1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
|
/**
******************************************************************************
* @file stm32h7xx_hal_adc_ex.c
* @author MCD Application Team
* @brief This file provides firmware functions to manage the following
* functionalities of the Analog to Digital Converter (ADC)
* peripheral:
* + Peripheral Control functions
* Other functions (generic functions) are available in file
* "stm32h7xx_hal_adc.c".
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
[..]
(@) Sections "ADC peripheral features" and "How to use this driver" are
available in file of generic functions "stm32h7xx_hal_adc.c".
[..]
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
/** @defgroup ADCEx ADCEx
* @brief ADC Extended HAL module driver
* @{
*/
#ifdef HAL_ADC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup ADCEx_Private_Constants ADC Extended Private Constants
* @{
*/
#define ADC_JSQR_FIELDS ((ADC_JSQR_JL | ADC_JSQR_JEXTSEL | ADC_JSQR_JEXTEN |\
ADC_JSQR_JSQ1 | ADC_JSQR_JSQ2 |\
ADC_JSQR_JSQ3 | ADC_JSQR_JSQ4 )) /*!< ADC_JSQR fields of parameters that can be updated anytime
once the ADC is enabled */
/* Fixed timeout value for ADC calibration. */
/* Fixed timeout value for ADC calibration. */
/* Values defined to be higher than worst cases: low clock frequency, */
/* maximum prescalers. */
/* Ex of profile low frequency : f_ADC at 0.125 Mhz (minimum value */
/* according to Data sheet), calibration_time MAX = 165010 / f_ADC */
/* 165010 / 125000 = 1.32s */
/* At maximum CPU speed (480 MHz), this means */
/* 1.32 * 480 MHz = 633600000 CPU cycles */
#define ADC_CALIBRATION_TIMEOUT (633600000U) /*!< ADC calibration time-out value */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup ADCEx_Exported_Functions ADC Extended Exported Functions
* @{
*/
/** @defgroup ADCEx_Exported_Functions_Group1 Extended Input and Output operation functions
* @brief Extended IO operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Perform the ADC self-calibration for single or differential ending.
(+) Get calibration factors for single or differential ending.
(+) Set calibration factors for single or differential ending.
(+) Start conversion of ADC group injected.
(+) Stop conversion of ADC group injected.
(+) Poll for conversion complete on ADC group injected.
(+) Get result of ADC group injected channel conversion.
(+) Start conversion of ADC group injected and enable interruptions.
(+) Stop conversion of ADC group injected and disable interruptions.
(+) When multimode feature is available, start multimode and enable DMA transfer.
(+) Stop multimode and disable ADC DMA transfer.
(+) Get result of multimode conversion.
@endverbatim
* @{
*/
/**
* @brief Perform an ADC automatic self-calibration
* Calibration prerequisite: ADC must be disabled (execute this
* function before HAL_ADC_Start() or after HAL_ADC_Stop() ).
* @param hadc ADC handle
* @param CalibrationMode Selection of calibration offset or
* linear calibration offset.
* @arg ADC_CALIB_OFFSET Channel in mode calibration offset
* @arg ADC_CALIB_OFFSET_LINEARITY Channel in mode linear calibration offset
* @param SingleDiff Selection of single-ended or differential input
* This parameter can be one of the following values:
* @arg @ref ADC_SINGLE_ENDED Channel in mode input single ended
* @arg @ref ADC_DIFFERENTIAL_ENDED Channel in mode input differential ended
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef *hadc, uint32_t CalibrationMode, uint32_t SingleDiff)
{
HAL_StatusTypeDef tmp_hal_status;
__IO uint32_t wait_loop_index = 0UL;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_SINGLE_DIFFERENTIAL(SingleDiff));
/* Process locked */
__HAL_LOCK(hadc);
/* Calibration prerequisite: ADC must be disabled. */
/* Disable the ADC (if not already disabled) */
tmp_hal_status = ADC_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_BUSY_INTERNAL);
/* Start ADC calibration in mode single-ended or differential */
LL_ADC_StartCalibration(hadc->Instance, CalibrationMode, SingleDiff);
/* Wait for calibration completion */
while (LL_ADC_IsCalibrationOnGoing(hadc->Instance) != 0UL)
{
wait_loop_index++;
if (wait_loop_index >= ADC_CALIBRATION_TIMEOUT)
{
/* Update ADC state machine to error */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_BUSY_INTERNAL,
HAL_ADC_STATE_ERROR_INTERNAL);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
}
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_BUSY_INTERNAL,
HAL_ADC_STATE_READY);
}
else
{
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Note: No need to update variable "tmp_hal_status" here: already set */
/* to state "HAL_ERROR" by function disabling the ADC. */
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Get the calibration factor.
* @param hadc ADC handle.
* @param SingleDiff This parameter can be only:
* @arg @ref ADC_SINGLE_ENDED Channel in mode input single ended
* @arg @ref ADC_DIFFERENTIAL_ENDED Channel in mode input differential ended
* @retval Calibration value.
*/
uint32_t HAL_ADCEx_Calibration_GetValue(ADC_HandleTypeDef *hadc, uint32_t SingleDiff)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_SINGLE_DIFFERENTIAL(SingleDiff));
/* Return the selected ADC calibration value */
return LL_ADC_GetCalibrationOffsetFactor(hadc->Instance, SingleDiff);
}
/**
* @brief Get the calibration factor from automatic conversion result
* @param hadc ADC handle
* @param LinearCalib_Buffer: Linear calibration factor
* @retval HAL state
*/
HAL_StatusTypeDef HAL_ADCEx_LinearCalibration_GetValue(ADC_HandleTypeDef *hadc, uint32_t *LinearCalib_Buffer)
{
uint32_t cnt;
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
uint32_t temp_REG_IsConversionOngoing = 0UL;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Enable the ADC ADEN = 1 to be able to read the linear calibration factor */
if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
{
tmp_hal_status = ADC_Enable(hadc);
}
if (tmp_hal_status == HAL_OK)
{
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL)
{
LL_ADC_REG_StopConversion(hadc->Instance);
temp_REG_IsConversionOngoing = 1UL;
}
for (cnt = ADC_LINEAR_CALIB_REG_COUNT; cnt > 0UL; cnt--)
{
LinearCalib_Buffer[cnt - 1U] = LL_ADC_GetCalibrationLinearFactor(hadc->Instance, ADC_CR_LINCALRDYW6 >> (ADC_LINEAR_CALIB_REG_COUNT - cnt));
}
if (temp_REG_IsConversionOngoing != 0UL)
{
LL_ADC_REG_StartConversion(hadc->Instance);
}
}
return tmp_hal_status;
}
/**
* @brief Set the calibration factor to overwrite automatic conversion result.
* ADC must be enabled and no conversion is ongoing.
