to error state */
      SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);

      /* Set ADC error code to overrun */
      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);

      /* Error callback */
      /* Note: In case of overrun, ADC conversion data is preserved until     */
      /*       flag OVR is reset.                                             */
      /*       Therefore, old ADC conversion data can be retrieved in         */
      /*       function "HAL_ADC_ErrorCallback()".                            */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
      hadc->ErrorCallback(hadc);
#else
      HAL_ADC_ErrorCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
    }

    /* Clear ADC overrun flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
  }

  /* ========== Check Injected context queue overflow flag ========== */
  if (((tmp_isr & ADC_FLAG_JQOVF) == ADC_FLAG_JQOVF) && ((tmp_ier & ADC_IT_JQOVF) == ADC_IT_JQOVF))
  {
    /* Change ADC state to overrun state */
    SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);

    /* Set ADC error code to Injected context queue overflow */
    SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);

    /* Clear the Injected context queue overflow flag */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);

    /* Injected context queue overflow callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    hadc->InjectedQueueOverflowCallback(hadc);
#else
    HAL_ADCEx_InjectedQueueOverflowCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
  }

}

/**
  * @brief  Conversion complete callback in non-blocking mode.
  * @param hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_ConvCpltCallback must be implemented in the user file.
   */
}

/**
  * @brief  Conversion DMA half-transfer callback in non-blocking mode.
  * @param hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
  */
}

/**
  * @brief  Analog watchdog 1 callback in non-blocking mode.
  * @param hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file.
  */
}

/**
  * @brief  ADC error callback in non-blocking mode
  *         (ADC conversion with interruption or transfer by DMA).
  * @note   In case of error due to overrun when using ADC with DMA transfer
  *         (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"):
  *         - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()".
  *         - If needed, restart a new ADC conversion using function
  *           "HAL_ADC_Start_DMA()"
  *           (this function is also clearing overrun flag)
  * @param hadc ADC handle
  * @retval None
  */
__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);

  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_ErrorCallback must be implemented in the user file.
  */
}

/**
  * @}
  */

/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
  * @brief    Peripheral Control functions
  *
@verbatim
 ===============================================================================
             ##### Peripheral Control functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
      (+) Configure channels on regular group
      (+) Configure the analog watchdog

@endverbatim
  * @{
  */

/**
  * @brief  Configure a channel to be assigned to ADC group regular.
  * @note   In case of usage of internal measurement channels:
  *         Vbat/VrefInt/TempSensor.
  *         These internal paths can be disabled using function
  *         HAL_ADC_DeInit().
  * @note   Possibility to update parameters on the fly:
  *         This function initializes channel into ADC group regular,
  *         following calls to this function can be used to reconfigure
  *         some parameters of structure "ADC_ChannelConfTypeDef" on the fly,
  *         without resetting the ADC.
  *         The setting of these parameters is conditioned to ADC state:
  *         Refer to comments of structure "ADC_ChannelConfTypeDef".
  * @param hadc ADC handle
  * @param sConfig Structure of ADC channel assigned to ADC group regular.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, ADC_ChannelConfTypeDef *sConfig)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  uint32_t tmpOffsetShifted;
  uint32_t tmp_config_internal_channel;
  __IO uint32_t wait_loop_index = 0;
  uint32_t tmp_adc_is_conversion_on_going_regular;
  uint32_t tmp_adc_is_conversion_on_going_injected;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
  assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
  assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfig->SingleDiff));
  assert_param(IS_ADC_OFFSET_NUMBER(sConfig->OffsetNumber));
  /* Check offset range according to oversampling setting */
  if (hadc->Init.OversamplingMode == ENABLE)
  {
    assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset / (hadc->Init.Oversampling.Ratio + 1U)));
  }
  else
  {
#if defined(ADC_VER_V5_V90)
    if (hadc->Instance == ADC3)
    {
      assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset));
    }
    else
#endif /* ADC_VER_V5_V90 */
    {
      assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfig->Offset));
    }
  }

  /* if ROVSE is set, the value of the OFFSETy_EN bit in ADCx_OFRy register is
     ignored (considered as reset) */
  assert_param(!((sConfig->OffsetNumber != ADC_OFFSET_NONE) && (hadc->Init.OversamplingMode == ENABLE)));

  /* Verification of channel number */
  if (sConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED)
  {
    assert_param(IS_ADC_CHANNEL(sConfig->Channel));
  }
  else
  {
    if (hadc->Instance == ADC1)
    {
      assert_param(IS_ADC1_DIFF_CHANNEL(sConfig->Channel));
    }
    if (hadc->Instance == ADC2)
    {
      assert_param(IS_ADC2_DIFF_CHANNEL(sConfig->Channel));
    }
#if defined(ADC3)
    /* ADC3 is not available on some STM32H7 products */
    if (hadc->Instance == ADC3)
    {
      assert_param(IS_ADC3_DIFF_CHANNEL(sConfig->Channel));
    }
#endif
  }

  /* Process locked */
  __HAL_LOCK(hadc);

