#!/usr/bin/python3
import argparse
def gen_half_adder():
print(f"---------- Half adder generation ----------")
f = open(f"half_adder.sv", "w")
f.write(f"""module half_adder (
input logic a,
input logic b,
output logic sum,
output logic carry
);
assign sum = a ^ b;
assign carry = a & b;
endmodule
""")
f.close()
def gen_full_adder():
print(f"---------- Full adder generation ----------")
f = open(f"full_adder.sv", "w")
f.write(f"""module full_adder (
input logic a,
input logic b,
input logic c,
output logic sum,
output logic carry
);
assign sum = a ^ b ^ c;
assign carry = (a & b) | (c & (a ^ b));
endmodule
""")
f.close()
def gen_multiplier(bits):
print(f"\n---------- {bits} Bit Top Level Multiplier Generation ----------")
f = open(f"multiplier.sv", "w")
f.write(f"""module multiplier(
input logic [{bits-1}:0] a,
input logic [{bits-1}:0] b,
output logic [{2*bits-1}:0] c
);
logic [{bits-1}:0] partial_prod [0:{bits-1}];
logic [{2*bits-1}:0] partial_sum;
assign c = partial_sum;
wallace_adder wadder0(partial_prod, partial_sum);
partial_products partprod0(a, b, partial_prod);
endmodule
""")
f.close()
def gen_partial_products(bits):
print(f"------------ {bits} Bit Partial Products Generation ------------")
f = open(f"partial_products.sv", "w")
f.write(f"""module partial_products
(
input logic [{bits-1}:0] a,
input logic [{bits-1}:0] b,
output logic [{bits-1}:0] c [0:{bits-1}]
);
always @ (*) begin
integer i;
for (i = 0; i < {bits}; i=i+1) begin
c[i][{bits-1}:0] = {{{bits}{{b[i]}}}} & a;
end
end
endmodule
""")
f.close()
def add_half_adder(reduction_layers, instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug):
# Generates nets and updates the layer net array
curr_col_net_idx = len(reduction_layers[curr_layer][col_idx])
next_col_net_idx = len(reduction_layers[curr_layer][col_idx+1])
cout = f"layer{curr_layer}_col{col_idx}_net{curr_col_net_idx}"
sout = f"layer{curr_layer}_col{col_idx+1}_net{next_col_net_idx}"
reduction_layers[curr_layer][col_idx].append(cout)
reduction_layers[curr_layer][col_idx+1].append(sout)
# Adds half adder to instantiations
net_names[prev_layer].append(cout)
net_names[prev_layer].append(sout)
a, b = [col.pop() for i in range(2)]
instantiations[prev_layer].append(f"half_adder ha_add{curr_layer}_{len(instantiations[prev_layer])} ({a}, {b}, {cout}, {sout});")
# Debug Print half adder
if debug:
print(f"half_adder ha_add{curr_layer}_{len(instantiations[prev_layer])} ({a}, {b}, {cout}, {sout});")
pass
def add_full_adder(reduction_layers, instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug):
# Generates nets and updates the layer net array
curr_col_net_idx = len(reduction_layers[curr_layer][col_idx])
next_col_net_idx = len(reduction_layers[curr_layer][col_idx+1])
cout = f"layer{curr_layer}_col{col_idx}_net{curr_col_net_idx}"
sout = f"layer{curr_layer}_col{col_idx+1}_net{next_col_net_idx}"
reduction_layers[curr_layer][col_idx].append(cout)
reduction_layers[curr_layer][col_idx+1].append(sout)
# Adds nets and adders to be instantiated
net_names[prev_layer].append(cout)
net_names[prev_layer].append(sout)
a, b, cin = [col.pop() for i in range(3)]
instantiations[prev_layer].append(f"full_adder fa_add{curr_layer}_{len(instantiations[prev_layer])} ({a}, {b}, {cin}, {cout}, {sout});")
# Debug Print half adder
if debug:
print(f"full_adder fa_add{curr_layer}_{len(instantiations[prev_layer])} ({a}, {b}, {cin}, {cout}, {sout});")
def add_passthrough(reduction_layers, instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug):
# Assigns passthrough for remaining logic and updates the counter
curr_col_net_idx = len(reduction_layers[curr_layer][col_idx])
