1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
#!/usr/bin/python3
import argparse
def gen_half_adder():
print(f"---------- Half adder generation ----------")
f = open(f"half_adder.sv", "w")
f.write(f"""module half_adder (
input logic a,
input logic b,
output logic sum,
output logic carry
);
assign sum = a ^ b;
assign carry = a & b;
endmodule
""")
f.close()
def gen_full_adder():
print(f"---------- Full adder generation ----------")
f = open(f"full_adder.sv", "w")
f.write(f"""module full_adder (
input logic a,
input logic b,
input logic c,
output logic sum,
output logic carry
);
assign sum = a ^ b ^ c;
assign carry = (a & b) | (c & (a ^ b));
endmodule
""")
f.close()
def gen_multiplier(bits):
print(f"\n---------- {bits} Bit Top Level Multiplier Generation ----------")
f = open(f"multiplier.sv", "w")
f.write(f"""module multiplier(
input logic [{bits-1}:0] a,
input logic [{bits-1}:0] b,
output logic [{2*bits-1}:0] c
);
logic [{bits-1}:0] partial_prod [0:{bits-1}];
logic [{2*bits-1}:0] partial_sum;
assign c = partial_sum;
wallace_adder wadder0(partial_prod, partial_sum);
partial_products partprod0(a, b, partial_prod);
endmodule
""")
f.close()
def gen_partial_products(bits):
print(f"------------ {bits} Bit Partial Products Generation ------------")
f = open(f"partial_products.sv", "w")
f.write(f"""module partial_products
(
input logic [{bits-1}:0] a,
input logic [{bits-1}:0] b,
output logic [{bits-1}:0] c [0:{bits-1}]
);
always @ (*) begin
integer i;
for (i = 0; i < {bits}; i=i+1) begin
c[i][{bits-1}:0] = {{{bits}{{b[i]}}}} & a;
end
end
endmodule
""")
f.close()
def add_half_adder(reduction_layers, instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug):
# Generates nets and updates the layer net array
curr_col_net_idx = len(reduction_layers[curr_layer][col_idx])
next_col_net_idx = len(reduction_layers[curr_layer][col_idx+1])
cout = f"layer{curr_layer}_col{col_idx}_net{curr_col_net_idx}"
sout = f"layer{curr_layer}_col{col_idx+1}_net{next_col_net_idx}"
reduction_layers[curr_layer][col_idx].append(cout)
reduction_layers[curr_layer][col_idx+1].append(sout)
# Adds half adder to instantiations
net_names[prev_layer].append(cout)
net_names[prev_layer].append(sout)
a, b = [col.pop() for i in range(2)]
instantiations[prev_layer].append(f"half_adder ha_add{curr_layer}_{len(instantiations[prev_layer])} ({a}, {b}, {cout}, {sout});")
# Debug Print half adder
if debug:
print(f"half_adder ha_add{curr_layer}_{len(instantiations[prev_layer])} ({a}, {b}, {cout}, {sout});")
pass
def add_full_adder(reduction_layers, instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug):
# Generates nets and updates the layer net array
curr_col_net_idx = len(reduction_layers[curr_layer][col_idx])
next_col_net_idx = len(reduction_layers[curr_layer][col_idx+1])
cout = f"layer{curr_layer}_col{col_idx}_net{curr_col_net_idx}"
sout = f"layer{curr_layer}_col{col_idx+1}_net{next_col_net_idx}"
reduction_layers[curr_layer][col_idx].append(cout)
reduction_layers[curr_layer][col_idx+1].append(sout)
# Adds nets and adders to be instantiated
net_names[prev_layer].append(cout)
net_names[prev_layer].append(sout)
a, b, cin = [col.pop() for i in range(3)]
instantiations[prev_layer].append(f"full_adder fa_add{curr_layer}_{len(instantiations[prev_layer])} ({a}, {b}, {cin}, {cout}, {sout});")
# Debug Print half adder
if debug:
print(f"full_adder fa_add{curr_layer}_{len(instantiations[prev_layer])} ({a}, {b}, {cin}, {cout}, {sout});")
def add_passthrough(reduction_layers, instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug):
# Assigns passthrough for remaining logic and updates the counter
curr_col_net_idx = len(reduction_layers[curr_layer][col_idx])