* @param hadc ADC handle
* @param SingleDiff This parameter can be only:
* @arg @ref ADC_SINGLE_ENDED Channel in mode input single ended
* @arg @ref ADC_DIFFERENTIAL_ENDED Channel in mode input differential ended
* @param CalibrationFactor Calibration factor (coded on 7 bits maximum)
* @retval HAL state
*/
HAL_StatusTypeDef HAL_ADCEx_Calibration_SetValue(ADC_HandleTypeDef *hadc, uint32_t SingleDiff, uint32_t CalibrationFactor)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
uint32_t tmp_adc_is_conversion_on_going_regular;
uint32_t tmp_adc_is_conversion_on_going_injected;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_SINGLE_DIFFERENTIAL(SingleDiff));
assert_param(IS_ADC_CALFACT(CalibrationFactor));
/* Process locked */
__HAL_LOCK(hadc);
/* Verification of hardware constraints before modifying the calibration */
/* factors register: ADC must be enabled, no conversion on going. */
tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
if ((LL_ADC_IsEnabled(hadc->Instance) != 0UL)
&& (tmp_adc_is_conversion_on_going_regular == 0UL)
&& (tmp_adc_is_conversion_on_going_injected == 0UL)
)
{
/* Set the selected ADC calibration value */
LL_ADC_SetCalibrationOffsetFactor(hadc->Instance, SingleDiff, CalibrationFactor);
}
else
{
/* Update ADC state machine */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
/* Update ADC error code */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
/* Update ADC state machine to error */
tmp_hal_status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Set the linear calibration factor
* @param hadc ADC handle
* @param LinearCalib_Buffer: Linear calibration factor
* @retval HAL state
*/
HAL_StatusTypeDef HAL_ADCEx_LinearCalibration_SetValue(ADC_HandleTypeDef *hadc, uint32_t *LinearCalib_Buffer)
{
uint32_t cnt;
__IO uint32_t wait_loop_index = 0;
uint32_t temp_REG_IsConversionOngoing = 0UL;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* - Exit from deep-power-down mode and ADC voltage regulator enable */
/* Exit deep power down mode if still in that state */
if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_DEEPPWD))
{
/* Exit deep power down mode */
CLEAR_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD);
/* System was in deep power down mode, calibration must
be relaunched or a previously saved calibration factor
re-applied once the ADC voltage regulator is enabled */
}
if (HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADVREGEN))
{
/* Enable ADC internal voltage regulator */
SET_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN);
/* Delay for ADC stabilization time */
/* Wait loop initialization and execution */
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles. */
wait_loop_index = ((ADC_STAB_DELAY_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
while (wait_loop_index != 0UL)
{
wait_loop_index--;
}
}
/* Verification that ADC voltage regulator is correctly enabled, whether */
/* or not ADC is coming from state reset (if any potential problem of */
/* clocking, voltage regulator would not be enabled). */
if (HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADVREGEN))
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Set ADC error code to ADC peripheral internal error */
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
return HAL_ERROR;
}
/* Enable the ADC peripheral */
if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) /* Enable the ADC if it is disabled */
{
if (ADC_Enable(hadc) != HAL_OK)
{
return HAL_ERROR;
}
else
{
for (cnt = ADC_LINEAR_CALIB_REG_COUNT; cnt > 0UL ; cnt--)
{
LL_ADC_SetCalibrationLinearFactor(hadc->Instance, ADC_CR_LINCALRDYW6 >> (ADC_LINEAR_CALIB_REG_COUNT - cnt), LinearCalib_Buffer[cnt - 1U]);
}
(void)ADC_Disable(hadc);
}
}
else /* ADC is already enabled, so no need to enable it but need to stop conversion */
{
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL)
{
LL_ADC_REG_StopConversion(hadc->Instance);
temp_REG_IsConversionOngoing = 1UL;
}
for (cnt = ADC_LINEAR_CALIB_REG_COUNT; cnt > 0UL ; cnt--)
{
LL_ADC_SetCalibrationLinearFactor(hadc->Instance, ADC_CR_LINCALRDYW6 >> (ADC_LINEAR_CALIB_REG_COUNT - cnt), LinearCalib_Buffer[cnt - 1U]);
}
if (temp_REG_IsConversionOngoing != 0UL)
{
LL_ADC_REG_StartConversion(hadc->Instance);
}
}
return HAL_OK;
}
/**
* @brief Load the calibration factor from engi bytes
* @param hadc ADC handle
* @retval HAL state
*/
HAL_StatusTypeDef HAL_ADCEx_LinearCalibration_FactorLoad(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
uint32_t cnt, FactorOffset;
uint32_t LinearCalib_Buffer[ADC_LINEAR_CALIB_REG_COUNT];
/* Linearity calibration is retrieved from engi bytes
read values from registers and put them to the CALFACT2 register */
/* If needed linearity calibration can be done in runtime using
LL_ADC_GetCalibrationLinearFactor() */
if (hadc->Instance == ADC1)
{
FactorOffset = 0UL;
}
else if (hadc->Instance == ADC2)
{
FactorOffset = 8UL;
}
else /*Case ADC3*/
{
FactorOffset = 16UL;
}
for (cnt = 0UL; cnt < ADC_LINEAR_CALIB_REG_COUNT; cnt++)
{
LinearCalib_Buffer[cnt] = *(uint32_t *)(ADC_LINEAR_CALIB_REG_1_ADDR + FactorOffset + cnt);
}
if (HAL_ADCEx_LinearCalibration_SetValue(hadc, (uint32_t *)LinearCalib_Buffer) != HAL_OK)
{
tmp_hal_status = HAL_ERROR;
}
return tmp_hal_status;
}
/**
* @brief Enable ADC, start conversion of injected group.
* @note Interruptions enabled in this function: None.
* @note Case of multimode enabled when multimode feature is available:
* HAL_ADCEx_InjectedStart() API must be called for ADC slave first,
* then for ADC master.
* For ADC slave, ADC is enabled only (conversion is not started).
* For ADC master, ADC is enabled and multimode conversion is started.
* @param hadc ADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
uint32_t tmp_config_injected_queue;
uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL)
{
return HAL_BUSY;
}
else
{
/* In case of software trigger detection enabled, JQDIS must be set
(which can be done only if ADSTART and JADSTART are both cleared).
If JQDIS is not set at that point, returns an error
- since software trigger detection is disabled. User needs to
resort to HAL_ADCEx_DisableInjectedQueue() API to set JQDIS.
- or (if JQDIS is intentionally reset) since JEXTEN = 0 which means
the queue is empty */
tmp_config_injected_queue = READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS);
if ((READ_BIT(hadc->Instance->JSQR, ADC_JSQR_JEXTEN) == 0UL)
&& (tmp_config_injected_queue == 0UL)
)
{
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
tmp_hal_status = ADC_Enable(hadc);
/* Start conversion if ADC is effectively enabled */
if (tmp_hal_status == HAL_OK)
{
/* Check if a regular conversion is ongoing */
if ((hadc->State & HAL_ADC_STATE_REG_BUSY) != 0UL)
{
/* Reset ADC error code field related to injected conversions only */
CLEAR_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
}
else
{
/* Set ADC error code to none */
ADC_CLEAR_ERRORCODE(hadc);
}
/* Set ADC state */
/* - Clear state bitfield related to injected group conversion results */
/* - Set state bitfield related to injected operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC,
HAL_ADC_STATE_INJ_BUSY);
/* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
- if ADC instance is master or if multimode feature is not available
- if multimode setting is disabled (ADC instance slave in independent mode) */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
)
{
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
/* Clear ADC group injected group conversion flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JEOC | ADC_FLAG_JEOS));
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Enable conversion of injected group, if automatic injected conversion */
/* is disabled. */
/* If software start has been selected, conversion starts immediately. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
/* Case of multimode enabled (when multimode feature is available): */
/* if ADC is slave, */
/* - ADC is enabled only (conversion is not started), */
/* - if multimode only concerns regular conversion, ADC is enabled */
/* and conversion is started. */
/* If ADC is master or independent, */
/* - ADC is enabled and conversion is started. */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL)
)
{
/* ADC instance is not a multimode slave instance with multimode injected conversions enabled */
if (LL_ADC_INJ_GetTrigAuto(hadc->Instance) == LL_ADC_INJ_TRIG_INDEPENDENT)
{
LL_ADC_INJ_StartConversion(hadc->Instance);
}
}
else
{
/* ADC instance is not a multimode slave instance with multimode injected conversions enabled */
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hadc);
}
/* Return function status */
return tmp_hal_status;
}
}
/**
* @brief Stop conversion of injected channels. Disable ADC peripheral if
* no regular conversion is on going.
* @note If ADC must be disabled and if conversion is on going on
* regular group, function HAL_ADC_Stop must be used to stop both
* injected and regular groups, and disable the ADC.
* @note If injected group mode auto-injection is enabled,
* function HAL_ADC_Stop must be used.
* @note In case of multimode enabled (when multimode feature is available),
* HAL_ADCEx_InjectedStop() must be called for ADC master first, then for ADC slave.
* For ADC master, conversion is stopped and ADC is disabled.
* For ADC slave, ADC is disabled only (conversion stop of ADC master
* has already stopped conversion of ADC slave).
* @param hadc ADC handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Stop potential conversion on going on injected group only. */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_INJECTED_GROUP);
/* Disable ADC peripheral if injected conversions are effectively stopped */
/* and if no conversion on regular group is on-going */
if (tmp_hal_status == HAL_OK)
{
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
{
/* 2. Disable the ADC peripheral */
tmp_hal_status = ADC_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
/* Conversion on injected group is stopped, but ADC not disabled since */
/* conversion on regular group is still running. */
else
{
/* Set ADC state */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Wait for injected group conversion to be completed.
* @param hadc ADC handle
* @param Timeout Timeout value in millisecond.