  /* Parameters update conditioned to ADC state:                              */
  /* Parameters that can be updated when ADC is disabled or enabled without   */
  /* conversion on going on regular group:                                    */
  /*  - Channel number                                                        */
  /*  - Channel rank                                                          */
  if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
  {

#if defined(ADC_VER_V5_V90)
    if (hadc->Instance != ADC3)
    {
      /* ADC channels preselection */
      hadc->Instance->PCSEL_RES0 |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) & 0x1FUL));
    }
#else
    /* ADC channels preselection */
    hadc->Instance->PCSEL |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) & 0x1FUL));
#endif /* ADC_VER_V5_V90 */

    /* Set ADC group regular sequence: channel on the selected scan sequence rank */
    LL_ADC_REG_SetSequencerRanks(hadc->Instance, sConfig->Rank, sConfig->Channel);

    /* Parameters update conditioned to ADC state:                              */
    /* Parameters that can be updated when ADC is disabled or enabled without   */
    /* conversion on going on regular group:                                    */
    /*  - Channel sampling time                                                 */
    /*  - Channel offset                                                        */
    tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
    tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
    if ((tmp_adc_is_conversion_on_going_regular == 0UL)
        && (tmp_adc_is_conversion_on_going_injected == 0UL)
       )
    {
      /* Set sampling time of the selected ADC channel */
      LL_ADC_SetChannelSamplingTime(hadc->Instance, sConfig->Channel, sConfig->SamplingTime);

      /* Configure the offset: offset enable/disable, channel, offset value */

      /* Shift the offset with respect to the selected ADC resolution. */
      /* Offset has to be left-aligned on bit 11, the LSB (right bits) are set to 0 */
#if defined(ADC_VER_V5_V90)
      if (hadc->Instance == ADC3)
      {
        tmpOffsetShifted = ADC3_OFFSET_SHIFT_RESOLUTION(hadc, (uint32_t)sConfig->Offset);
      }
      else
#endif /* ADC_VER_V5_V90 */
      {
        tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, (uint32_t)sConfig->Offset);
      }
      
      if (sConfig->OffsetNumber != ADC_OFFSET_NONE)
      {
        /* Set ADC selected offset number */
        LL_ADC_SetOffset(hadc->Instance, sConfig->OffsetNumber, sConfig->Channel, tmpOffsetShifted);

#if defined(ADC_VER_V5_V90)
        if (hadc->Instance == ADC3)
        {
          assert_param(IS_ADC3_OFFSET_SIGN(sConfig->OffsetSign));
          assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetSaturation));
          /* Set ADC selected offset sign & saturation */
          LL_ADC_SetOffsetSign(hadc->Instance, sConfig->OffsetNumber, sConfig->OffsetSign);
          LL_ADC_SetOffsetSaturation(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetSaturation == ENABLE) ? LL_ADC_OFFSET_SATURATION_ENABLE : LL_ADC_OFFSET_SATURATION_DISABLE);
        }
        else
#endif /* ADC_VER_V5_V90 */
        {
          assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetSignedSaturation));
          /* Set ADC selected offset signed saturation */
          LL_ADC_SetOffsetSignedSaturation(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetSignedSaturation == ENABLE) ? LL_ADC_OFFSET_SIGNED_SATURATION_ENABLE : LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE);

          assert_param(IS_FUNCTIONAL_STATE(sConfig->OffsetRightShift));
          /* Set ADC selected offset right shift */
          LL_ADC_SetDataRightShift(hadc->Instance, sConfig->OffsetNumber, (sConfig->OffsetRightShift == ENABLE) ? LL_ADC_OFFSET_RSHIFT_ENABLE : LL_ADC_OFFSET_RSHIFT_DISABLE);
        }

      }
      else
      {
        /* Scan OFR1, OFR2, OFR3, OFR4 to check if the selected channel is enabled.
          If this is the case, offset OFRx is disabled since
          sConfig->OffsetNumber = ADC_OFFSET_NONE. */
#if defined(ADC_VER_V5_V90)
        if (hadc->Instance == ADC3)
        {
          if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_1)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel))
          {
            LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_1, LL_ADC_OFFSET_DISABLE);
          }
          if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_2)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel))
          {
            LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_2, LL_ADC_OFFSET_DISABLE);
          }
          if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_3)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel))
          {
            LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_3, LL_ADC_OFFSET_DISABLE);
          }
          if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_4)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel))
          {
            LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_4, LL_ADC_OFFSET_DISABLE);
          }
        }
        else
#endif /* ADC_VER_V5_V90 */
        {
          if (((hadc->Instance->OFR1) & ADC_OFR1_OFFSET1_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
          {
            CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_SSATE);
          }
          if (((hadc->Instance->OFR2) & ADC_OFR2_OFFSET2_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
          {
            CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_SSATE);
          }
          if (((hadc->Instance->OFR3) & ADC_OFR3_OFFSET3_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
          {
            CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_SSATE);
          }
          if (((hadc->Instance->OFR4) & ADC_OFR4_OFFSET4_CH) == ADC_OFR_CHANNEL(sConfig->Channel))
          {
            CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_SSATE);
          }
        }
        