passthrough = f"layer{curr_layer}_col{col_idx}_net{curr_col_net_idx}"
# Adds passthrough to netlist array
reduction_layers[curr_layer][col_idx].append(passthrough)
# Adds the assign statement to passthrough
net_names[prev_layer].append(passthrough)
input_net1 = col.pop()
instantiations[prev_layer].append(f"assign {passthrough} = {input_net1};")
if debug:
print(f"assign {passthrough} = {input_net1};")
def gen_adder_tree(bits, debug):
print(f"--------------- {bits} Bit Adder Tree Generation ---------------")
# Parameters of the adder tree generate script
num_cols = (2 * bits)
layer_limit = 50
# Initialize reduction layer array
reduction_layers = []
# Initialize instantiations and net names
ha_instantiations = []
fa_instantiations = []
pass_instantiations = []
net_names = []
# Partial layer is the "zeroeth" reduction layer, initialize it
curr_layer = 0
reduction_layers.append([[] for i in range(num_cols)])
# Fill up partial layer
for i in range(bits):
for j in range(bits):
reduction_layers[curr_layer][i+j].append(f"partial_prod[{i}][{j}]")
# Debug partial layer print
if debug:
print(f"\n--------- LAYER {curr_layer} -------------")
for col_idx, reduce in enumerate(reduction_layers[curr_layer]):
print(f"Col: {col_idx}, Length: {len(reduce)}, {reduce}")
# Build out subsequent reduction layers
curr_layer = 1
prev_layer = 0
instantiation_idx = 0
# Run until we can add the remaining bit vectors together or non-convergent solution
while (len(max(reduction_layers[prev_layer], key=len)) > 2 and curr_layer < layer_limit):
# Allocate next layer
if debug:
print(f"--------- LAYER {prev_layer} -------------")
reduction_layers.append([[] for i in range(num_cols)])
pass_instantiations.append([])
ha_instantiations.append([])
fa_instantiations.append([])
net_names.append([])
carry_propogation = 0
extra_ha = (len(max(reduction_layers[prev_layer], key=len)) == 3)
fa_used = False
ha_used = False
# Counts how many bits need to be eventually removed by this bit
for col_idx, col in enumerate(reduction_layers[prev_layer]):
# Check that this is actually solvable using only 2*bits output
if (col_idx+1 == len(reduction_layers[prev_layer]) and (len(col) + carry_propogation) > 2):
print("Cannot SOLVE")
return -1
# Debug print for this column
if debug:
print(f"Index: {col_idx}, Length: {len(col)}")
next_layer_size = carry_propogation
carry_propogation = 0
# Add full adders if needed
while (len(col) > 3):
add_full_adder(reduction_layers, fa_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
fa_used = True
# 1 carry will go to the next column next layer, and the sum will go to this col next layer
carry_propogation += 1
next_layer_size += 1
if (len(col) == 3):
# Only add half adder if no propogations or other adders created
if (fa_used == False and (ha_used == False or extra_ha == True) and next_layer_size == 0):
add_half_adder(reduction_layers, ha_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
ha_used = True
else:
fa_used = True
add_full_adder(reduction_layers, fa_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
# Increment the propogation and current size
carry_propogation += 1
next_layer_size += 1
if (len(col) == 2):
# Only add half adder if there is propogation from previous columns and if there is less than three in the next col, else pass through both
if (fa_used == False and (ha_used == False or extra_ha == True) and next_layer_size == 1 ):
add_half_adder(reduction_layers, ha_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
ha_used = True
carry_propogation += 1
next_layer_size += 1
else:
add_passthrough(reduction_layers, pass_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
add_passthrough(reduction_layers, pass_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