* @note Depending on hadc->Init.EOCSelection, JEOS or JEOC is
* checked and cleared depending on AUTDLY bit status.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout)
{
uint32_t tickstart;
uint32_t tmp_Flag_End;
uint32_t tmp_adc_inj_is_trigger_source_sw_start;
uint32_t tmp_adc_reg_is_trigger_source_sw_start;
uint32_t tmp_cfgr;
const ADC_TypeDef *tmpADC_Master;
uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* If end of sequence selected */
if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV)
{
tmp_Flag_End = ADC_FLAG_JEOS;
}
else /* end of conversion selected */
{
tmp_Flag_End = ADC_FLAG_JEOC;
}
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait until End of Conversion or Sequence flag is raised */
while ((hadc->Instance->ISR & tmp_Flag_End) == 0UL)
{
/* Check if timeout is disabled (set to infinite wait) */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL))
{
if((hadc->Instance->ISR & tmp_Flag_End) == 0UL)
{
/* Update ADC state machine to timeout */
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_TIMEOUT;
}
}
}
}
/* Retrieve ADC configuration */
tmp_adc_inj_is_trigger_source_sw_start = LL_ADC_INJ_IsTriggerSourceSWStart(hadc->Instance);
tmp_adc_reg_is_trigger_source_sw_start = LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance);
/* Get relevant register CFGR in ADC instance of ADC master or slave */
/* in function of multimode state (for devices with multimode */
/* available). */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL)
)
{
tmp_cfgr = READ_REG(hadc->Instance->CFGR);
}
else
{
tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
}
/* Update ADC state machine */
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
/* Determine whether any further conversion upcoming on group injected */
/* by external trigger or by automatic injected conversion */
/* from group regular. */
if ((tmp_adc_inj_is_trigger_source_sw_start != 0UL) ||
((READ_BIT(tmp_cfgr, ADC_CFGR_JAUTO) == 0UL) &&
((tmp_adc_reg_is_trigger_source_sw_start != 0UL) &&
(READ_BIT(tmp_cfgr, ADC_CFGR_CONT) == 0UL))))
{
/* Check whether end of sequence is reached */
if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS))
{
/* Particular case if injected contexts queue is enabled: */
/* when the last context has been fully processed, JSQR is reset */
/* by the hardware. Even if no injected conversion is planned to come */
/* (queue empty, triggers are ignored), it can start again */
/* immediately after setting a new context (JADSTART is still set). */
/* Therefore, state of HAL ADC injected group is kept to busy. */
if (READ_BIT(tmp_cfgr, ADC_CFGR_JQM) == 0UL)
{
/* Set ADC state */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
if ((hadc->State & HAL_ADC_STATE_REG_BUSY) == 0UL)
{
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
}
}
}
}
/* Clear polled flag */
if (tmp_Flag_End == ADC_FLAG_JEOS)
{
/* Clear end of sequence JEOS flag of injected group if low power feature */
/* "LowPowerAutoWait " is disabled, to not interfere with this feature. */
/* For injected groups, no new conversion will start before JEOS is */
/* cleared. */
if (READ_BIT(tmp_cfgr, ADC_CFGR_AUTDLY) == 0UL)
{
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JEOC | ADC_FLAG_JEOS));
}
}
else
{
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC);
}
/* Return API HAL status */
return HAL_OK;
}
/**
* @brief Enable ADC, start conversion of injected group with interruption.
* @note Interruptions enabled in this function according to initialization
* setting : JEOC (end of conversion) or JEOS (end of sequence)
* @note Case of multimode enabled (when multimode feature is enabled):
* HAL_ADCEx_InjectedStart_IT() API must be called for ADC slave first,
* then for ADC master.
* For ADC slave, ADC is enabled only (conversion is not started).
* For ADC master, ADC is enabled and multimode conversion is started.
* @param hadc ADC handle.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
uint32_t tmp_config_injected_queue;
uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL)
{
return HAL_BUSY;
}
else
{
/* In case of software trigger detection enabled, JQDIS must be set
(which can be done only if ADSTART and JADSTART are both cleared).
If JQDIS is not set at that point, returns an error
- since software trigger detection is disabled. User needs to
resort to HAL_ADCEx_DisableInjectedQueue() API to set JQDIS.
- or (if JQDIS is intentionally reset) since JEXTEN = 0 which means
the queue is empty */
tmp_config_injected_queue = READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS);
if ((READ_BIT(hadc->Instance->JSQR, ADC_JSQR_JEXTEN) == 0UL)
&& (tmp_config_injected_queue == 0UL)
)
{
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
tmp_hal_status = ADC_Enable(hadc);
/* Start conversion if ADC is effectively enabled */
if (tmp_hal_status == HAL_OK)
{
/* Check if a regular conversion is ongoing */
if ((hadc->State & HAL_ADC_STATE_REG_BUSY) != 0UL)
{
/* Reset ADC error code field related to injected conversions only */
CLEAR_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
}
else
{
/* Set ADC error code to none */
ADC_CLEAR_ERRORCODE(hadc);
}
/* Set ADC state */
/* - Clear state bitfield related to injected group conversion results */
/* - Set state bitfield related to injected operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC,
HAL_ADC_STATE_INJ_BUSY);
/* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
- if ADC instance is master or if multimode feature is not available
- if multimode setting is disabled (ADC instance slave in independent mode) */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
)
{
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
/* Clear ADC group injected group conversion flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JEOC | ADC_FLAG_JEOS));
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Enable ADC Injected context queue overflow interrupt if this feature */
/* is enabled. */
if ((hadc->Instance->CFGR & ADC_CFGR_JQM) != 0UL)
{
__HAL_ADC_ENABLE_IT(hadc, ADC_FLAG_JQOVF);
}
/* Enable ADC end of conversion interrupt */
switch (hadc->Init.EOCSelection)
{
case ADC_EOC_SEQ_CONV:
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
break;
/* case ADC_EOC_SINGLE_CONV */
default:
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
break;
}
/* Enable conversion of injected group, if automatic injected conversion */
/* is disabled. */
/* If software start has been selected, conversion starts immediately. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
/* Case of multimode enabled (when multimode feature is available): */
/* if ADC is slave, */
/* - ADC is enabled only (conversion is not started), */
/* - if multimode only concerns regular conversion, ADC is enabled */
/* and conversion is started. */
/* If ADC is master or independent, */
/* - ADC is enabled and conversion is started. */
if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
|| (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT)
|| (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL)
)
{
/* ADC instance is not a multimode slave instance with multimode injected conversions enabled */
if (LL_ADC_INJ_GetTrigAuto(hadc->Instance) == LL_ADC_INJ_TRIG_INDEPENDENT)
{
LL_ADC_INJ_StartConversion(hadc->Instance);
}
}
else
{
/* ADC instance is not a multimode slave instance with multimode injected conversions enabled */
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hadc);
}
/* Return function status */
return tmp_hal_status;
}
}
/**
* @brief Stop conversion of injected channels, disable interruption of
* end-of-conversion. Disable ADC peripheral if no regular conversion
* is on going.
* @note If ADC must be disabled and if conversion is on going on
* regular group, function HAL_ADC_Stop must be used to stop both
* injected and regular groups, and disable the ADC.
* @note If injected group mode auto-injection is enabled,
* function HAL_ADC_Stop must be used.
* @note Case of multimode enabled (when multimode feature is available):
* HAL_ADCEx_InjectedStop_IT() API must be called for ADC master first,
* then for ADC slave.
* For ADC master, conversion is stopped and ADC is disabled.
* For ADC slave, ADC is disabled only (conversion stop of ADC master
* has already stopped conversion of ADC slave).
* @note In case of auto-injection mode, HAL_ADC_Stop() must be used.
* @param hadc ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Stop potential conversion on going on injected group only. */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_INJECTED_GROUP);
/* Disable ADC peripheral if injected conversions are effectively stopped */
/* and if no conversion on the other group (regular group) is intended to */
/* continue. */
if (tmp_hal_status == HAL_OK)
{
/* Disable ADC end of conversion interrupt for injected channels */
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_JEOC | ADC_IT_JEOS | ADC_FLAG_JQOVF));
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
{
/* 2. Disable the ADC peripheral */
tmp_hal_status = ADC_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
/* Conversion on injected group is stopped, but ADC not disabled since */
/* conversion on regular group is still running. */
else
{
/* Set ADC state */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Enable ADC, start MultiMode conversion and transfer regular results through DMA.
* @note Multimode must have been previously configured using
* HAL_ADCEx_MultiModeConfigChannel() function.
* Interruptions enabled in this function:
* overrun, DMA half transfer, DMA transfer complete.
* Each of these interruptions has its dedicated callback function.
* @note State field of Slave ADC handle is not updated in this configuration:
* user should not rely on it for information related to Slave regular
* conversions.
* @param hadc ADC handle of ADC master (handle of ADC slave must not be used)
* @param pData Destination Buffer address.