     }
    }

    /* Parameters update conditioned to ADC state:                              */
    /* Parameters that can be updated only when ADC is disabled:                */
    /*  - Single or differential mode                                           */
    /*  - Internal measurement channels: Vbat/VrefInt/TempSensor                */
    if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
    {
      /* Set mode single-ended or differential input of the selected ADC channel */
      LL_ADC_SetChannelSingleDiff(hadc->Instance, sConfig->Channel, sConfig->SingleDiff);

      /* Configuration of differential mode */
      if (sConfig->SingleDiff == ADC_DIFFERENTIAL_ENDED)
      {
        /* Set sampling time of the selected ADC channel */
        /* Note: ADC channel number masked with value "0x1F" to ensure shift value within 32 bits range */
        LL_ADC_SetChannelSamplingTime(hadc->Instance,
                                      (uint32_t)(__LL_ADC_DECIMAL_NB_TO_CHANNEL((__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfig->Channel) + 1UL) & 0x1FUL)),
                                      sConfig->SamplingTime);
      }

      /* Management of internal measurement channels: Vbat/VrefInt/TempSensor.  */
      /* If internal channel selected, enable dedicated internal buffers and    */
      /* paths.                                                                 */
      /* Note: these internal measurement paths can be disabled using           */
      /* HAL_ADC_DeInit().                                                      */

      if (__LL_ADC_IS_CHANNEL_INTERNAL(sConfig->Channel))
      {
        /* Configuration of common ADC parameters                                 */

        tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance));

        /* Software is allowed to change common parameters only when all ADCs   */
        /* of the common group are disabled.                                    */
        if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
        {
          /* If the requested internal measurement path has already been enabled, */
          /* bypass the configuration processing.                                 */
          if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL))
          {
            if (ADC_TEMPERATURE_SENSOR_INSTANCE(hadc))
            {
              LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel);

              /* Delay for temperature sensor stabilization time */
              /* Wait loop initialization and execution */
              /* Note: Variable divided by 2 to compensate partially              */
              /*       CPU processing cycles, scaling in us split to not          */
              /*       exceed 32 bits register capacity and handle low frequency. */
              wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
              while (wait_loop_index != 0UL)
              {
                wait_loop_index--;
              }
            }
          }
          else if ((sConfig->Channel == ADC_CHANNEL_VBAT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL))
          {
            if (ADC_BATTERY_VOLTAGE_INSTANCE(hadc))
            {
              LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel);
            }
          }
          else if ((sConfig->Channel == ADC_CHANNEL_VREFINT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL))
          {
            if (ADC_VREFINT_INSTANCE(hadc))
            {
              LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel);
            }
          }
          else
          {
            /* nothing to do */
          }
        }
        /* If the requested internal measurement path has already been          */
        /* enabled and other ADC of the common group are enabled, internal      */
        /* measurement paths cannot be enabled.                                 */
        else
        {
          /* Update ADC state machine to error */
          SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);

          tmp_hal_status = HAL_ERROR;
        }
      }
    }
  }

  /* If a conversion is on going on regular group, no update on regular       */
  /* channel could be done on neither of the channel configuration structure  */
  /* parameters.                                                              */
  else
  {
    /* Update ADC state machine to error */
    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);

    tmp_hal_status = HAL_ERROR;
  }

  /* Process unlocked */
  __HAL_UNLOCK(hadc);

  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Configure the analog watchdog.
  * @note   Possibility to update parameters on the fly:
  *         This function initializes the selected analog watchdog, successive
  *         calls to this function can be used to reconfigure some parameters
  *         of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting
  *         the ADC.
  *         The setting of these parameters is conditioned to ADC state.
  *         For parameters constraints, see comments of structure
  *         "ADC_AnalogWDGConfTypeDef".
  * @note   On this STM32 series, analog watchdog thresholds cannot be modified
  *         while ADC conversion is on going.
  * @param hadc ADC handle
  * @param AnalogWDGConfig Structure of ADC analog watchdog configuration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, ADC_AnalogWDGConfTypeDef *AnalogWDGConfig)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  uint32_t tmpAWDHighThresholdShifted;
  uint32_t tmpAWDLowThresholdShifted;
  uint32_t tmp_adc_is_conversion_on_going_regular;
  uint32_t tmp_adc_is_conversion_on_going_injected;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(AnalogWDGConfig->WatchdogNumber));
  assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
  assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));

  if ((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG)     ||
      (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC)   ||
      (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC))
  {
    assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
  }

#if defined(ADC_VER_V5_V90)

  if (hadc->Instance == ADC3)
  {
    /* Verify thresholds range */
    if (hadc->Init.OversamplingMode == ENABLE)
    {
      /* Case of oversampling enabled: thresholds are compared to oversampling
         intermediate computation (after ratio, before shift application) */
      assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold / (hadc->Init.Oversampling.Ratio + 1UL)));
      assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold / (hadc->Init.Oversampling.Ratio + 1UL)));
    }
    else
    {
      /* Verify if thresholds are within the selected ADC resolution */
      assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold));
      assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold));
    }
  }
  else
#endif /* ADC_VER_V5_V90 */
  {
    /* Verify thresholds range */
    if (hadc->Init.OversamplingMode == ENABLE)
    {
      /* Case of oversampling enabled: thresholds are compared to oversampling
         intermediate computation (after ratio, before shift application) */
      assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold / (hadc->Init.Oversampling.Ratio + 1UL)));
      assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold / (hadc->Init.Oversampling.Ratio + 1UL)));
    }
    else
    {
      /* Verify if thresholds are within the selected ADC resolution */
      assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold));
      assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold));
    }
  }