passthrough = f"layer{curr_layer}_col{col_idx}_net{curr_col_net_idx}"
# Adds passthrough to netlist array
reduction_layers[curr_layer][col_idx].append(passthrough)
# Adds the assign statement to passthrough
net_names[prev_layer].append(passthrough)
input_net1 = col.pop()
instantiations[prev_layer].append(f"assign {passthrough} = {input_net1};")
if debug:
print(f"assign {passthrough} = {input_net1};")
def gen_adder_tree(bits, debug):
print(f"--------------- {bits} Bit Adder Tree Generation ---------------")
# Parameters of the adder tree generate script
num_cols = (2 * bits)
layer_limit = 50
# Initialize reduction layer array
reduction_layers = []
# Initialize instantiations and net names
ha_instantiations = []
fa_instantiations = []
pass_instantiations = []
net_names = []
# Partial layer is the "zeroeth" reduction layer, initialize it
curr_layer = 0
reduction_layers.append([[] for i in range(num_cols)])
# Fill up partial layer
for i in range(bits):
for j in range(bits):
reduction_layers[curr_layer][i+j].append(f"partial_prod[{i}][{j}]")
# Debug partial layer print
if debug:
print(f"\n--------- LAYER {curr_layer} -------------")
for col_idx, reduce in enumerate(reduction_layers[curr_layer]):
print(f"Col: {col_idx}, Length: {len(reduce)}, {reduce}")
# Build out subsequent reduction layers
curr_layer = 1
prev_layer = 0
instantiation_idx = 0
# Run until we can add the remaining bit vectors together or non-convergent solution
while (len(max(reduction_layers[prev_layer], key=len)) > 2 and curr_layer < layer_limit):
# Allocate next layer
if debug:
print(f"--------- LAYER {prev_layer} -------------")
reduction_layers.append([[] for i in range(num_cols)])
pass_instantiations.append([])
ha_instantiations.append([])
fa_instantiations.append([])
net_names.append([])
carry_propogation = 0
extra_ha = (len(max(reduction_layers[prev_layer], key=len)) == 3)
fa_used = False
ha_used = False
# Counts how many bits need to be eventually removed by this bit
for col_idx, col in enumerate(reduction_layers[prev_layer]):
# Check that this is actually solvable using only 2*bits output
if (col_idx+1 == len(reduction_layers[prev_layer]) and (len(col) + carry_propogation) > 2):
print("Cannot SOLVE")
return -1
# Debug print for this column
if debug:
print(f"Index: {col_idx}, Length: {len(col)}")
next_layer_size = carry_propogation
carry_propogation = 0
# Add full adders if needed
while (len(col) > 3):
add_full_adder(reduction_layers, fa_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
fa_used = True
# 1 carry will go to the next column next layer, and the sum will go to this col next layer
carry_propogation += 1
next_layer_size += 1
if (len(col) == 3):
# Only add half adder if no propogations or other adders created
if (fa_used == False and (ha_used == False or extra_ha == True) and next_layer_size == 0):
add_half_adder(reduction_layers, ha_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
ha_used = True
else:
fa_used = True
add_full_adder(reduction_layers, fa_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
# Increment the propogation and current size
carry_propogation += 1
next_layer_size += 1
if (len(col) == 2):
# Only add half adder if there is propogation from previous columns and if there is less than three in the next col, else pass through both
if (fa_used == False and (ha_used == False or extra_ha == True) and next_layer_size == 1 ):
add_half_adder(reduction_layers, ha_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
ha_used = True
carry_propogation += 1
next_layer_size += 1
else:
add_passthrough(reduction_layers, pass_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
add_passthrough(reduction_layers, pass_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