* @param Length Length of data to be transferred from ADC peripheral to memory (in bytes).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length)
{
HAL_StatusTypeDef tmp_hal_status;
ADC_HandleTypeDef tmphadcSlave;
ADC_Common_TypeDef *tmpADC_Common;
/* Check the parameters */
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL)
{
return HAL_BUSY;
}
else
{
/* Process locked */
__HAL_LOCK(hadc);
tmphadcSlave.State = HAL_ADC_STATE_RESET;
tmphadcSlave.ErrorCode = HAL_ADC_ERROR_NONE;
/* Set a temporary handle of the ADC slave associated to the ADC master */
ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
if (tmphadcSlave.Instance == NULL)
{
/* Set ADC state */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
/* Enable the ADC peripherals: master and slave (in case if not already */
/* enabled previously) */
tmp_hal_status = ADC_Enable(hadc);
if (tmp_hal_status == HAL_OK)
{
tmp_hal_status = ADC_Enable(&tmphadcSlave);
}
/* Start multimode conversion of ADCs pair */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
(HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP),
HAL_ADC_STATE_REG_BUSY);
/* Set ADC error code to none */
ADC_CLEAR_ERRORCODE(hadc);
/* Set the DMA transfer complete callback */
hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
/* Set the DMA half transfer complete callback */
hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
/* Set the DMA error callback */
hadc->DMA_Handle->XferErrorCallback = ADC_DMAError ;
/* Pointer to the common control register */
tmpADC_Common = __LL_ADC_COMMON_INSTANCE(hadc->Instance);
/* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
/* start (in case of SW start): */
/* Clear regular group conversion flag and overrun flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Enable ADC overrun interrupt */
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
/* Start the DMA channel */
tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&tmpADC_Common->CDR, (uint32_t)pData, Length);
/* Enable conversion of regular group. */
/* If software start has been selected, conversion starts immediately. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
/* Start ADC group regular conversion */
LL_ADC_REG_StartConversion(hadc->Instance);
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hadc);
}
/* Return function status */
return tmp_hal_status;
}
}
/**
* @brief Stop multimode ADC conversion, disable ADC DMA transfer, disable ADC peripheral.
* @note Multimode is kept enabled after this function. MultiMode DMA bits
* (MDMA and DMACFG bits of common CCR register) are maintained. To disable
* Multimode (set with HAL_ADCEx_MultiModeConfigChannel()), ADC must be
* reinitialized using HAL_ADC_Init() or HAL_ADC_DeInit(), or the user can
* resort to HAL_ADCEx_DisableMultiMode() API.
* @note In case of DMA configured in circular mode, function
* HAL_ADC_Stop_DMA() must be called after this function with handle of
* ADC slave, to properly disable the DMA channel.
* @param hadc ADC handle of ADC master (handle of ADC slave must not be used)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
uint32_t tickstart;
ADC_HandleTypeDef tmphadcSlave;
uint32_t tmphadcSlave_conversion_on_going;
HAL_StatusTypeDef tmphadcSlave_disable_status;
/* Check the parameters */
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Stop potential multimode conversion on going, on regular and injected groups */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
/* Disable ADC peripheral if conversions are effectively stopped */
if (tmp_hal_status == HAL_OK)
{
tmphadcSlave.State = HAL_ADC_STATE_RESET;
tmphadcSlave.ErrorCode = HAL_ADC_ERROR_NONE;
/* Set a temporary handle of the ADC slave associated to the ADC master */
ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
if (tmphadcSlave.Instance == NULL)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
/* Procedure to disable the ADC peripheral: wait for conversions */
/* effectively stopped (ADC master and ADC slave), then disable ADC */
/* 1. Wait for ADC conversion completion for ADC master and ADC slave */
tickstart = HAL_GetTick();
tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance);
while ((LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 1UL)
|| (tmphadcSlave_conversion_on_going == 1UL)
)
{
if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
{
/* New check to avoid false timeout detection in case of preemption */
tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance);
if((LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 1UL)
|| (tmphadcSlave_conversion_on_going == 1UL)
)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
}
tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance);
}
/* Disable the DMA channel (in case of DMA in circular mode or stop */
/* while DMA transfer is on going) */
/* Note: DMA channel of ADC slave should be stopped after this function */
/* with HAL_ADC_Stop_DMA() API. */
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
/* Check if DMA channel effectively disabled */
if (tmp_hal_status == HAL_ERROR)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
}
/* Disable ADC overrun interrupt */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
/* 2. Disable the ADC peripherals: master and slave */
/* Update "tmp_hal_status" only if DMA channel disabling passed, to keep in */
/* memory a potential failing status. */
if (tmp_hal_status == HAL_OK)
{
tmphadcSlave_disable_status = ADC_Disable(&tmphadcSlave);
if ((ADC_Disable(hadc) == HAL_OK) &&
(tmphadcSlave_disable_status == HAL_OK))
{
tmp_hal_status = HAL_OK;
}
}
else
{
/* In case of error, attempt to disable ADC master and slave without status assert */
(void) ADC_Disable(hadc);
(void) ADC_Disable(&tmphadcSlave);
}
/* Set ADC state (ADC master) */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Return the last ADC Master and Slave regular conversions results when in multimode configuration.
* @param hadc ADC handle of ADC Master (handle of ADC Slave must not be used)
* @retval The converted data values.
*/
uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef *hadc)
{
const ADC_Common_TypeDef *tmpADC_Common;
/* Check the parameters */
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
/* Prevent unused argument(s) compilation warning if no assert_param check */
/* and possible no usage in __LL_ADC_COMMON_INSTANCE() below */
UNUSED(hadc);
/* Pointer to the common control register */
tmpADC_Common = __LL_ADC_COMMON_INSTANCE(hadc->Instance);
/* Return the multi mode conversion value */
return tmpADC_Common->CDR;
}
/**
* @brief Get ADC injected group conversion result.
* @note Reading register JDRx automatically clears ADC flag JEOC
* (ADC group injected end of unitary conversion).
* @note This function does not clear ADC flag JEOS
* (ADC group injected end of sequence conversion)
* Occurrence of flag JEOS rising:
* - If sequencer is composed of 1 rank, flag JEOS is equivalent
* to flag JEOC.
* - If sequencer is composed of several ranks, during the scan
* sequence flag JEOC only is raised, at the end of the scan sequence
* both flags JEOC and EOS are raised.
* Flag JEOS must not be cleared by this function because
* it would not be compliant with low power features
* (feature low power auto-wait, not available on all STM32 families).
* To clear this flag, either use function:
* in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
* model polling: @ref HAL_ADCEx_InjectedPollForConversion()
* or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_JEOS).
* @param hadc ADC handle
* @param InjectedRank the converted ADC injected rank.
* This parameter can be one of the following values:
* @arg @ref ADC_INJECTED_RANK_1 ADC group injected rank 1
* @arg @ref ADC_INJECTED_RANK_2 ADC group injected rank 2
* @arg @ref ADC_INJECTED_RANK_3 ADC group injected rank 3
* @arg @ref ADC_INJECTED_RANK_4 ADC group injected rank 4
* @retval ADC group injected conversion data
*/
uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef *hadc, uint32_t InjectedRank)
{
uint32_t tmp_jdr;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_INJECTED_RANK(InjectedRank));
/* Get ADC converted value */
switch (InjectedRank)
{
case ADC_INJECTED_RANK_4:
tmp_jdr = hadc->Instance->JDR4;
break;
case ADC_INJECTED_RANK_3:
tmp_jdr = hadc->Instance->JDR3;
break;
case ADC_INJECTED_RANK_2:
tmp_jdr = hadc->Instance->JDR2;
break;
case ADC_INJECTED_RANK_1:
default:
tmp_jdr = hadc->Instance->JDR1;
break;
}
/* Return ADC converted value */
return tmp_jdr;
}
/**
* @brief Injected conversion complete callback in non-blocking mode.
* @param hadc ADC handle
* @retval None
*/
__weak void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADCEx_InjectedConvCpltCallback must be implemented in the user file.
*/
}
/**
* @brief Injected context queue overflow callback.
* @note This callback is called if injected context queue is enabled
(parameter "QueueInjectedContext" in injected channel configuration)
and if a new injected context is set when queue is full (maximum 2
contexts).
* @param hadc ADC handle
* @retval None
*/
__weak void HAL_ADCEx_InjectedQueueOverflowCallback(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADCEx_InjectedQueueOverflowCallback must be implemented in the user file.
*/
}
/**
* @brief Analog watchdog 2 callback in non-blocking mode.
* @param hadc ADC handle
* @retval None
*/
__weak void HAL_ADCEx_LevelOutOfWindow2Callback(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADCEx_LevelOutOfWindow2Callback must be implemented in the user file.
*/
}
/**
* @brief Analog watchdog 3 callback in non-blocking mode.
* @param hadc ADC handle
* @retval None
*/
__weak void HAL_ADCEx_LevelOutOfWindow3Callback(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADCEx_LevelOutOfWindow3Callback must be implemented in the user file.
*/
}
/**
* @brief End Of Sampling callback in non-blocking mode.
* @param hadc ADC handle
* @retval None
*/
__weak void HAL_ADCEx_EndOfSamplingCallback(ADC_HandleTypeDef *hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function should not be modified. When the callback is needed,
function HAL_ADCEx_EndOfSamplingCallback must be implemented in the user file.
*/
}
/**
* @brief Stop ADC conversion of regular group (and injected channels in
* case of auto_injection mode), disable ADC peripheral if no
* conversion is on going on injected group.