  /* Process locked */
  __HAL_LOCK(hadc);

  /* Parameters update conditioned to ADC state:                              */
  /* Parameters that can be updated when ADC is disabled or enabled without   */
  /* conversion on going on ADC groups regular and injected:                  */
  /*  - Analog watchdog channels                                              */
  /*  - Analog watchdog thresholds                                            */
  tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
  tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
  if ((tmp_adc_is_conversion_on_going_regular == 0UL)
      && (tmp_adc_is_conversion_on_going_injected == 0UL)
     )
  {
    /* Analog watchdog configuration */
    if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1)
    {
      /* Configuration of analog watchdog:                                    */
      /*  - Set the analog watchdog enable mode: one or overall group of      */
      /*    channels, on groups regular and-or injected.                      */
      switch (AnalogWDGConfig->WatchdogMode)
      {
        case ADC_ANALOGWATCHDOG_SINGLE_REG:
          LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel,
                                          LL_ADC_GROUP_REGULAR));
          break;

        case ADC_ANALOGWATCHDOG_SINGLE_INJEC:
          LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel,
                                          LL_ADC_GROUP_INJECTED));
          break;

        case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC:
          LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel,
                                          LL_ADC_GROUP_REGULAR_INJECTED));
          break;

        case ADC_ANALOGWATCHDOG_ALL_REG:
          LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG);
          break;

        case ADC_ANALOGWATCHDOG_ALL_INJEC:
          LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_INJ);
          break;

        case ADC_ANALOGWATCHDOG_ALL_REGINJEC:
          LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG_INJ);
          break;

        default: /* ADC_ANALOGWATCHDOG_NONE */
          LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_DISABLE);
          break;
      }

      /* Shift the offset in function of the selected ADC resolution:         */
      /* Thresholds have to be left-aligned on bit 11, the LSB (right bits)   */
      /* are set to 0                                                         */
      tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
      tmpAWDLowThresholdShifted  = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);

      /* Set the high and low thresholds */
#if defined(ADC_VER_V5_V90)
      if (hadc->Instance == ADC3)
      {
        MODIFY_REG(hadc->Instance->LTR1_TR1,
                   ADC3_TR1_AWDFILT,
                   AnalogWDGConfig->FilteringConfig);
        MODIFY_REG(hadc->Instance->LTR1_TR1,  ADC3_TR1_LT1, tmpAWDLowThresholdShifted);
        MODIFY_REG(hadc->Instance->LTR1_TR1,  ADC3_TR1_HT1, (tmpAWDHighThresholdShifted << ADC3_TR1_HT1_Pos));
      }
      else
      {

        MODIFY_REG(hadc->Instance->LTR1_TR1,  ADC_LTR_LT, tmpAWDLowThresholdShifted);
        MODIFY_REG(hadc->Instance->HTR1_TR2,  ADC_HTR_HT, tmpAWDHighThresholdShifted);
      }
#else
      MODIFY_REG(hadc->Instance->LTR1,  ADC_LTR_LT, tmpAWDLowThresholdShifted);
      MODIFY_REG(hadc->Instance->HTR1,  ADC_HTR_HT, tmpAWDHighThresholdShifted);
#endif

      /* Update state, clear previous result related to AWD1 */
      CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD1);

      /* Clear flag ADC analog watchdog */
      /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready  */
      /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent()          */
      /* (in case left enabled by previous ADC operations).                 */
      LL_ADC_ClearFlag_AWD1(hadc->Instance);

      /* Configure ADC analog watchdog interrupt */
      if (AnalogWDGConfig->ITMode == ENABLE)
      {
        LL_ADC_EnableIT_AWD1(hadc->Instance);
      }
      else
      {
        LL_ADC_DisableIT_AWD1(hadc->Instance);
      }
    }
    /* Case of ADC_ANALOGWATCHDOG_2 or ADC_ANALOGWATCHDOG_3 */
    else
    {
      switch (AnalogWDGConfig->WatchdogMode)
      {
        case ADC_ANALOGWATCHDOG_SINGLE_REG:
        case ADC_ANALOGWATCHDOG_SINGLE_INJEC:
        case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC:
          /* Update AWD by bitfield to keep the possibility to monitor        */
          /* several channels by successive calls of this function.           */
          if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
          {
            SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
          }
          else
          {
            SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
          }
          break;

        case ADC_ANALOGWATCHDOG_ALL_REG:
        case ADC_ANALOGWATCHDOG_ALL_INJEC:
        case ADC_ANALOGWATCHDOG_ALL_REGINJEC:

#if defined(ADC_VER_V5_V90)
          if (hadc->Instance == ADC3)
          {

            LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_ALL_CHANNELS_REG_INJ);