if (len(col) == 1):
add_passthrough(reduction_layers, pass_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
# Update the layer indices
prev_layer = curr_layer
curr_layer += 1
# Debug reduction layer print
if debug:
for col_idx, reduce in enumerate(reduction_layers[prev_layer]):
print(f"Col: {col_idx}, Length: {len(reduce)}, {reduce}")
# Debug final reduction layer to be added
if debug:
print("\n--------- BIT PAIRS ----------")
add_layer = list(zip(reduction_layers[prev_layer]))
add_layer.reverse()
for bit_pair in add_layer:
print(bit_pair[0])
# Add the two remaining rows of bits at the end
bit_vector_0 = "{ "
bit_vector_1 = "{ "
for bit_pair_idx, bit_pair in enumerate(reversed(list(zip(reduction_layers[prev_layer])))):
# Exclude MSB if no overflows to it
if (len(bit_pair[0]) == 0 and bit_pair_idx == 0):
continue
# Generate bit string for both vectors, order doesn't matter here
bit_vector_0 += f"{bit_pair[0][0]}, "
if (len(bit_pair[0]) == 2):
bit_vector_1 += f"{bit_pair[0][1]}, "
else:
bit_vector_1 += "1'b0, "
bit_vector_0 = bit_vector_0[:-2] + "}"
bit_vector_1 = bit_vector_1[:-2] + "};"
f = open(f"wallace_adder.sv", "w")
# Start by printing module declaration
f.write(f"module wallace_adder (\n")
f.write(f"\tinput logic [{bits-1}:0] partial_prod[0:{bits-1}],\n")
f.write(f"\toutput logic [{2*bits-1}:0] partial_sum\n")
f.write(");\n\n")
# Print out net names
for net_layer in net_names:
netstring = "logic "
net_idx_len = len(net_layer)
for net_idx, net in enumerate(net_layer):
if (net_idx != net_idx_len - 1):
netstring += f"{net}, "
else:
netstring += f"{net};"
f.write(netstring + '\n')
# Print out entire reduction tree and calculate stats
ha_count = 0
fa_count = 0
for layer in range(len(pass_instantiations)):
f.write(f"\n//----------- Reduction Layer {layer+1} Start --------------\n\n")
for passthrough in pass_instantiations[layer]:
f.write(passthrough + '\n')
for half_adder in ha_instantiations[layer]:
ha_count += 1
f.write(half_adder + '\n')
for full_adder in fa_instantiations[layer]:
fa_count += 1
f.write(full_adder + '\n')
# Print final two number adder
f.write(f"\n//----------- Adding Layer Start --------------\n\n")
f.write(f"assign partial_sum = {bit_vector_0} + {bit_vector_1}\n")
# Endmodule
f.write("\nendmodule\n")
f.close()
# Print stats of the wallace adder
print(f"{ha_count} Half Adders Used")
print(f"{fa_count} Full Adders Used")
print(f"{len(pass_instantiations)-1} Reduction Layers")
def main():
parser = argparse.ArgumentParser(prog="Multiplier Generator", description="Generates a n bit multiplier based on the bits argument provided",
epilog="bits sets the bit width of the multiplier, the output of the multiplier is 2 times the number of bits")
parser.add_argument("bits", type=int, help="The bit width of the multiplier")
parser.add_argument("-p", "--pipeline", help="Generates specified number of pipeline barriers")
parser.add_argument("-s", "--stages", nargs='+' help="Generates stages at specific reduction layers")
parser.add_argument("-a", "--adder", help="Generates the full and half adders for you to use", action='store_true')
parser.add_argument("-d", "--debug", help="Enables debug prints during generation scripting", action='store_true')
args = parser.parse_args()
bits = args.bits
pipeline = args.pipeline
stages = args.stages
debug = args.debug
adder = args.adder
print(pipeline)
print(stages)
if (adder):
gen_half_adder()
gen_full_adder()
gen_multiplier(bits)
gen_partial_products(bits)
if (gen_adder_tree(bits, debug) == -1):
return -1
print("----------- GENERATION COMPLETE WITHOUT ERROR ----------- \n\n")
if __name__ == "__main__":
main()