* @param hadc ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADCEx_RegularStop(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Stop potential regular conversion on going */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP);
/* Disable ADC peripheral if regular conversions are effectively stopped
and if no injected conversions are on-going */
if (tmp_hal_status == HAL_OK)
{
/* Clear HAL_ADC_STATE_REG_BUSY bit */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL)
{
/* 2. Disable the ADC peripheral */
tmp_hal_status = ADC_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
/* Conversion on injected group is stopped, but ADC not disabled since */
/* conversion on regular group is still running. */
else
{
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Stop ADC conversion of ADC groups regular and injected,
* disable interrution of end-of-conversion,
* disable ADC peripheral if no conversion is on going
* on injected group.
* @param hadc ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADCEx_RegularStop_IT(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Stop potential regular conversion on going */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP);
/* Disable ADC peripheral if conversions are effectively stopped
and if no injected conversion is on-going */
if (tmp_hal_status == HAL_OK)
{
/* Clear HAL_ADC_STATE_REG_BUSY bit */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
/* Disable all regular-related interrupts */
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
/* 2. Disable ADC peripheral if no injected conversions are on-going */
if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL)
{
tmp_hal_status = ADC_Disable(hadc);
/* if no issue reported */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
else
{
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Stop ADC conversion of regular group (and injected group in
* case of auto_injection mode), disable ADC DMA transfer, disable
* ADC peripheral if no conversion is on going
* on injected group.
* @note HAL_ADCEx_RegularStop_DMA() function is dedicated to single-ADC mode only.
* For multimode (when multimode feature is available),
* HAL_ADCEx_RegularMultiModeStop_DMA() API must be used.
* @param hadc ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADCEx_RegularStop_DMA(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Stop potential regular conversion on going */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP);
/* Disable ADC peripheral if conversions are effectively stopped
and if no injected conversion is on-going */
if (tmp_hal_status == HAL_OK)
{
/* Clear HAL_ADC_STATE_REG_BUSY bit */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
/* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */
MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_DMNGT_0 | ADC_CFGR_DMNGT_1, 0UL);
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
/* while DMA transfer is on going) */
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
/* Check if DMA channel effectively disabled */
if (tmp_hal_status != HAL_OK)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
}
/* Disable ADC overrun interrupt */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
/* 2. Disable the ADC peripheral */
/* Update "tmp_hal_status" only if DMA channel disabling passed, */
/* to keep in memory a potential failing status. */
if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL)
{
if (tmp_hal_status == HAL_OK)
{
tmp_hal_status = ADC_Disable(hadc);
}
else
{
(void)ADC_Disable(hadc);
}
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
else
{
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Stop DMA-based multimode ADC conversion, disable ADC DMA transfer, disable ADC peripheral if no injected conversion is on-going.
* @note Multimode is kept enabled after this function. Multimode DMA bits
* (MDMA and DMACFG bits of common CCR register) are maintained. To disable
* multimode (set with HAL_ADCEx_MultiModeConfigChannel()), ADC must be
* reinitialized using HAL_ADC_Init() or HAL_ADC_DeInit(), or the user can
* resort to HAL_ADCEx_DisableMultiMode() API.
* @note In case of DMA configured in circular mode, function
* HAL_ADCEx_RegularStop_DMA() must be called after this function with handle of
* ADC slave, to properly disable the DMA channel.
* @param hadc ADC handle of ADC master (handle of ADC slave must not be used)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_RegularMultiModeStop_DMA(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
uint32_t tickstart;
ADC_HandleTypeDef tmphadcSlave;
uint32_t tmphadcSlave_conversion_on_going;
/* Check the parameters */
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Stop potential multimode conversion on going, on regular groups */
tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_GROUP);
/* Disable ADC peripheral if conversions are effectively stopped */
if (tmp_hal_status == HAL_OK)
{
/* Clear HAL_ADC_STATE_REG_BUSY bit */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
tmphadcSlave.State = HAL_ADC_STATE_RESET;
tmphadcSlave.ErrorCode = HAL_ADC_ERROR_NONE;
/* Set a temporary handle of the ADC slave associated to the ADC master */
ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
if (tmphadcSlave.Instance == NULL)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
/* Procedure to disable the ADC peripheral: wait for conversions */
/* effectively stopped (ADC master and ADC slave), then disable ADC */
/* 1. Wait for ADC conversion completion for ADC master and ADC slave */
tickstart = HAL_GetTick();
tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance);
while ((LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 1UL)
|| (tmphadcSlave_conversion_on_going == 1UL)
)
{
if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
{
/* New check to avoid false timeout detection in case of preemption */
tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance);
if((LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 1UL)
|| (tmphadcSlave_conversion_on_going == 1UL)
)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
}
tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance);
}
/* Disable the DMA channel (in case of DMA in circular mode or stop */
/* while DMA transfer is on going) */
/* Note: DMA channel of ADC slave should be stopped after this function */
/* with HAL_ADCEx_RegularStop_DMA() API. */
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
/* Check if DMA channel effectively disabled */
if (tmp_hal_status != HAL_OK)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
}
/* Disable ADC overrun interrupt */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
/* 2. Disable the ADC peripherals: master and slave if no injected */
/* conversion is on-going. */
/* Update "tmp_hal_status" only if DMA channel disabling passed, to keep in */
/* memory a potential failing status. */
if (tmp_hal_status == HAL_OK)
{
if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL)
{
tmp_hal_status = ADC_Disable(hadc);
if (tmp_hal_status == HAL_OK)
{
if (LL_ADC_INJ_IsConversionOngoing((&tmphadcSlave)->Instance) == 0UL)
{
tmp_hal_status = ADC_Disable(&tmphadcSlave);
}
}
}
if (tmp_hal_status == HAL_OK)
{
/* Both Master and Slave ADC's could be disabled. Update Master State */
/* Clear HAL_ADC_STATE_INJ_BUSY bit, set HAL_ADC_STATE_READY bit */
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY, HAL_ADC_STATE_READY);
}
else
{
/* injected (Master or Slave) conversions are still on-going,
no Master State change */
}
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @}
*/
/** @defgroup ADCEx_Exported_Functions_Group2 ADC Extended Peripheral Control functions
* @brief ADC Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure channels on injected group
(+) Configure multimode when multimode feature is available
(+) Enable or Disable Injected Queue
(+) Disable ADC voltage regulator
(+) Enter ADC deep-power-down mode
@endverbatim
* @{
*/
/**
* @brief Configure a channel to be assigned to ADC group injected.
* @note Possibility to update parameters on the fly:
* This function initializes injected group, following calls to this
* function can be used to reconfigure some parameters of structure
* "ADC_InjectionConfTypeDef" on the fly, without resetting the ADC.
* The setting of these parameters is conditioned to ADC state:
* Refer to comments of structure "ADC_InjectionConfTypeDef".
* @note In case of usage of internal measurement channels:
* Vbat/VrefInt/TempSensor.
* These internal paths can be disabled using function
* HAL_ADC_DeInit().
* @note Caution: For Injected Context Queue use, a context must be fully
* defined before start of injected conversion. All channels are configured
* consecutively for the same ADC instance. Therefore, the number of calls to
* HAL_ADCEx_InjectedConfigChannel() must be equal to the value of parameter
* InjectedNbrOfConversion for each context.
* - Example 1: If 1 context is intended to be used (or if there is no use of the
* Injected Queue Context feature) and if the context contains 3 injected ranks
* (InjectedNbrOfConversion = 3), HAL_ADCEx_InjectedConfigChannel() must be
* called once for each channel (i.e. 3 times) before starting a conversion.
* This function must not be called to configure a 4th injected channel:
* it would start a new context into context queue.
* - Example 2: If 2 contexts are intended to be used and each of them contains
* 3 injected ranks (InjectedNbrOfConversion = 3),
* HAL_ADCEx_InjectedConfigChannel() must be called once for each channel and
* for each context (3 channels x 2 contexts = 6 calls). Conversion can
* start once the 1st context is set, that is after the first three
* HAL_ADCEx_InjectedConfigChannel() calls. The 2nd context can be set on the fly.