          }
          else
          {
#endif  /*ADC_VER_V5_V90*/
            /* Update AWD by bitfield to keep the possibility to monitor        */
            /* several channels by successive calls of this function.           */
            if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
            {
              SET_BIT(hadc->Instance->AWD2CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
            }
            else
            {
              SET_BIT(hadc->Instance->AWD3CR, (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel) & 0x1FUL)));
            }
#if defined(ADC_VER_V5_V90)
          }
#endif  /*ADC_VER_V5_V90*/
          break;

        default: /* ADC_ANALOGWATCHDOG_NONE */
          LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_DISABLE);
          break;
      }

      /* Shift the thresholds in function of the selected ADC resolution      */
      /* have to be left-aligned on bit 15, the LSB (right bits) are set to 0 */
      tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
      tmpAWDLowThresholdShifted  = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);

#if defined(ADC_VER_V5_V90)
      if (hadc->Instance == ADC3)
      {

        /* Analog watchdog thresholds configuration */
        if (AnalogWDGConfig->WatchdogNumber != ADC_ANALOGWATCHDOG_1)
        {
          /* Shift the offset with respect to the selected ADC resolution:        */
          /* Thresholds have to be left-aligned on bit 7, the LSB (right bits)    */
          /* are set to 0.                                                        */
          tmpAWDHighThresholdShifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
          tmpAWDLowThresholdShifted  = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
        }

        /* Set ADC analog watchdog thresholds value of both thresholds high and low */
        LL_ADC_ConfigAnalogWDThresholds(hadc->Instance, AnalogWDGConfig->WatchdogNumber, tmpAWDHighThresholdShifted, tmpAWDLowThresholdShifted);


      }
      else
      {

        if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
        {
          /* Set ADC analog watchdog thresholds value of both thresholds high and low */
          MODIFY_REG(hadc->Instance->LTR2_DIFSEL,  ADC_LTR_LT, tmpAWDLowThresholdShifted);
          MODIFY_REG(hadc->Instance->HTR2_CALFACT,  ADC_HTR_HT, tmpAWDHighThresholdShifted);
        }
        else
        {
          /* Set ADC analog watchdog thresholds value of both thresholds high and low */
          MODIFY_REG(hadc->Instance->LTR3_RES10,  ADC_LTR_LT, tmpAWDLowThresholdShifted);
          MODIFY_REG(hadc->Instance->HTR3_RES11,  ADC_HTR_HT, tmpAWDHighThresholdShifted);
        }
      }
#else
      if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
      {
        /* Set ADC analog watchdog thresholds value of both thresholds high and low */
        MODIFY_REG(hadc->Instance->LTR2,  ADC_LTR_LT, tmpAWDLowThresholdShifted);
        MODIFY_REG(hadc->Instance->HTR2,  ADC_HTR_HT, tmpAWDHighThresholdShifted);
      }
      else
      {
        /* Set ADC analog watchdog thresholds value of both thresholds high and low */
        MODIFY_REG(hadc->Instance->LTR3,  ADC_LTR_LT, tmpAWDLowThresholdShifted);
        MODIFY_REG(hadc->Instance->HTR3,  ADC_HTR_HT, tmpAWDHighThresholdShifted);
      }

#endif
      if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
      {
        /* Update state, clear previous result related to AWD2 */
        CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD2);

        /* Clear flag ADC analog watchdog */
        /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready  */
        /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent()          */
        /* (in case left enabled by previous ADC operations).                 */
        LL_ADC_ClearFlag_AWD2(hadc->Instance);

        /* Configure ADC analog watchdog interrupt */
        if (AnalogWDGConfig->ITMode == ENABLE)
        {
          LL_ADC_EnableIT_AWD2(hadc->Instance);
        }
        else
        {
          LL_ADC_DisableIT_AWD2(hadc->Instance);
        }
      }
      /* (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */
      else
      {
        /* Update state, clear previous result related to AWD3 */
        CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD3);

        /* Clear flag ADC analog watchdog */
        /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready  */
        /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent()          */
        /* (in case left enabled by previous ADC operations).                 */
        LL_ADC_ClearFlag_AWD3(hadc->Instance);

        /* Configure ADC analog watchdog interrupt */
        if (AnalogWDGConfig->ITMode == ENABLE)
        {
          LL_ADC_EnableIT_AWD3(hadc->Instance);
        }
        else
        {
          LL_ADC_DisableIT_AWD3(hadc->Instance);
        }
      }
    }

  }
  /* If a conversion is on going on ADC group regular or injected, no update  */
  /* could be done on neither of the AWD configuration structure parameters.  */
  else
  {
    /* Update ADC state machine to error */
    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);

    tmp_hal_status = HAL_ERROR;
  }
  /* Process unlocked */
  __HAL_UNLOCK(hadc);

  /* Return function status */
  return tmp_hal_status;
}


/**
  * @}
  */

/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
  *  @brief    ADC Peripheral State functions
  *
@verbatim
 ===============================================================================
            ##### Peripheral state and errors functions #####
 ===============================================================================
    [..]
    This subsection provides functions to get in run-time the status of the
    peripheral.
      (+) Check the ADC state
      (+) Check the ADC error code