if (len(col) == 1):
add_passthrough(reduction_layers, pass_instantiations, net_names, col, col_idx, curr_layer, prev_layer, debug)
# Update the layer indices
prev_layer = curr_layer
curr_layer += 1
# Debug reduction layer print
if debug:
for col_idx, reduce in enumerate(reduction_layers[prev_layer]):
print(f"Col: {col_idx}, Length: {len(reduce)}, {reduce}")
# Debug final reduction layer to be added
if debug:
print("\n--------- BIT PAIRS ----------")
add_layer = list(zip(reduction_layers[prev_layer]))
add_layer.reverse()
for bit_pair in add_layer:
print(bit_pair[0])
# Add the two remaining rows of bits at the end
bit_vector_0 = "{ "
bit_vector_1 = "{ "
for bit_pair_idx, bit_pair in enumerate(reversed(list(zip(reduction_layers[prev_layer])))):
# Exclude MSB if no overflows to it
if (len(bit_pair[0]) == 0 and bit_pair_idx == 0):
continue
# Generate bit string for both vectors, order doesn't matter here
bit_vector_0 += f"{bit_pair[0][0]}, "
if (len(bit_pair[0]) == 2):
bit_vector_1 += f"{bit_pair[0][1]}, "
else:
bit_vector_1 += "1'b0, "
bit_vector_0 = bit_vector_0[:-2] + "}"
bit_vector_1 = bit_vector_1[:-2] + "};"
f = open(f"wallace_adder.sv", "w")
# Start by printing module declaration
f.write(f"module wallace_adder (\n")
f.write(f"\tinput logic [{bits-1}:0] partial_prod[0:{bits-1}],\n")
f.write(f"\toutput logic [{2*bits-1}:0] partial_sum\n")
f.write(");\n\n")
# Print out net names
for net_layer in net_names:
netstring = "logic "
net_idx_len = len(net_layer)
for net_idx, net in enumerate(net_layer):
if (net_idx != net_idx_len - 1):
netstring += f"{net}, "
else:
netstring += f"{net};"
f.write(netstring + '\n')
# Print out entire reduction tree and calculate stats
ha_count = 0
fa_count = 0
for layer in range(len(pass_instantiations)):
f.write(f"\n//----------- Reduction Layer {layer+1} Start --------------\n\n")
for passthrough in pass_instantiations[layer]:
f.write(passthrough + '\n')
for half_adder in ha_instantiations[layer]:
ha_count += 1
f.write(half_adder + '\n')
for full_adder in fa_instantiations[layer]:
fa_count += 1
f.write(full_adder + '\n')
# Print final two number adder
f.write(f"\n//----------- Adding Layer Start --------------\n\n")
f.write(f"assign partial_sum = {bit_vector_0} + {bit_vector_1}\n")
# Endmodule
f.write("\nendmodule\n")
f.close()
# Print stats of the wallace adder
print(f"{ha_count} Half Adders Used")
print(f"{fa_count} Full Adders Used")
print(f"{len(pass_instantiations)-1} Reduction Layers")
def main():
parser = argparse.ArgumentParser(prog="Multiplier Generator", description="Generates a n bit multiplier based on the bits argument provided",
epilog="bits sets the bit width of the multiplier, the output of the multiplier is 2 times the number of bits")
parser.add_argument("bits", type=int, help="The bit width of the multiplier")
parser.add_argument("-p", "--pipeline", help="Generates specified number of pipeline barriers")
parser.add_argument("-s", "--stages", nargs='+' help="Generates stages at specific reduction layers")
parser.add_argument("-a", "--adder", help="Generates the full and half adders for you to use", action='store_true')
parser.add_argument("-d", "--debug", help="Enables debug prints during generation scripting", action='store_true')
args = parser.parse_args()
bits = args.bits
pipeline = args.pipeline
stages = args.stages
debug = args.debug
adder = args.adder
print(pipeline)
print(stages)
if (adder):
gen_half_adder()
gen_full_adder()
gen_multiplier(bits)
gen_partial_products(bits)
if (gen_adder_tree(bits, debug) == -1):
return -1
print("----------- GENERATION COMPLETE WITHOUT ERROR ----------- \n\n")
if __name__ == "__main__":
main()
|