* @param hadc ADC handle
* @param sConfigInjected Structure of ADC injected group and ADC channel for
* injected group.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef *hadc, ADC_InjectionConfTypeDef *sConfigInjected)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
uint32_t tmpOffsetShifted;
uint32_t tmp_config_internal_channel;
uint32_t tmp_adc_is_conversion_on_going_regular;
uint32_t tmp_adc_is_conversion_on_going_injected;
__IO uint32_t wait_loop_index = 0;
uint32_t tmp_JSQR_ContextQueueBeingBuilt = 0U;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_SAMPLE_TIME(sConfigInjected->InjectedSamplingTime));
assert_param(IS_ADC_SINGLE_DIFFERENTIAL(sConfigInjected->InjectedSingleDiff));
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->AutoInjectedConv));
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->QueueInjectedContext));
assert_param(IS_ADC_EXTTRIGINJEC_EDGE(sConfigInjected->ExternalTrigInjecConvEdge));
assert_param(IS_ADC_EXTTRIGINJEC(sConfigInjected->ExternalTrigInjecConv));
assert_param(IS_ADC_OFFSET_NUMBER(sConfigInjected->InjectedOffsetNumber));
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjecOversamplingMode));
#if defined(ADC_VER_V5_V90)
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjectedOffsetSaturation));
if (hadc->Instance == ADC3)
{
assert_param(IS_ADC3_OFFSET_SIGN(sConfigInjected->InjectedOffsetSign));
assert_param(IS_ADC3_RANGE(ADC_GET_RESOLUTION(hadc), sConfigInjected->InjectedOffset));
}
else
#endif /* ADC_VER_V5_V90 */
{
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfigInjected->InjectedOffset));
}
if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
{
assert_param(IS_ADC_INJECTED_RANK(sConfigInjected->InjectedRank));
assert_param(IS_ADC_INJECTED_NB_CONV(sConfigInjected->InjectedNbrOfConversion));
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjectedDiscontinuousConvMode));
}
/* Check offset range according to oversampling setting */
if (hadc->Init.OversamplingMode == ENABLE)
{
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfigInjected->InjectedOffset / (hadc->Init.Oversampling.Ratio + 1U)));
}
else
{
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), sConfigInjected->InjectedOffset));
}
#if defined(ADC_VER_V5_V90)
/* if JOVSE is set, the value of the OFFSETy_EN bit in ADCx_OFRy register is
ignored (considered as reset) */
if (hadc->Instance == ADC3)
{
assert_param(!((sConfigInjected->InjectedOffsetNumber != ADC_OFFSET_NONE) && (sConfigInjected->InjecOversamplingMode == ENABLE)));
}
#endif /* ADC_VER_V5_V90 */
/* JDISCEN and JAUTO bits can't be set at the same time */
assert_param(!((sConfigInjected->InjectedDiscontinuousConvMode == ENABLE) && (sConfigInjected->AutoInjectedConv == ENABLE)));
/* DISCEN and JAUTO bits can't be set at the same time */
assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (sConfigInjected->AutoInjectedConv == ENABLE)));
/* Verification of channel number */
if (sConfigInjected->InjectedSingleDiff != ADC_DIFFERENTIAL_ENDED)
{
assert_param(IS_ADC_CHANNEL(sConfigInjected->InjectedChannel));
}
else
{
if (hadc->Instance == ADC1)
{
assert_param(IS_ADC1_DIFF_CHANNEL(sConfigInjected->InjectedChannel));
}
if (hadc->Instance == ADC2)
{
assert_param(IS_ADC2_DIFF_CHANNEL(sConfigInjected->InjectedChannel));
}
#if defined (ADC3)
if (hadc->Instance == ADC3)
{
assert_param(IS_ADC3_DIFF_CHANNEL(sConfigInjected->InjectedChannel));
}
#endif
}
/* Process locked */
__HAL_LOCK(hadc);
/* Configuration of injected group sequencer: */
/* Hardware constraint: Must fully define injected context register JSQR */
/* before make it entering into injected sequencer queue. */
/* */
/* - if scan mode is disabled: */
/* * Injected channels sequence length is set to 0x00: 1 channel */
/* converted (channel on injected rank 1) */
/* Parameter "InjectedNbrOfConversion" is discarded. */
/* * Injected context register JSQR setting is simple: register is fully */
/* defined on one call of this function (for injected rank 1) and can */
/* be entered into queue directly. */
/* - if scan mode is enabled: */
/* * Injected channels sequence length is set to parameter */
/* "InjectedNbrOfConversion". */
/* * Injected context register JSQR setting more complex: register is */
/* fully defined over successive calls of this function, for each */
/* injected channel rank. It is entered into queue only when all */
/* injected ranks have been set. */
/* Note: Scan mode is not present by hardware on this device, but used */
/* by software for alignment over all STM32 devices. */
if ((hadc->Init.ScanConvMode == ADC_SCAN_DISABLE) ||
(sConfigInjected->InjectedNbrOfConversion == 1U))
{
/* Configuration of context register JSQR: */
/* - number of ranks in injected group sequencer: fixed to 1st rank */
/* (scan mode disabled, only rank 1 used) */
/* - external trigger to start conversion */
/* - external trigger polarity */
/* - channel set to rank 1 (scan mode disabled, only rank 1 can be used) */
if (sConfigInjected->InjectedRank == ADC_INJECTED_RANK_1)
{
/* Enable external trigger if trigger selection is different of */
/* software start. */
/* Note: This configuration keeps the hardware feature of parameter */
/* ExternalTrigInjecConvEdge "trigger edge none" equivalent to */
/* software start. */
if (sConfigInjected->ExternalTrigInjecConv != ADC_INJECTED_SOFTWARE_START)
{
tmp_JSQR_ContextQueueBeingBuilt = (ADC_JSQR_RK(sConfigInjected->InjectedChannel, ADC_INJECTED_RANK_1)
| (sConfigInjected->ExternalTrigInjecConv & ADC_JSQR_JEXTSEL)
| sConfigInjected->ExternalTrigInjecConvEdge
);
}
else
{
tmp_JSQR_ContextQueueBeingBuilt = (ADC_JSQR_RK(sConfigInjected->InjectedChannel, ADC_INJECTED_RANK_1));
}
MODIFY_REG(hadc->Instance->JSQR, ADC_JSQR_FIELDS, tmp_JSQR_ContextQueueBeingBuilt);
/* For debug and informative reasons, hadc handle saves JSQR setting */
hadc->InjectionConfig.ContextQueue = tmp_JSQR_ContextQueueBeingBuilt;
}
}
else
{
/* Case of scan mode enabled, several channels to set into injected group */
/* sequencer. */
/* */
/* Procedure to define injected context register JSQR over successive */
/* calls of this function, for each injected channel rank: */
/* 1. Start new context and set parameters related to all injected */
/* channels: injected sequence length and trigger. */
/* if hadc->InjectionConfig.ChannelCount is equal to 0, this is the first */
/* call of the context under setting */
if (hadc->InjectionConfig.ChannelCount == 0U)
{
/* Initialize number of channels that will be configured on the context */
/* being built */
hadc->InjectionConfig.ChannelCount = sConfigInjected->InjectedNbrOfConversion;
/* Handle hadc saves the context under build up over each HAL_ADCEx_InjectedConfigChannel()
call, this context will be written in JSQR register at the last call.