@endverbatim
  * @{
  */

/**
  * @brief  Return the ADC handle state.
  * @note   ADC state machine is managed by bitfields, ADC status must be
  *         compared with states bits.
  *         For example:
  *           " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_REG_BUSY) != 0UL) "
  *           " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) "
  * @param hadc ADC handle
  * @retval ADC handle state (bitfield on 32 bits)
  */
uint32_t HAL_ADC_GetState(ADC_HandleTypeDef *hadc)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Return ADC handle state */
  return hadc->State;
}

/**
  * @brief  Return the ADC error code.
  * @param hadc ADC handle
  * @retval ADC error code (bitfield on 32 bits)
  */
uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  return hadc->ErrorCode;
}

/**
  * @}
  */

/**
  * @}
  */

/** @defgroup ADC_Private_Functions ADC Private Functions
  * @{
  */

/**
  * @brief  Stop ADC conversion.
  * @param hadc ADC handle
  * @param ConversionGroup ADC group regular and/or injected.
  *          This parameter can be one of the following values:
  *            @arg @ref ADC_REGULAR_GROUP           ADC regular conversion type.
  *            @arg @ref ADC_INJECTED_GROUP          ADC injected conversion type.
  *            @arg @ref ADC_REGULAR_INJECTED_GROUP  ADC regular and injected conversion type.
  * @retval HAL status.
  */
HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc, uint32_t ConversionGroup)
{
  uint32_t tickstart;
  uint32_t Conversion_Timeout_CPU_cycles = 0UL;
  uint32_t conversion_group_reassigned = ConversionGroup;
  uint32_t tmp_ADC_CR_ADSTART_JADSTART;
  uint32_t tmp_adc_is_conversion_on_going_regular;
  uint32_t tmp_adc_is_conversion_on_going_injected;

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_CONVERSION_GROUP(ConversionGroup));

  /* Verification if ADC is not already stopped (on regular and injected      */
  /* groups) to bypass this function if not needed.                           */
  tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
  tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
  if ((tmp_adc_is_conversion_on_going_regular != 0UL)
      || (tmp_adc_is_conversion_on_going_injected != 0UL)
     )
  {
    /* Particular case of continuous auto-injection mode combined with        */
    /* auto-delay mode.                                                       */
    /* In auto-injection mode, regular group stop ADC_CR_ADSTP is used (not   */
    /* injected group stop ADC_CR_JADSTP).                                    */
    /* Procedure to be followed: Wait until JEOS=1, clear JEOS, set ADSTP=1   */
    /* (see reference manual).                                                */
    if (((hadc->Instance->CFGR & ADC_CFGR_JAUTO) != 0UL)
        && (hadc->Init.ContinuousConvMode == ENABLE)
        && (hadc->Init.LowPowerAutoWait == ENABLE)
       )
    {
      /* Use stop of regular group */
      conversion_group_reassigned = ADC_REGULAR_GROUP;

      /* Wait until JEOS=1 (maximum Timeout: 4 injected conversions) */
      while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS) == 0UL)
      {
        if (Conversion_Timeout_CPU_cycles >= (ADC_CONVERSION_TIME_MAX_CPU_CYCLES * 4UL))
        {
          /* Update ADC state machine to error */
          SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);

          /* Set ADC error code to ADC peripheral internal error */
          SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);

          return HAL_ERROR;
        }
        Conversion_Timeout_CPU_cycles ++;
      }

      /* Clear JEOS */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOS);
    }

    /* Stop potential conversion on going on ADC group regular */
    if (conversion_group_reassigned != ADC_INJECTED_GROUP)
    {
      /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */
      if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL)
      {
        if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL)
        {
          /* Stop ADC group regular conversion */
          LL_ADC_REG_StopConversion(hadc->Instance);
        }
      }
    }

    /* Stop potential conversion on going on ADC group injected */
    if (conversion_group_reassigned != ADC_REGULAR_GROUP)
    {
      /* Software is allowed to set JADSTP only when JADSTART=1 and ADDIS=0 */
      if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL)
      {
        if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL)
        {
          /* Stop ADC group injected conversion */
          LL_ADC_INJ_StopConversion(hadc->Instance);
        }
      }
    }

    /* Selection of start and stop bits with respect to the regular or injected group */
    switch (conversion_group_reassigned)
    {
      case ADC_REGULAR_INJECTED_GROUP:
        tmp_ADC_CR_ADSTART_JADSTART = (ADC_CR_ADSTART | ADC_CR_JADSTART);
        break;
      case ADC_INJECTED_GROUP:
        tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_JADSTART;
        break;
      /* Case ADC_REGULAR_GROUP only*/
      default:
        tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_ADSTART;
        break;
    }

    /* Wait for conversion effectively stopped */
    tickstart = HAL_GetTick();

    while ((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL)
    {
      if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
      {
        /* New check to avoid false timeout detection in case of preemption */
        if((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL)
        {
          /* Update ADC state machine to error */
          SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);

          /* Set ADC error code to ADC peripheral internal error */
          SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);

          return HAL_ERROR;
        }
      }
    }

  }

  /* Return HAL status */
  return HAL_OK;
}



/**
  * @brief  Enable the selected ADC.
  * @note   Prerequisite condition to use this function: ADC must be disabled
  *         and voltage regulator must be enabled (done into HAL_ADC_Init()).
  * @param hadc ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc)
{
  uint32_t tickstart;

  /* ADC enable and wait for ADC ready (in case of ADC is disabled or         */
  /* enabling phase not yet completed: flag ADC ready not yet set).           */
  /* Timeout implemented to not be stuck if ADC cannot be enabled (possible   */
  /* causes: ADC clock not running, ...).                                     */
  if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
  {
    /* Check if conditions to enable the ADC are fulfilled */
    if ((hadc->Instance->CR & (ADC_CR_ADCAL | ADC_CR_JADSTP | ADC_CR_ADSTP | ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADDIS | ADC_CR_ADEN)) != 0UL)
    {
      /* Update ADC state machine to error */
      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);

      /* Set ADC error code to ADC peripheral internal error */
      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);

      return HAL_ERROR;
    }

    /* Enable the ADC peripheral */
    LL_ADC_Enable(hadc->Instance);

    /* Wait for ADC effectively enabled */
    tickstart = HAL_GetTick();

    /* Poll for ADC ready flag raised except case of multimode enabled
       and ADC slave selected. */
    uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
    if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
        || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
       )
    {
      while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL)
      {
        /*  If ADEN bit is set less than 4 ADC clock cycles after the ADCAL bit
            has been cleared (after a calibration), ADEN bit is reset by the
            calibration logic.
            The workaround is to continue setting ADEN until ADRDY is becomes 1.
            Additionally, ADC_ENABLE_TIMEOUT is defined to encompass this
            4 ADC clock cycle duration */
        /* Note: Test of ADC enabled required due to hardware constraint to     */
        /*       not enable ADC if already enabled.                             */
        if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
        {
          LL_ADC_Enable(hadc->Instance);
        }

        if ((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
        {
          /* New check to avoid false timeout detection in case of preemption */
          if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL)
          {
            /* Update ADC state machine to error */
            SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);

            /* Set ADC error code to ADC peripheral internal error */
            SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);

            return HAL_ERROR;
          }
        }
      }
    }
  }

  /* Return HAL status */
  return HAL_OK;
}

/**
  * @brief  Disable the selected ADC.
  * @note   Prerequisite condition to use this function: ADC conversions must be
  *         stopped.
  * @param hadc ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef *hadc)
{
  uint32_t tickstart;
  const uint32_t tmp_adc_is_disable_on_going = LL_ADC_IsDisableOngoing(hadc->Instance);

  /* Verification if ADC is not already disabled:                             */
  /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already  */
  /*       disabled.                                                          */
  if ((LL_ADC_IsEnabled(hadc->Instance) != 0UL)
      && (tmp_adc_is_disable_on_going == 0UL)
     )
  {
    /* Check if conditions to disable the ADC are fulfilled */
    if ((hadc->Instance->CR & (ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADEN)) == ADC_CR_ADEN)
    {
      /* Disable the ADC peripheral */
      LL_ADC_Disable(hadc->Instance);
      __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOSMP | ADC_FLAG_RDY));
    }
    else
    {
      /* Update ADC state machine to error */
      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);

      /* Set ADC error code to ADC peripheral internal error */
      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);

      return HAL_ERROR;
    }

    /* Wait for ADC effectively disabled */
    /* Get tick count */
    tickstart = HAL_GetTick();

    while ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL)
    {
      if ((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT)
      {
        /* New check to avoid false timeout detection in case of preemption */
        if ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL)
        {
          /* Update ADC state machine to error */
          SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);

          /* Set ADC error code to ADC peripheral internal error */
          SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);

          return HAL_ERROR;
        }
      }
    }
  }

  /* Return HAL status */
  return HAL_OK;
}

/**
  * @brief  DMA transfer complete callback.
  * @param hdma pointer to DMA handle.
  * @retval None
  */
void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
{
  /* Retrieve ADC handle corresponding to current DMA handle */
  ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  /* Update state machine on conversion status if not in error state */
  if ((hadc->State & (HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) == 0UL)
  {
    /* Set ADC state */
    SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);

    /* Determine whether any further conversion upcoming on group regular     */
    /* by external trigger, continuous mode or scan sequence on going         */
    /* to disable interruption.                                               */
    /* Is it the end of the regular sequence ? */
    if ((hadc->Instance->ISR & ADC_FLAG_EOS) != 0UL)
    {
      /* Are conversions software-triggered ? */
      if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
      {
        /* Is CONT bit set ? */
        if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_CONT) == 0UL)
        {
          /* CONT bit is not set, no more conversions expected */
          CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
          if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
          {
            SET_BIT(hadc->State, HAL_ADC_STATE_READY);
          }
        }
      }
    }
    else
    {
      /* DMA End of Transfer interrupt was triggered but conversions sequence
         is not over. If DMACFG is set to 0, conversions are stopped. */
      if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMNGT) == 0UL)
      {
        /* DMACFG bit is not set, conversions are stopped. */
        CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
        if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
        {
          SET_BIT(hadc->State, HAL_ADC_STATE_READY);
        }
      }
    }