At this point, the context is merely reset */
hadc->InjectionConfig.ContextQueue = 0x00000000U;
/* Configuration of context register JSQR: */
/* - number of ranks in injected group sequencer */
/* - external trigger to start conversion */
/* - external trigger polarity */
/* Enable external trigger if trigger selection is different of */
/* software start. */
/* Note: This configuration keeps the hardware feature of parameter */
/* ExternalTrigInjecConvEdge "trigger edge none" equivalent to */
/* software start. */
if (sConfigInjected->ExternalTrigInjecConv != ADC_INJECTED_SOFTWARE_START)
{
tmp_JSQR_ContextQueueBeingBuilt = ((sConfigInjected->InjectedNbrOfConversion - 1U)
| (sConfigInjected->ExternalTrigInjecConv & ADC_JSQR_JEXTSEL)
| sConfigInjected->ExternalTrigInjecConvEdge
);
}
else
{
tmp_JSQR_ContextQueueBeingBuilt = ((sConfigInjected->InjectedNbrOfConversion - 1U));
}
}
/* 2. Continue setting of context under definition with parameter */
/* related to each channel: channel rank sequence */
/* Clear the old JSQx bits for the selected rank */
tmp_JSQR_ContextQueueBeingBuilt &= ~ADC_JSQR_RK(ADC_SQR3_SQ10, sConfigInjected->InjectedRank);
/* Set the JSQx bits for the selected rank */
tmp_JSQR_ContextQueueBeingBuilt |= ADC_JSQR_RK(sConfigInjected->InjectedChannel, sConfigInjected->InjectedRank);
/* Decrease channel count */
hadc->InjectionConfig.ChannelCount--;
/* 3. tmp_JSQR_ContextQueueBeingBuilt is fully built for this HAL_ADCEx_InjectedConfigChannel()
call, aggregate the setting to those already built during the previous
HAL_ADCEx_InjectedConfigChannel() calls (for the same context of course) */
hadc->InjectionConfig.ContextQueue |= tmp_JSQR_ContextQueueBeingBuilt;
/* 4. End of context setting: if this is the last channel set, then write context
into register JSQR and make it enter into queue */
if (hadc->InjectionConfig.ChannelCount == 0U)
{
MODIFY_REG(hadc->Instance->JSQR, ADC_JSQR_FIELDS, hadc->InjectionConfig.ContextQueue);
}
}
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated when ADC is disabled or enabled without */
/* conversion on going on injected group: */
/* - Injected context queue: Queue disable (active context is kept) or */
/* enable (context decremented, up to 2 contexts queued) */
/* - Injected discontinuous mode: can be enabled only if auto-injected */
/* mode is disabled. */
if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL)
{
#if defined(ADC_VER_V5_V90)
if (hadc->Instance != ADC3)
{
/* ADC channels preselection */
hadc->Instance->PCSEL_RES0 |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel) & 0x1FUL));
}
#else
/* ADC channels preselection */
hadc->Instance->PCSEL |= (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel) & 0x1FUL));
#endif /* ADC_VER_V5_V90 */
/* If auto-injected mode is disabled: no constraint */
if (sConfigInjected->AutoInjectedConv == DISABLE)
{
MODIFY_REG(hadc->Instance->CFGR,
ADC_CFGR_JQM | ADC_CFGR_JDISCEN,
ADC_CFGR_INJECT_CONTEXT_QUEUE((uint32_t)sConfigInjected->QueueInjectedContext) |
ADC_CFGR_INJECT_DISCCONTINUOUS((uint32_t)sConfigInjected->InjectedDiscontinuousConvMode));
}
/* If auto-injected mode is enabled: Injected discontinuous setting is */
/* discarded. */
else
{
MODIFY_REG(hadc->Instance->CFGR,
ADC_CFGR_JQM | ADC_CFGR_JDISCEN,
ADC_CFGR_INJECT_CONTEXT_QUEUE((uint32_t)sConfigInjected->QueueInjectedContext));
}
}
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated when ADC is disabled or enabled without */
/* conversion on going on regular and injected groups: */
/* - Automatic injected conversion: can be enabled if injected group */
/* external triggers are disabled. */
/* - Channel sampling time */
/* - Channel offset */
tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
if ((tmp_adc_is_conversion_on_going_regular == 0UL)
&& (tmp_adc_is_conversion_on_going_injected == 0UL)
)
{
/* If injected group external triggers are disabled (set to injected */
/* software start): no constraint */
if ((sConfigInjected->ExternalTrigInjecConv == ADC_INJECTED_SOFTWARE_START)
|| (sConfigInjected->ExternalTrigInjecConvEdge == ADC_EXTERNALTRIGINJECCONV_EDGE_NONE))
{
if (sConfigInjected->AutoInjectedConv == ENABLE)
{
SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO);
}
else
{
CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO);
}
}
/* If Automatic injected conversion was intended to be set and could not */
/* due to injected group external triggers enabled, error is reported. */
else
{
if (sConfigInjected->AutoInjectedConv == ENABLE)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
else
{
CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO);
}
}
if (sConfigInjected->InjecOversamplingMode == ENABLE)
{
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
assert_param(IS_ADC_OVERSAMPLING_RATIO_ADC3(sConfigInjected->InjecOversampling.Ratio));
}
else
{
assert_param(IS_ADC_OVERSAMPLING_RATIO(sConfigInjected->InjecOversampling.Ratio));
}
#else
assert_param(IS_ADC_OVERSAMPLING_RATIO(sConfigInjected->InjecOversampling.Ratio));
#endif
assert_param(IS_ADC_RIGHT_BIT_SHIFT(sConfigInjected->InjecOversampling.RightBitShift));
/* JOVSE must be reset in case of triggered regular mode */
assert_param(!(READ_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSE | ADC_CFGR2_TROVS) == (ADC_CFGR2_ROVSE | ADC_CFGR2_TROVS)));
/* Configuration of Injected Oversampler: */
/* - Oversampling Ratio */
/* - Right bit shift */
/* Enable OverSampling mode */
#if defined(ADC_VER_V5_V90)
if (hadc->Instance != ADC3)
{
MODIFY_REG(hadc->Instance->CFGR2,
ADC_CFGR2_JOVSE |
ADC_CFGR2_OVSR |
ADC_CFGR2_OVSS,
ADC_CFGR2_JOVSE |
((sConfigInjected->InjecOversampling.Ratio - 1UL) << ADC_CFGR2_OVSR_Pos) |
sConfigInjected->InjecOversampling.RightBitShift
);
}
else
{
MODIFY_REG(hadc->Instance->CFGR2,
ADC_CFGR2_JOVSE |
ADC3_CFGR2_OVSR |
ADC_CFGR2_OVSS,
ADC_CFGR2_JOVSE |
(sConfigInjected->InjecOversampling.Ratio) |
sConfigInjected->InjecOversampling.RightBitShift
);
}
#else
MODIFY_REG(hadc->Instance->CFGR2,
ADC_CFGR2_JOVSE |
ADC_CFGR2_OVSR |
ADC_CFGR2_OVSS,
ADC_CFGR2_JOVSE |
((sConfigInjected->InjecOversampling.Ratio - 1UL) << ADC_CFGR2_OVSR_Pos) |
sConfigInjected->InjecOversampling.RightBitShift
);
#endif
}
else
{
/* Disable Regular OverSampling */
CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_JOVSE);
}
/* Set sampling time of the selected ADC channel */
LL_ADC_SetChannelSamplingTime(hadc->Instance, sConfigInjected->InjectedChannel, sConfigInjected->InjectedSamplingTime);
/* Configure the offset: offset enable/disable, channel, offset value */
/* Shift the offset with respect to the selected ADC resolution. */
/* Offset has to be left-aligned on bit 11, the LSB (right bits) are set to 0 */
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
tmpOffsetShifted = ADC3_OFFSET_SHIFT_RESOLUTION(hadc, sConfigInjected->InjectedOffset);
}
else
#endif /* ADC_VER_V5_V90 */
{
tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, sConfigInjected->InjectedOffset);
}
if (sConfigInjected->InjectedOffsetNumber != ADC_OFFSET_NONE)
{
/* Set ADC selected offset number */
LL_ADC_SetOffset(hadc->Instance, sConfigInjected->InjectedOffsetNumber, sConfigInjected->InjectedChannel, tmpOffsetShifted);
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
/* Set ADC selected offset sign & saturation */
LL_ADC_SetOffsetSign(hadc->Instance, sConfigInjected->InjectedOffsetNumber, sConfigInjected->InjectedOffsetSign);
LL_ADC_SetOffsetSaturation(hadc->Instance, sConfigInjected->InjectedOffsetNumber, (sConfigInjected->InjectedOffsetSaturation == ENABLE) ? LL_ADC_OFFSET_SATURATION_ENABLE : LL_ADC_OFFSET_SATURATION_DISABLE);
}
else
#endif /* ADC_VER_V5_V90 */
{
/* Set ADC selected offset signed saturation */
LL_ADC_SetOffsetSignedSaturation(hadc->Instance, sConfigInjected->InjectedOffsetNumber, (sConfigInjected->InjectedOffsetSignedSaturation == ENABLE) ? LL_ADC_OFFSET_SIGNED_SATURATION_ENABLE : LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE);
}
}
else
{
#if defined(ADC_VER_V5_V90)
if (hadc->Instance == ADC3)
{
/* Scan each offset register to check if the selected channel is targeted. */
/* If this is the case, the corresponding offset number is disabled. */
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_1)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel))
{
LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_1, LL_ADC_OFFSET_DISABLE);
}
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_2)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel))
{
LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_2, LL_ADC_OFFSET_DISABLE);
}
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_3)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel))
{
LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_3, LL_ADC_OFFSET_DISABLE);
}
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_4)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel))
{
LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_4, LL_ADC_OFFSET_DISABLE);
}
}
else
#endif /* ADC_VER_V5_V90 */
{
/* Scan each offset register to check if the selected channel is targeted. */
/* If this is the case, the corresponding offset number is disabled. */
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_1)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel))
{
LL_ADC_SetOffset(hadc->Instance, LL_ADC_OFFSET_1, sConfigInjected->InjectedChannel, LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE);
}
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_2)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel))
{
LL_ADC_SetOffset(hadc->Instance, LL_ADC_OFFSET_2, sConfigInjected->InjectedChannel, LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE);
}
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_3)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel))
{
LL_ADC_SetOffset(hadc->Instance, LL_ADC_OFFSET_4, sConfigInjected->InjectedChannel, LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE);
}
if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_4)) == __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfigInjected->InjectedChannel))
{
LL_ADC_SetOffset(hadc->Instance, LL_ADC_OFFSET_4, sConfigInjected->InjectedChannel, LL_ADC_OFFSET_SIGNED_SATURATION_DISABLE);
}
}
}
}
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated only when ADC is disabled: */
/* - Single or differential mode */
/* - Internal measurement channels: Vbat/VrefInt/TempSensor */
if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
{
/* Set mode single-ended or differential input of the selected ADC channel */
LL_ADC_SetChannelSingleDiff(hadc->Instance, sConfigInjected->InjectedChannel, sConfigInjected->InjectedSingleDiff);
/* Configuration of differential mode */
/* Note: ADC channel number masked with value "0x1F" to ensure shift value within 32 bits range */
if (sConfigInjected->InjectedSingleDiff == ADC_DIFFERENTIAL_ENDED)
{
/* Set sampling time of the selected ADC channel */
LL_ADC_SetChannelSamplingTime(hadc->Instance, (uint32_t)(__LL_ADC_DECIMAL_NB_TO_CHANNEL((__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)sConfigInjected->InjectedChannel) + 1UL) & 0x1FUL)), sConfigInjected->InjectedSamplingTime);
}
/* Management of internal measurement channels: Vbat/VrefInt/TempSensor */
/* internal measurement paths enable: If internal channel selected, */
/* enable dedicated internal buffers and path. */
/* Note: these internal measurement paths can be disabled using */
/* HAL_ADC_DeInit(). */
if (__LL_ADC_IS_CHANNEL_INTERNAL(sConfigInjected->InjectedChannel))
{
/* Configuration of common ADC parameters (continuation) */
/* Software is allowed to change common parameters only when all ADCs */
/* of the common group are disabled. */
if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
{
tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
/* If the requested internal measurement path has already been enabled, */
/* bypass the configuration processing. */
if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL))
{
if (ADC_TEMPERATURE_SENSOR_INSTANCE(hadc))
{
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel);
/* Delay for temperature sensor stabilization time */
/* Wait loop initialization and execution */
/* Note: Variable divided by 2 to compensate partially */
/* CPU processing cycles, scaling in us split to not */
/* exceed 32 bits register capacity and handle low frequency. */
wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
while (wait_loop_index != 0UL)
{
wait_loop_index--;
}
}
}
else if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_VBAT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL))
{
if (ADC_BATTERY_VOLTAGE_INSTANCE(hadc))
{
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel);
}
}
else if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL))
{
if (ADC_VREFINT_INSTANCE(hadc))
{
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel);
}
}
else
{
/* nothing to do */
}
}
/* If the requested internal measurement path has already been enabled */
/* and other ADC of the common group are enabled, internal */
/* measurement paths cannot be enabled. */
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Enable ADC multimode and configure multimode parameters
* @note Possibility to update parameters on the fly:
* This function initializes multimode parameters, following
* calls to this function can be used to reconfigure some parameters
* of structure "ADC_MultiModeTypeDef" on the fly, without resetting
* the ADCs.
* The setting of these parameters is conditioned to ADC state.
* For parameters constraints, see comments of structure
* "ADC_MultiModeTypeDef".
* @note To move back configuration from multimode to single mode, ADC must
* be reset (using function HAL_ADC_Init() ).
* @param hadc Master ADC handle
* @param multimode Structure of ADC multimode configuration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef *hadc, ADC_MultiModeTypeDef *multimode)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
ADC_Common_TypeDef *tmpADC_Common;
ADC_HandleTypeDef tmphadcSlave;
uint32_t tmphadcSlave_conversion_on_going;
/* Check the parameters */
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
assert_param(IS_ADC_MULTIMODE(multimode->Mode));
if (multimode->Mode != ADC_MODE_INDEPENDENT)
{
assert_param(IS_ADC_DUAL_DATA_MODE(multimode->DualModeData));
assert_param(IS_ADC_SAMPLING_DELAY(multimode->TwoSamplingDelay));
}
/* Process locked */
__HAL_LOCK(hadc);
tmphadcSlave.State = HAL_ADC_STATE_RESET;
tmphadcSlave.ErrorCode = HAL_ADC_ERROR_NONE;
ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
if (tmphadcSlave.Instance == NULL)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated when ADC is disabled or enabled without */
/* conversion on going on regular group: */
/* - Multimode DATA Format configuration */
tmphadcSlave_conversion_on_going = LL_ADC_REG_IsConversionOngoing((&tmphadcSlave)->Instance);
if ((LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
&& (tmphadcSlave_conversion_on_going == 0UL))
{
/* Pointer to the common control register */
tmpADC_Common = __LL_ADC_COMMON_INSTANCE(hadc->Instance);
/* If multimode is selected, configure all multimode parameters. */
/* Otherwise, reset multimode parameters (can be used in case of */
/* transition from multimode to independent mode). */
if (multimode->Mode != ADC_MODE_INDEPENDENT)
{
MODIFY_REG(tmpADC_Common->CCR, ADC_CCR_DAMDF, multimode->DualModeData);
/* Parameters that can be updated only when ADC is disabled: */
/* - Multimode mode selection */
/* - Multimode delay */
/* Note: Delay range depends on selected resolution: */
/* from 1 to 9 clock cycles for 16 bits */
/* from 1 to 9 clock cycles for 14 bits, */
/* from 1 to 8 clock cycles for 12 bits */
/* from 1 to 6 clock cycles for 10 and 8 bits */
/* If a higher delay is selected, it will be clipped to maximum delay */
/* range */
if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
{
MODIFY_REG(tmpADC_Common->CCR,
ADC_CCR_DUAL |
ADC_CCR_DELAY,
multimode->Mode |
multimode->TwoSamplingDelay
);
}
}
else /* ADC_MODE_INDEPENDENT */
{
CLEAR_BIT(tmpADC_Common->CCR, ADC_CCR_DAMDF);
/* Parameters that can be updated only when ADC is disabled: */
/* - Multimode mode selection */
/* - Multimode delay */
if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
{
CLEAR_BIT(tmpADC_Common->CCR, ADC_CCR_DUAL | ADC_CCR_DELAY);
}
}
}
/* If one of the ADC sharing the same common group is enabled, no update */
/* could be done on neither of the multimode structure parameters. */
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Enable Injected Queue
* @note This function resets CFGR register JQDIS bit in order to enable the
* Injected Queue. JQDIS can be written only when ADSTART and JDSTART
* are both equal to 0 to ensure that no regular nor injected
* conversion is ongoing.
* @param hadc ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_EnableInjectedQueue(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
uint32_t tmp_adc_is_conversion_on_going_regular;
uint32_t tmp_adc_is_conversion_on_going_injected;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
/* Parameter can be set only if no conversion is on-going */
if ((tmp_adc_is_conversion_on_going_regular == 0UL)
&& (tmp_adc_is_conversion_on_going_injected == 0UL)
)
{
CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS);
/* Update state, clear previous result related to injected queue overflow */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
tmp_hal_status = HAL_OK;
}
else
{
tmp_hal_status = HAL_ERROR;
}
return tmp_hal_status;
}
/**
* @brief Disable Injected Queue
* @note This function sets CFGR register JQDIS bit in order to disable the
* Injected Queue. JQDIS can be written only when ADSTART and JDSTART
* are both equal to 0 to ensure that no regular nor injected
* conversion is ongoing.
* @param hadc ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_DisableInjectedQueue(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
uint32_t tmp_adc_is_conversion_on_going_regular;
uint32_t tmp_adc_is_conversion_on_going_injected;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
/* Parameter can be set only if no conversion is on-going */
if ((tmp_adc_is_conversion_on_going_regular == 0UL)
&& (tmp_adc_is_conversion_on_going_injected == 0UL)
)
{
LL_ADC_INJ_SetQueueMode(hadc->Instance, LL_ADC_INJ_QUEUE_DISABLE);
tmp_hal_status = HAL_OK;
}
else
{
tmp_hal_status = HAL_ERROR;
}
return tmp_hal_status;
}
/**
* @brief Disable ADC voltage regulator.
* @note Disabling voltage regulator allows to save power. This operation can
* be carried out only when ADC is disabled.
* @note To enable again the voltage regulator, the user is expected to
* resort to HAL_ADC_Init() API.
* @param hadc ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_DisableVoltageRegulator(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Setting of this feature is conditioned to ADC state: ADC must be ADC disabled */
if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
{
LL_ADC_DisableInternalRegulator(hadc->Instance);
tmp_hal_status = HAL_OK;
}
else
{
tmp_hal_status = HAL_ERROR;
}
return tmp_hal_status;
}
/**
* @brief Enter ADC deep-power-down mode
* @note This mode is achieved in setting DEEPPWD bit and allows to save power
* in reducing leakage currents. It is particularly interesting before
* entering stop modes.
* @note Setting DEEPPWD automatically clears ADVREGEN bit and disables the
* ADC voltage regulator. This means that this API encompasses
* HAL_ADCEx_DisableVoltageRegulator(). Additionally, the internal
* calibration is lost.
* @note To exit the ADC deep-power-down mode, the user is expected to
* resort to HAL_ADC_Init() API as well as to relaunch a calibration
* with HAL_ADCEx_Calibration_Start() API or to re-apply a previously
* saved calibration factor.
* @param hadc ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_EnterADCDeepPowerDownMode(ADC_HandleTypeDef *hadc)
{
HAL_StatusTypeDef tmp_hal_status;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Setting of this feature is conditioned to ADC state: ADC must be ADC disabled */
if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
{
LL_ADC_EnableDeepPowerDown(hadc->Instance);
tmp_hal_status = HAL_OK;
}
else
{
tmp_hal_status = HAL_ERROR;
}
return tmp_hal_status;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
|