    /* Conversion complete callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
    hadc->ConvCpltCallback(hadc);
#else
    HAL_ADC_ConvCpltCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
  }
  else /* DMA and-or internal error occurred */
  {
    if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL)
    {
      /* Call HAL ADC Error Callback function */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
      hadc->ErrorCallback(hadc);
#else
      HAL_ADC_ErrorCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
    }
    else
    {
      /* Call ADC DMA error callback */
      hadc->DMA_Handle->XferErrorCallback(hdma);
    }
  }
}

/**
  * @brief  DMA half transfer complete callback.
  * @param hdma pointer to DMA handle.
  * @retval None
  */
void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)
{
  /* Retrieve ADC handle corresponding to current DMA handle */
  ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  /* Half conversion callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
  hadc->ConvHalfCpltCallback(hadc);
#else
  HAL_ADC_ConvHalfCpltCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}

/**
  * @brief  DMA error callback.
  * @param hdma pointer to DMA handle.
  * @retval None
  */
void ADC_DMAError(DMA_HandleTypeDef *hdma)
{
  /* Retrieve ADC handle corresponding to current DMA handle */
  ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;

  /* Set ADC state */
  SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);

  /* Set ADC error code to DMA error */
  SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA);

  /* Error callback */
#if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
  hadc->ErrorCallback(hadc);
#else
  HAL_ADC_ErrorCallback(hadc);
#endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
}

/**
  * @brief  Configure boost mode of selected ADC.
  * @note   Prerequisite condition to use this function: ADC conversions must be
  *         stopped.
  * @param  hadc ADC handle
  * @retval None.
  */
void ADC_ConfigureBoostMode(ADC_HandleTypeDef *hadc)
{
  uint32_t freq;
  if (ADC_IS_SYNCHRONOUS_CLOCK_MODE(hadc))
  {
    freq = HAL_RCC_GetHCLKFreq();
    switch (hadc->Init.ClockPrescaler)
    {
      case ADC_CLOCK_SYNC_PCLK_DIV1:
      case ADC_CLOCK_SYNC_PCLK_DIV2:
        freq /= (hadc->Init.ClockPrescaler >> ADC_CCR_CKMODE_Pos);
        break;
      case ADC_CLOCK_SYNC_PCLK_DIV4:
        freq /= 4UL;
        break;
      default:
        break;
    }
  }
  else
  {
    freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC);
    switch (hadc->Init.ClockPrescaler)
    {
      case ADC_CLOCK_ASYNC_DIV2:
      case ADC_CLOCK_ASYNC_DIV4:
      case ADC_CLOCK_ASYNC_DIV6:
      case ADC_CLOCK_ASYNC_DIV8:
      case ADC_CLOCK_ASYNC_DIV10:
      case ADC_CLOCK_ASYNC_DIV12:
        freq /= ((hadc->Init.ClockPrescaler >> ADC_CCR_PRESC_Pos) << 1UL);
        break;
      case ADC_CLOCK_ASYNC_DIV16:
        freq /= 16UL;
        break;
      case ADC_CLOCK_ASYNC_DIV32:
        freq /= 32UL;
        break;
      case ADC_CLOCK_ASYNC_DIV64:
        freq /= 64UL;
        break;
      case ADC_CLOCK_ASYNC_DIV128:
        freq /= 128UL;
        break;
      case ADC_CLOCK_ASYNC_DIV256:
        freq /= 256UL;
        break;
      default:
        break;
    }
  }

#if defined(ADC_VER_V5_3) || defined(ADC_VER_V5_V90)
  freq /= 2U;
  if (freq <= 6250000UL)
  {
    MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, 0UL);
  }
  else if (freq <= 12500000UL)
  {
    MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_0);
  }
  else if (freq <= 25000000UL)
  {
    MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1);
  }
  else /* if(freq > 25000000UL) */
  {
    MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1 | ADC_CR_BOOST_0);
  }
#else
  if (HAL_GetREVID() <= REV_ID_Y) /* STM32H7 silicon Rev.Y */
  {
    if (freq > 20000000UL)
    {
      SET_BIT(hadc->Instance->CR, ADC_CR_BOOST_0);
    }
    else
    {
      CLEAR_BIT(hadc->Instance->CR, ADC_CR_BOOST_0);
    }
  }
  else /* STM32H7 silicon Rev.V */
  {
    freq /= 2U; /* divider by 2 for Rev.V */

    if (freq <= 6250000UL)
    {
      MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, 0UL);
    }
    else if (freq <= 12500000UL)
    {
      MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_0);
    }
    else if (freq <= 25000000UL)
    {
      MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1);
    }
    else /* if(freq > 25000000UL) */
    {
      MODIFY_REG(hadc->Instance->CR, ADC_CR_BOOST, ADC_CR_BOOST_1 | ADC_CR_BOOST_0);
    }
  }
#endif /* ADC_VER_V5_3 */
}

/**
  * @}
  */

#endif /* HAL_ADC_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */