1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
|
/**
******************************************************************************
* @file stm32h7xx_hal_hash.c
* @author MCD Application Team
* @brief HASH HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the HASH peripheral:
* + Initialization and de-initialization methods
* + HASH or HMAC processing in polling mode
* + HASH or HMAC processing in interrupt mode
* + HASH or HMAC processing in DMA mode
* + Peripheral State methods
* + HASH or HMAC processing suspension/resumption
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
The HASH HAL driver can be used as follows:
(#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit():
(##) Enable the HASH interface clock using __HASH_CLK_ENABLE()
(##) When resorting to interrupt-based APIs (e.g. HAL_HASH_xxx_Start_IT())
(+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority()
(+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ()
(+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() API
(##) When resorting to DMA-based APIs (e.g. HAL_HASH_xxx_Start_DMA())
(+++) Enable the DMAx interface clock using
__DMAx_CLK_ENABLE()
(+++) Configure and enable one DMA stream to manage data transfer from
memory to peripheral (input stream). Managing data transfer from
peripheral to memory can be performed only using CPU.
(+++) Associate the initialized DMA handle to the HASH DMA handle
using __HAL_LINKDMA()
(+++) Configure the priority and enable the NVIC for the transfer complete
interrupt on the DMA stream: use
HAL_NVIC_SetPriority() and
HAL_NVIC_EnableIRQ()
(#)Initialize the HASH HAL using HAL_HASH_Init(). This function:
(##) resorts to HAL_HASH_MspInit() for low-level initialization,
(##) configures the data type: 1-bit, 8-bit, 16-bit or 32-bit.
(#)Three processing schemes are available:
(##) Polling mode: processing APIs are blocking functions
i.e. they process the data and wait till the digest computation is finished,
e.g. HAL_HASH_xxx_Start() for HASH or HAL_HMAC_xxx_Start() for HMAC
(##) Interrupt mode: processing APIs are not blocking functions
i.e. they process the data under interrupt,
e.g. HAL_HASH_xxx_Start_IT() for HASH or HAL_HMAC_xxx_Start_IT() for HMAC
(##) DMA mode: processing APIs are not blocking functions and the CPU is
not used for data transfer i.e. the data transfer is ensured by DMA,
e.g. HAL_HASH_xxx_Start_DMA() for HASH or HAL_HMAC_xxx_Start_DMA()
for HMAC. Note that in DMA mode, a call to HAL_HASH_xxx_Finish()
is then required to retrieve the digest.
(#)When the processing function is called after HAL_HASH_Init(), the HASH peripheral is
initialized and processes the buffer fed in input. When the input data have all been
fed to the Peripheral, the digest computation can start.
(#)Multi-buffer processing is possible in polling, interrupt and DMA modes.
(##) In polling mode, only multi-buffer HASH processing is possible.
API HAL_HASH_xxx_Accumulate() must be called for each input buffer, except for the last one.
User must resort to HAL_HASH_xxx_Accumulate_End() to enter the last one and retrieve as
well the computed digest.
(##) In interrupt mode, API HAL_HASH_xxx_Accumulate_IT() must be called for each input buffer,
except for the last one.
User must resort to HAL_HASH_xxx_Accumulate_End_IT() to enter the last one and retrieve as
well the computed digest.
(##) In DMA mode, multi-buffer HASH and HMAC processing are possible.
(+++) HASH processing: once initialization is done, MDMAT bit must be set
through __HAL_HASH_SET_MDMAT() macro.
From that point, each buffer can be fed to the Peripheral through HAL_HASH_xxx_Start_DMA() API.
Before entering the last buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT()
macro then wrap-up the HASH processing in feeding the last input buffer through the
same API HAL_HASH_xxx_Start_DMA(). The digest can then be retrieved with a call to
API HAL_HASH_xxx_Finish().
(+++) HMAC processing (requires to resort to extended functions):
after initialization, the key and the first input buffer are entered
in the Peripheral with the API HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and
starts step 2.
The following buffers are next entered with the API HAL_HMACEx_xxx_Step2_DMA(). At this
point, the HMAC processing is still carrying out step 2.
Then, step 2 for the last input buffer and step 3 are carried out by a single call
to HAL_HMACEx_xxx_Step2_3_DMA().
The digest can finally be retrieved with a call to API HAL_HASH_xxx_Finish().
(#)Context swapping.
(##) Two APIs are available to suspend HASH or HMAC processing:
(+++) HAL_HASH_SwFeed_ProcessSuspend() when data are entered by software (polling or IT mode),
(+++) HAL_HASH_DMAFeed_ProcessSuspend() when data are entered by DMA.
(##) When HASH or HMAC processing is suspended, HAL_HASH_ContextSaving() allows
to save in memory the Peripheral context. This context can be restored afterwards
to resume the HASH processing thanks to HAL_HASH_ContextRestoring().
(##) Once the HASH Peripheral has been restored to the same configuration as that at suspension
time, processing can be restarted with the same API call (same API, same handle,
same parameters) as done before the suspension. Relevant parameters to restart at
the proper location are internally saved in the HASH handle.
(#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral.
*** Remarks on message length ***
===================================
[..]
(#) HAL in interruption mode (interruptions driven)
(##)Due to HASH peripheral hardware design, the peripheral interruption is triggered every 64 bytes.
This is why, for driver implementation simplicity’s sake, user is requested to enter a message the
length of which is a multiple of 4 bytes.
(##) When the message length (in bytes) is not a multiple of words, a specific field exists in HASH_STR
to specify which bits to discard at the end of the complete message to process only the message bits
and not extra bits.
(##) If user needs to perform a hash computation of a large input buffer that is spread around various places
in memory and where each piece of this input buffer is not necessarily a multiple of 4 bytes in size, it becomes
necessary to use a temporary buffer to format the data accordingly before feeding them to the Peripheral.
It is advised to the user to
(+++) achieve the first formatting operation by software then enter the data
(+++) while the Peripheral is processing the first input set, carry out the second formatting
operation by software, to be ready when DINIS occurs.
(+++) repeat step 2 until the whole message is processed.
[..]
(#) HAL in DMA mode
(##) Again, due to hardware design, the DMA transfer to feed the data can only be done on a word-basis.
The same field described above in HASH_STR is used to specify which bits to discard at the end of the
DMA transfer to process only the message bits and not extra bits. Due to hardware implementation,
this is possible only at the end of the complete message. When several DMA transfers are needed to
enter the message, this is not applicable at the end of the intermediary transfers.
(##) Similarly to the interruption-driven mode, it is suggested to the user to format the consecutive
chunks of data by software while the DMA transfer and processing is on-going for the first parts of
the message. Due to the 32-bit alignment required for the DMA transfer, it is underlined that the
software formatting operation is more complex than in the IT mode.
*** Callback registration ***
===================================
[..]
(#) The compilation define USE_HAL_HASH_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use function HAL_HASH_RegisterCallback() to register a user callback.
(#) Function HAL_HASH_RegisterCallback() allows to register following callbacks:
(+) InCpltCallback : callback for input completion.
(+) DgstCpltCallback : callback for digest computation completion.
(+) ErrorCallback : callback for error.
(+) MspInitCallback : HASH MspInit.
(+) MspDeInitCallback : HASH MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
(#) Use function HAL_HASH_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function.
HAL_HASH_UnRegisterCallback() takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) InCpltCallback : callback for input completion.
(+) DgstCpltCallback : callback for digest computation completion.
(+) ErrorCallback : callback for error.
(+) MspInitCallback : HASH MspInit.
(+) MspDeInitCallback : HASH MspDeInit.
(#) By default, after the HAL_HASH_Init and if the state is HAL_HASH_STATE_RESET
all callbacks are reset to the corresponding legacy weak (surcharged) functions:
examples HAL_HASH_InCpltCallback(), HAL_HASH_DgstCpltCallback()
Exception done for MspInit and MspDeInit callbacks that are respectively
reset to the legacy weak (surcharged) functions in the HAL_HASH_Init
and HAL_HASH_DeInit only when these callbacks are null (not registered beforehand)
If not, MspInit or MspDeInit are not null, the HAL_HASH_Init and HAL_HASH_DeInit
keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
Callbacks can be registered/unregistered in READY state only.
Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_HASH_RegisterCallback before calling HAL_HASH_DeInit
or HAL_HASH_Init function.
When The compilation define USE_HAL_HASH_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
#if defined (HASH)
/** @defgroup HASH HASH
* @brief HASH HAL module driver.
* @{
*/
#ifdef HAL_HASH_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup HASH_Private_Constants HASH Private Constants
* @{
*/
/** @defgroup HASH_Digest_Calculation_Status HASH Digest Calculation Status
* @{
*/
#define HASH_DIGEST_CALCULATION_NOT_STARTED ((uint32_t)0x00000000U) /*!< DCAL not set after input data written in DIN register */
#define HASH_DIGEST_CALCULATION_STARTED ((uint32_t)0x00000001U) /*!< DCAL set after input data written in DIN register */
/**
* @}
*/
/** @defgroup HASH_Number_Of_CSR_Registers HASH Number of Context Swap Registers
* @{
*/
#define HASH_NUMBER_OF_CSR_REGISTERS 54U /*!< Number of Context Swap Registers */
/**
* @}
*/
/** @defgroup HASH_TimeOut_Value HASH TimeOut Value
* @{
*/
#define HASH_TIMEOUTVALUE 1000U /*!< Time-out value */
/**
* @}
*/
/** @defgroup HASH_DMA_Suspension_Words_Limit HASH DMA suspension words limit
* @{
*/
#define HASH_DMA_SUSPENSION_WORDS_LIMIT 20U /*!< Number of words below which DMA suspension is aborted */
/**
* @}
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup HASH_Private_Functions HASH Private Functions
* @{
*/
static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma);
static void HASH_DMAError(DMA_HandleTypeDef *hdma);
static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size);
static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
uint32_t Timeout);
static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size);
static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash);
static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash);
static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout);
/**
* @}
*/
/** @defgroup HASH_Exported_Functions HASH Exported Functions
* @{
*/
/** @defgroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization, configuration and call-back functions.
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize the HASH according to the specified parameters
in the HASH_InitTypeDef and create the associated handle
(+) DeInitialize the HASH peripheral
(+) Initialize the HASH MCU Specific Package (MSP)
(+) DeInitialize the HASH MSP
[..] This section provides as well call back functions definitions for user
code to manage:
(+) Input data transfer to Peripheral completion
(+) Calculated digest retrieval completion
(+) Error management
@endverbatim
* @{
*/
/**
* @brief Initialize the HASH according to the specified parameters in the
HASH_HandleTypeDef and create the associated handle.
* @note Only MDMAT and DATATYPE bits of HASH Peripheral are set by HAL_HASH_Init(),
* other configuration bits are set by HASH or HMAC processing APIs.
* @note MDMAT bit is systematically reset by HAL_HASH_Init(). To set it for
* multi-buffer HASH processing, user needs to resort to
* __HAL_HASH_SET_MDMAT() macro. For HMAC multi-buffer processing, the
* relevant APIs manage themselves the MDMAT bit.
* @param hhash HASH handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash)
{
/* Check the hash handle allocation */
if (hhash == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_HASH_DATATYPE(hhash->Init.DataType));
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
if (hhash->State == HAL_HASH_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hhash->Lock = HAL_UNLOCKED;
/* Reset Callback pointers in HAL_HASH_STATE_RESET only */
hhash->InCpltCallback = HAL_HASH_InCpltCallback; /* Legacy weak (surcharged) input completion callback */
hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
completion callback */
hhash->ErrorCallback = HAL_HASH_ErrorCallback; /* Legacy weak (surcharged) error callback */
if (hhash->MspInitCallback == NULL)
{
hhash->MspInitCallback = HAL_HASH_MspInit;
}
/* Init the low level hardware */
hhash->MspInitCallback(hhash);
}
#else
if (hhash->State == HAL_HASH_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hhash->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_HASH_MspInit(hhash);
}
#endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Reset HashInCount, HashITCounter, HashBuffSize and NbWordsAlreadyPushed */
hhash->HashInCount = 0;
hhash->HashBuffSize = 0;
hhash->HashITCounter = 0;
hhash->NbWordsAlreadyPushed = 0;
/* Reset digest calculation bridle (MDMAT bit control) */
hhash->DigestCalculationDisable = RESET;
/* Set phase to READY */
hhash->Phase = HAL_HASH_PHASE_READY;
/* Reset suspension request flag */
hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
/* Set the data type bit */
MODIFY_REG(HASH->CR, HASH_CR_DATATYPE, hhash->Init.DataType);
/* Reset MDMAT bit */
__HAL_HASH_RESET_MDMAT();
/* Reset HASH handle status */
hhash->Status = HAL_OK;
/* Set the HASH state to Ready */
hhash->State = HAL_HASH_STATE_READY;
/* Initialise the error code */
hhash->ErrorCode = HAL_HASH_ERROR_NONE;
/* Return function status */
return HAL_OK;
}
/**
* @brief DeInitialize the HASH peripheral.
* @param hhash HASH handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash)
{
/* Check the HASH handle allocation */
if (hhash == NULL)
{
return HAL_ERROR;
}
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Set the default HASH phase */
hhash->Phase = HAL_HASH_PHASE_READY;
/* Reset HashInCount, HashITCounter and HashBuffSize */
hhash->HashInCount = 0;
hhash->HashBuffSize = 0;
hhash->HashITCounter = 0;
/* Reset digest calculation bridle (MDMAT bit control) */
hhash->DigestCalculationDisable = RESET;
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
if (hhash->MspDeInitCallback == NULL)
{
hhash->MspDeInitCallback = HAL_HASH_MspDeInit;
}
/* DeInit the low level hardware */
hhash->MspDeInitCallback(hhash);
#else
/* DeInit the low level hardware: CLOCK, NVIC */
HAL_HASH_MspDeInit(hhash);
#endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
/* Reset HASH handle status */
hhash->Status = HAL_OK;
/* Set the HASH state to Ready */
hhash->State = HAL_HASH_STATE_RESET;
/* Initialise the error code */
hhash->ErrorCode = HAL_HASH_ERROR_NONE;
/* Reset multi buffers accumulation flag */
hhash->Accumulation = 0U;
/* Return function status */
return HAL_OK;
}
/**
* @brief Initialize the HASH MSP.
* @param hhash HASH handle.
* @retval None
*/
__weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hhash);
/* NOTE : This function should not be modified; when the callback is needed,
HAL_HASH_MspInit() can be implemented in the user file.
*/
}
/**
* @brief DeInitialize the HASH MSP.
* @param hhash HASH handle.
* @retval None
*/
__weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hhash);
/* NOTE : This function should not be modified; when the callback is needed,
HAL_HASH_MspDeInit() can be implemented in the user file.
*/
}
/**
* @brief Input data transfer complete call back.
* @note HAL_HASH_InCpltCallback() is called when the complete input message
* has been fed to the Peripheral. This API is invoked only when input data are
* entered under interruption or through DMA.
* @note In case of HASH or HMAC multi-buffer DMA feeding case (MDMAT bit set),
* HAL_HASH_InCpltCallback() is called at the end of each buffer feeding
* to the Peripheral.
* @param hhash HASH handle.
* @retval None
*/
__weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hhash);
/* NOTE : This function should not be modified; when the callback is needed,
HAL_HASH_InCpltCallback() can be implemented in the user file.
*/
}
/**
* @brief Digest computation complete call back.
* @note HAL_HASH_DgstCpltCallback() is used under interruption, is not
* relevant with DMA.
* @param hhash HASH handle.
* @retval None
*/
__weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hhash);
/* NOTE : This function should not be modified; when the callback is needed,
HAL_HASH_DgstCpltCallback() can be implemented in the user file.
*/
}
/**
* @brief Error callback.
* @note Code user can resort to hhash->Status (HAL_ERROR, HAL_TIMEOUT,...)
* to retrieve the error type.
* @param hhash HASH handle.
* @retval None
*/
__weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hhash);
/* NOTE : This function should not be modified; when the callback is needed,
HAL_HASH_ErrorCallback() can be implemented in the user file.
*/
}
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User HASH Callback
* To be used instead of the weak (surcharged) predefined callback
* @param hhash HASH handle
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
* @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
* @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
* @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
* @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval status
*/
HAL_StatusTypeDef HAL_HASH_RegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID,
pHASH_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hhash);
if (HAL_HASH_STATE_READY == hhash->State)
{
switch (CallbackID)
{
case HAL_HASH_INPUTCPLT_CB_ID :
hhash->InCpltCallback = pCallback;
break;
case HAL_HASH_DGSTCPLT_CB_ID :
hhash->DgstCpltCallback = pCallback;
break;
case HAL_HASH_ERROR_CB_ID :
hhash->ErrorCallback = pCallback;
break;
case HAL_HASH_MSPINIT_CB_ID :
hhash->MspInitCallback = pCallback;
break;
case HAL_HASH_MSPDEINIT_CB_ID :
hhash->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else if (HAL_HASH_STATE_RESET == hhash->State)
{
switch (CallbackID)
{
case HAL_HASH_MSPINIT_CB_ID :
hhash->MspInitCallback = pCallback;
break;
case HAL_HASH_MSPDEINIT_CB_ID :
hhash->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hhash);
return status;
}
/**
* @brief Unregister a HASH Callback
* HASH Callback is redirected to the weak (surcharged) predefined callback
* @param hhash HASH handle
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
* @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
* @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
* @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
* @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
* @retval status
*/
HAL_StatusTypeDef HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hhash);
if (HAL_HASH_STATE_READY == hhash->State)
{
switch (CallbackID)
{
case HAL_HASH_INPUTCPLT_CB_ID :
hhash->InCpltCallback = HAL_HASH_InCpltCallback; /* Legacy weak (surcharged) input completion callback */
break;
case HAL_HASH_DGSTCPLT_CB_ID :
hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
completion callback */
break;
case HAL_HASH_ERROR_CB_ID :
hhash->ErrorCallback = HAL_HASH_ErrorCallback; /* Legacy weak (surcharged) error callback */
break;
case HAL_HASH_MSPINIT_CB_ID :
hhash->MspInitCallback = HAL_HASH_MspInit; /* Legacy weak (surcharged) Msp Init */
break;
case HAL_HASH_MSPDEINIT_CB_ID :
hhash->MspDeInitCallback = HAL_HASH_MspDeInit; /* Legacy weak (surcharged) Msp DeInit */
break;
default :
/* Update the error code */
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else if (HAL_HASH_STATE_RESET == hhash->State)
{
switch (CallbackID)
{
case HAL_HASH_MSPINIT_CB_ID :
hhash->MspInitCallback = HAL_HASH_MspInit; /* Legacy weak (surcharged) Msp Init */
break;
case HAL_HASH_MSPDEINIT_CB_ID :
hhash->MspDeInitCallback = HAL_HASH_MspDeInit; /* Legacy weak (surcharged) Msp DeInit */
break;
default :
/* Update the error code */
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hhash);
return status;
}
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup HASH_Exported_Functions_Group2 HASH processing functions in polling mode
* @brief HASH processing functions using polling mode.
*
@verbatim
===============================================================================
##### Polling mode HASH processing functions #####
===============================================================================
[..] This section provides functions allowing to calculate in polling mode
the hash value using one of the following algorithms:
(+) MD5
(++) HAL_HASH_MD5_Start()
(++) HAL_HASH_MD5_Accmlt()
(++) HAL_HASH_MD5_Accmlt_End()
(+) SHA1
(++) HAL_HASH_SHA1_Start()
(++) HAL_HASH_SHA1_Accmlt()
(++) HAL_HASH_SHA1_Accmlt_End()
[..] For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start().
[..] In case of multi-buffer HASH processing (a single digest is computed while
several buffers are fed to the Peripheral), the user can resort to successive calls
to HAL_HASH_xxx_Accumulate() and wrap-up the digest computation by a call
to HAL_HASH_xxx_Accumulate_End().
@endverbatim
* @{
*/
/**
* @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
* read the computed digest.
* @note Digest is available in pOutBuffer.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
* @param Timeout Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
uint32_t Timeout)
{
return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
}
/**
* @brief If not already done, initialize the HASH peripheral in MD5 mode then
* processes pInBuffer.
* @note Consecutive calls to HAL_HASH_MD5_Accmlt() can be used to feed
* several input buffers back-to-back to the Peripheral that will yield a single
* HASH signature once all buffers have been entered. Wrap-up of input
* buffers feeding and retrieval of digest is done by a call to
* HAL_HASH_MD5_Accmlt_End().
* @note Field hhash->Phase of HASH handle is tested to check whether or not
* the Peripheral has already been initialized.
* @note Digest is not retrieved by this API, user must resort to HAL_HASH_MD5_Accmlt_End()
* to read it, feeding at the same time the last input buffer to the Peripheral.
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
* HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End() is able
* to manage the ending buffer with a length in bytes not a multiple of 4.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes, must be a multiple of 4.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
{
return HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
}
/**
* @brief End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt() API.
* @note Digest is available in pOutBuffer.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
* @param Timeout Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
uint8_t *pOutBuffer, uint32_t Timeout)
{
return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
}
/**
* @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
* read the computed digest.
* @note Digest is available in pOutBuffer.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
* @param Timeout Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
uint32_t Timeout)
{
return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
}
/**
* @brief If not already done, initialize the HASH peripheral in SHA1 mode then
* processes pInBuffer.
* @note Consecutive calls to HAL_HASH_SHA1_Accmlt() can be used to feed
* several input buffers back-to-back to the Peripheral that will yield a single
* HASH signature once all buffers have been entered. Wrap-up of input
* buffers feeding and retrieval of digest is done by a call to
* HAL_HASH_SHA1_Accmlt_End().
* @note Field hhash->Phase of HASH handle is tested to check whether or not
* the Peripheral has already been initialized.
* @note Digest is not retrieved by this API, user must resort to HAL_HASH_SHA1_Accmlt_End()
* to read it, feeding at the same time the last input buffer to the Peripheral.
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
* HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End() is able
* to manage the ending buffer with a length in bytes not a multiple of 4.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes, must be a multiple of 4.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
{
return HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
}
/**
* @brief End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt() API.
* @note Digest is available in pOutBuffer.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
* @param Timeout Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
uint8_t *pOutBuffer, uint32_t Timeout)
{
return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
}
/**
* @}
*/
/** @defgroup HASH_Exported_Functions_Group3 HASH processing functions in interrupt mode
* @brief HASH processing functions using interrupt mode.
*
@verbatim
===============================================================================
##### Interruption mode HASH processing functions #####
===============================================================================
[..] This section provides functions allowing to calculate in interrupt mode
the hash value using one of the following algorithms:
(+) MD5
(++) HAL_HASH_MD5_Start_IT()
(++) HAL_HASH_MD5_Accmlt_IT()
(++) HAL_HASH_MD5_Accmlt_End_IT()
(+) SHA1
(++) HAL_HASH_SHA1_Start_IT()
(++) HAL_HASH_SHA1_Accmlt_IT()
(++) HAL_HASH_SHA1_Accmlt_End_IT()
[..] API HAL_HASH_IRQHandler() manages each HASH interruption.
[..] Note that HAL_HASH_IRQHandler() manages as well HASH Peripheral interruptions when in
HMAC processing mode.
@endverbatim
* @{
*/
/**
* @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
* read the computed digest in interruption mode.
* @note Digest is available in pOutBuffer.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
uint8_t *pOutBuffer)
{
return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
}
/**
* @brief If not already done, initialize the HASH peripheral in MD5 mode then
* processes pInBuffer in interruption mode.
* @note Consecutive calls to HAL_HASH_MD5_Accmlt_IT() can be used to feed
* several input buffers back-to-back to the Peripheral that will yield a single
* HASH signature once all buffers have been entered. Wrap-up of input
* buffers feeding and retrieval of digest is done by a call to
* HAL_HASH_MD5_Accmlt_End_IT().
* @note Field hhash->Phase of HASH handle is tested to check whether or not
* the Peripheral has already been initialized.
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
* HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End_IT() is able
* to manage the ending buffer with a length in bytes not a multiple of 4.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes, must be a multiple of 4.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
{
return HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
}
/**
* @brief End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt_IT() API.
* @note Digest is available in pOutBuffer.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
uint8_t *pOutBuffer)
{
return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
}
/**
* @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
* read the computed digest in interruption mode.
* @note Digest is available in pOutBuffer.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
uint8_t *pOutBuffer)
{
return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
}
/**
* @brief If not already done, initialize the HASH peripheral in SHA1 mode then
* processes pInBuffer in interruption mode.
* @note Consecutive calls to HAL_HASH_SHA1_Accmlt_IT() can be used to feed
* several input buffers back-to-back to the Peripheral that will yield a single
* HASH signature once all buffers have been entered. Wrap-up of input
* buffers feeding and retrieval of digest is done by a call to
* HAL_HASH_SHA1_Accmlt_End_IT().
* @note Field hhash->Phase of HASH handle is tested to check whether or not
* the Peripheral has already been initialized.
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
* HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End_IT() is able
* to manage the ending buffer with a length in bytes not a multiple of 4.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes, must be a multiple of 4.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
{
return HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
}
/**
* @brief End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt_IT() API.
* @note Digest is available in pOutBuffer.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
uint8_t *pOutBuffer)
{
return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
}
/**
* @brief Handle HASH interrupt request.
* @param hhash HASH handle.
* @note HAL_HASH_IRQHandler() handles interrupts in HMAC processing as well.
* @note In case of error reported during the HASH interruption processing,
* HAL_HASH_ErrorCallback() API is called so that user code can
* manage the error. The error type is available in hhash->Status field.
* @retval None
*/
void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash)
{
hhash->Status = HASH_IT(hhash);
if (hhash->Status != HAL_OK)
{
hhash->ErrorCode |= HAL_HASH_ERROR_IT;
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
hhash->ErrorCallback(hhash);
#else
HAL_HASH_ErrorCallback(hhash);
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
/* After error handling by code user, reset HASH handle HAL status */
hhash->Status = HAL_OK;
}
}
/**
* @}
*/
/** @defgroup HASH_Exported_Functions_Group4 HASH processing functions in DMA mode
* @brief HASH processing functions using DMA mode.
*
@verbatim
===============================================================================
##### DMA mode HASH processing functions #####
===============================================================================
[..] This section provides functions allowing to calculate in DMA mode
the hash value using one of the following algorithms:
(+) MD5
(++) HAL_HASH_MD5_Start_DMA()
(++) HAL_HASH_MD5_Finish()
(+) SHA1
(++) HAL_HASH_SHA1_Start_DMA()
(++) HAL_HASH_SHA1_Finish()
[..] When resorting to DMA mode to enter the data in the Peripheral, user must resort
to HAL_HASH_xxx_Start_DMA() then read the resulting digest with
HAL_HASH_xxx_Finish().
[..] In case of multi-buffer HASH processing, MDMAT bit must first be set before
the successive calls to HAL_HASH_xxx_Start_DMA(). Then, MDMAT bit needs to be
reset before the last call to HAL_HASH_xxx_Start_DMA(). Digest is finally
retrieved thanks to HAL_HASH_xxx_Finish().
@endverbatim
* @{
*/
/**
* @brief Initialize the HASH peripheral in MD5 mode then initiate a DMA transfer
* to feed the input buffer to the Peripheral.
* @note Once the DMA transfer is finished, HAL_HASH_MD5_Finish() API must
* be called to retrieve the computed digest.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
{
return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
}
/**
* @brief Return the computed digest in MD5 mode.
* @note The API waits for DCIS to be set then reads the computed digest.
* @note HAL_HASH_MD5_Finish() can be used as well to retrieve the digest in
* HMAC MD5 mode.
* @param hhash HASH handle.
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
* @param Timeout Timeout value.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
{
return HASH_Finish(hhash, pOutBuffer, Timeout);
}
/**
* @brief Initialize the HASH peripheral in SHA1 mode then initiate a DMA transfer
* to feed the input buffer to the Peripheral.
* @note Once the DMA transfer is finished, HAL_HASH_SHA1_Finish() API must
* be called to retrieve the computed digest.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
{
return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
}
/**
* @brief Return the computed digest in SHA1 mode.
* @note The API waits for DCIS to be set then reads the computed digest.
* @note HAL_HASH_SHA1_Finish() can be used as well to retrieve the digest in
* HMAC SHA1 mode.
* @param hhash HASH handle.
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
* @param Timeout Timeout value.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
{
return HASH_Finish(hhash, pOutBuffer, Timeout);
}
/**
* @}
*/
/** @defgroup HASH_Exported_Functions_Group5 HMAC processing functions in polling mode
* @brief HMAC processing functions using polling mode.
*
@verbatim
===============================================================================
##### Polling mode HMAC processing functions #####
===============================================================================
[..] This section provides functions allowing to calculate in polling mode
the HMAC value using one of the following algorithms:
(+) MD5
(++) HAL_HMAC_MD5_Start()
(+) SHA1
(++) HAL_HMAC_SHA1_Start()
@endverbatim
* @{
*/
/**
* @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
* read the computed digest.
* @note Digest is available in pOutBuffer.
* @note Same key is used for the inner and the outer hash functions; pointer to key and
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
* @param Timeout Timeout value.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
uint32_t Timeout)
{
return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
}
/**
* @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
* read the computed digest.
* @note Digest is available in pOutBuffer.
* @note Same key is used for the inner and the outer hash functions; pointer to key and
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
* @param Timeout Timeout value.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
uint32_t Timeout)
{
return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
}
/**
* @}
*/
/** @defgroup HASH_Exported_Functions_Group6 HMAC processing functions in interrupt mode
* @brief HMAC processing functions using interrupt mode.
*
@verbatim
===============================================================================
##### Interrupt mode HMAC processing functions #####
===============================================================================
[..] This section provides functions allowing to calculate in interrupt mode
the HMAC value using one of the following algorithms:
(+) MD5
(++) HAL_HMAC_MD5_Start_IT()
(+) SHA1
(++) HAL_HMAC_SHA1_Start_IT()
@endverbatim
* @{
*/
/**
* @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
* read the computed digest in interrupt mode.
* @note Digest is available in pOutBuffer.
* @note Same key is used for the inner and the outer hash functions; pointer to key and
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
uint8_t *pOutBuffer)
{
return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
}
/**
* @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
* read the computed digest in interrupt mode.
* @note Digest is available in pOutBuffer.
* @note Same key is used for the inner and the outer hash functions; pointer to key and
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
uint8_t *pOutBuffer)
{
return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
}
/**
* @}
*/
/** @defgroup HASH_Exported_Functions_Group7 HMAC processing functions in DMA mode
* @brief HMAC processing functions using DMA modes.
*
@verbatim
===============================================================================
##### DMA mode HMAC processing functions #####
===============================================================================
[..] This section provides functions allowing to calculate in DMA mode
the HMAC value using one of the following algorithms:
(+) MD5
(++) HAL_HMAC_MD5_Start_DMA()
(+) SHA1
(++) HAL_HMAC_SHA1_Start_DMA()
[..] When resorting to DMA mode to enter the data in the Peripheral for HMAC processing,
user must resort to HAL_HMAC_xxx_Start_DMA() then read the resulting digest
with HAL_HASH_xxx_Finish().
@endverbatim
* @{
*/
/**
* @brief Initialize the HASH peripheral in HMAC MD5 mode then initiate the required
* DMA transfers to feed the key and the input buffer to the Peripheral.
* @note Once the DMA transfers are finished (indicated by hhash->State set back
* to HAL_HASH_STATE_READY), HAL_HASH_MD5_Finish() API must be called to retrieve
* the computed digest.
* @note Same key is used for the inner and the outer hash functions; pointer to key and
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
* @note If MDMAT bit is set before calling this function (multi-buffer
* HASH processing case), the input buffer size (in bytes) must be
* a multiple of 4 otherwise, the HASH digest computation is corrupted.
* For the processing of the last buffer of the thread, MDMAT bit must
* be reset and the buffer length (in bytes) doesn't have to be a
* multiple of 4.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
{
return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
}
/**
* @brief Initialize the HASH peripheral in HMAC SHA1 mode then initiate the required
* DMA transfers to feed the key and the input buffer to the Peripheral.
* @note Once the DMA transfers are finished (indicated by hhash->State set back
* to HAL_HASH_STATE_READY), HAL_HASH_SHA1_Finish() API must be called to retrieve
* the computed digest.
* @note Same key is used for the inner and the outer hash functions; pointer to key and
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
* @note If MDMAT bit is set before calling this function (multi-buffer
* HASH processing case), the input buffer size (in bytes) must be
* a multiple of 4 otherwise, the HASH digest computation is corrupted.
* For the processing of the last buffer of the thread, MDMAT bit must
* be reset and the buffer length (in bytes) doesn't have to be a
* multiple of 4.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
{
return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
}
/**
* @}
*/
/** @defgroup HASH_Exported_Functions_Group8 Peripheral states functions
* @brief Peripheral State functions.
*
@verbatim
===============================================================================
##### Peripheral State methods #####
===============================================================================
[..]
This section permits to get in run-time the state and the peripheral handle
status of the peripheral:
(+) HAL_HASH_GetState()
(+) HAL_HASH_GetStatus()
[..]
Additionally, this subsection provides functions allowing to save and restore
the HASH or HMAC processing context in case of calculation suspension:
(+) HAL_HASH_ContextSaving()
(+) HAL_HASH_ContextRestoring()
[..]
This subsection provides functions allowing to suspend the HASH processing
(+) when input are fed to the Peripheral by software
(++) HAL_HASH_SwFeed_ProcessSuspend()
(+) when input are fed to the Peripheral by DMA
(++) HAL_HASH_DMAFeed_ProcessSuspend()
@endverbatim
* @{
*/
/**
* @brief Return the HASH handle state.
* @note The API yields the current state of the handle (BUSY, READY,...).
* @param hhash HASH handle.
* @retval HAL HASH state
*/
HAL_HASH_StateTypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash)
{
return hhash->State;
}
/**
* @brief Return the HASH HAL status.
* @note The API yields the HAL status of the handle: it is the result of the
* latest HASH processing and allows to report any issue (e.g. HAL_TIMEOUT).
* @param hhash HASH handle.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_GetStatus(HASH_HandleTypeDef *hhash)
{
return hhash->Status;
}
/**
* @brief Save the HASH context in case of processing suspension.
* @param hhash HASH handle.
* @param pMemBuffer pointer to the memory buffer where the HASH context
* is saved.
* @note The IMR, STR, CR then all the CSR registers are saved
* in that order. Only the r/w bits are read to be restored later on.
* @note By default, all the context swap registers (there are
* HASH_NUMBER_OF_CSR_REGISTERS of those) are saved.
* @note pMemBuffer points to a buffer allocated by the user. The buffer size
* must be at least (HASH_NUMBER_OF_CSR_REGISTERS + 3) * 4 uint8 long.
* @retval None
*/
void HAL_HASH_ContextSaving(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
{
uint32_t mem_ptr = (uint32_t)pMemBuffer;
uint32_t csr_ptr = (uint32_t)HASH->CSR;
uint32_t i;
/* Prevent unused argument(s) compilation warning */
UNUSED(hhash);
/* Save IMR register content */
*(uint32_t *)(mem_ptr) = READ_BIT(HASH->IMR, HASH_IT_DINI | HASH_IT_DCI);
mem_ptr += 4U;
/* Save STR register content */
*(uint32_t *)(mem_ptr) = READ_BIT(HASH->STR, HASH_STR_NBLW);
mem_ptr += 4U;
/* Save CR register content */
*(uint32_t *)(mem_ptr) = READ_BIT(HASH->CR, HASH_CR_DMAE | HASH_CR_DATATYPE | HASH_CR_MODE | HASH_CR_ALGO |
HASH_CR_LKEY | HASH_CR_MDMAT);
mem_ptr += 4U;
/* By default, save all CSRs registers */
for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
{
*(uint32_t *)(mem_ptr) = *(uint32_t *)(csr_ptr);
mem_ptr += 4U;
csr_ptr += 4U;
}
}
/**
* @brief Restore the HASH context in case of processing resumption.
* @param hhash HASH handle.
* @param pMemBuffer pointer to the memory buffer where the HASH context
* is stored.
* @note The IMR, STR, CR then all the CSR registers are restored
* in that order. Only the r/w bits are restored.
* @note By default, all the context swap registers (HASH_NUMBER_OF_CSR_REGISTERS
* of those) are restored (all of them have been saved by default
* beforehand).
* @retval None
*/
void HAL_HASH_ContextRestoring(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
{
uint32_t mem_ptr = (uint32_t)pMemBuffer;
uint32_t csr_ptr = (uint32_t)HASH->CSR;
uint32_t i;
/* Prevent unused argument(s) compilation warning */
UNUSED(hhash);
/* Restore IMR register content */
WRITE_REG(HASH->IMR, (*(uint32_t *)(mem_ptr)));
mem_ptr += 4U;
/* Restore STR register content */
WRITE_REG(HASH->STR, (*(uint32_t *)(mem_ptr)));
mem_ptr += 4U;
/* Restore CR register content */
WRITE_REG(HASH->CR, (*(uint32_t *)(mem_ptr)));
mem_ptr += 4U;
/* Reset the HASH processor before restoring the Context
Swap Registers (CSR) */
__HAL_HASH_INIT();
/* By default, restore all CSR registers */
for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
{
WRITE_REG((*(uint32_t *)(csr_ptr)), (*(uint32_t *)(mem_ptr)));
mem_ptr += 4U;
csr_ptr += 4U;
}
}
/**
* @brief Initiate HASH processing suspension when in polling or interruption mode.
* @param hhash HASH handle.
* @note Set the handle field SuspendRequest to the appropriate value so that
* the on-going HASH processing is suspended as soon as the required
* conditions are met. Note that the actual suspension is carried out
* by the functions HASH_WriteData() in polling mode and HASH_IT() in
* interruption mode.
* @retval None
*/
void HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
{
/* Set Handle Suspend Request field */
hhash->SuspendRequest = HAL_HASH_SUSPEND;
}
/**
* @brief Suspend the HASH processing when in DMA mode.
* @param hhash HASH handle.
* @note When suspension attempt occurs at the very end of a DMA transfer and
* all the data have already been entered in the Peripheral, hhash->State is
* set to HAL_HASH_STATE_READY and the API returns HAL_ERROR. It is
* recommended to wrap-up the processing in reading the digest as usual.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
{
uint32_t tmp_remaining_DMATransferSize_inWords;
uint32_t tmp_initial_DMATransferSize_inWords;
uint32_t tmp_words_already_pushed;
if (hhash->State == HAL_HASH_STATE_READY)
{
return HAL_ERROR;
}
else
{
/* Make sure there is enough time to suspend the processing */
tmp_remaining_DMATransferSize_inWords = ((DMA_Stream_TypeDef *)hhash->hdmain->Instance)->NDTR;
if (tmp_remaining_DMATransferSize_inWords <= HASH_DMA_SUSPENSION_WORDS_LIMIT)
{
/* No suspension attempted since almost to the end of the transferred data. */
/* Best option for user code is to wrap up low priority message hashing */
return HAL_ERROR;
}
/* Wait for BUSY flag to be reset */
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
{
return HAL_TIMEOUT;
}
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
{
return HAL_ERROR;
}
/* Wait for BUSY flag to be set */
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, RESET, HASH_TIMEOUTVALUE) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Disable DMA channel */
/* Note that the Abort function will
- Clear the transfer error flags
- Unlock
- Set the State
*/
if (HAL_DMA_Abort(hhash->hdmain) != HAL_OK)
{
return HAL_ERROR;
}
/* Clear DMAE bit */
CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
/* Wait for BUSY flag to be reset */
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
{
return HAL_TIMEOUT;
}
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
{
return HAL_ERROR;
}
/* At this point, DMA interface is disabled and no transfer is on-going */
/* Retrieve from the DMA handle how many words remain to be written */
tmp_remaining_DMATransferSize_inWords = ((DMA_Stream_TypeDef *)hhash->hdmain->Instance)->NDTR;
if (tmp_remaining_DMATransferSize_inWords == 0U)
{
/* All the DMA transfer is actually done. Suspension occurred at the very end
of the transfer. Either the digest computation is about to start (HASH case)
or processing is about to move from one step to another (HMAC case).
In both cases, the processing can't be suspended at this point. It is
safer to
- retrieve the low priority block digest before starting the high
priority block processing (HASH case)
- re-attempt a new suspension (HMAC case)
*/
return HAL_ERROR;
}
else
{
/* Compute how many words were supposed to be transferred by DMA */
tmp_initial_DMATransferSize_inWords = (((hhash->HashInCount % 4U) != 0U) ? \
((hhash->HashInCount + 3U) / 4U) : (hhash->HashInCount / 4U));
/* If discrepancy between the number of words reported by DMA Peripheral and
the numbers of words entered as reported by HASH Peripheral, correct it */
/* tmp_words_already_pushed reflects the number of words that were already pushed before
the start of DMA transfer (multi-buffer processing case) */
tmp_words_already_pushed = hhash->NbWordsAlreadyPushed;
if (((tmp_words_already_pushed + tmp_initial_DMATransferSize_inWords - \
tmp_remaining_DMATransferSize_inWords) % 16U) != HASH_NBW_PUSHED())
{
tmp_remaining_DMATransferSize_inWords--; /* one less word to be transferred again */
}
/* Accordingly, update the input pointer that points at the next word to be
transferred to the Peripheral by DMA */
hhash->pHashInBuffPtr += 4U * (tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) ;
/* And store in HashInCount the remaining size to transfer (in bytes) */
hhash->HashInCount = 4U * tmp_remaining_DMATransferSize_inWords;
}
/* Set State as suspended */
hhash->State = HAL_HASH_STATE_SUSPENDED;
return HAL_OK;
}
}
/**
* @brief Return the HASH handle error code.
* @param hhash pointer to a HASH_HandleTypeDef structure.
* @retval HASH Error Code
*/
uint32_t HAL_HASH_GetError(HASH_HandleTypeDef *hhash)
{
/* Return HASH Error Code */
return hhash->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @defgroup HASH_Private_Functions HASH Private Functions
* @{
*/
/**
* @brief DMA HASH Input Data transfer completion callback.
* @param hdma DMA handle.
* @note In case of HMAC processing, HASH_DMAXferCplt() initiates
* the next DMA transfer for the following HMAC step.
* @retval None
*/
static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma)
{
HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
uint32_t inputaddr;
uint32_t buffersize;
HAL_StatusTypeDef status;
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
{
/* Disable the DMA transfer */
CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
if (READ_BIT(HASH->CR, HASH_CR_MODE) == 0U)
{
/* If no HMAC processing, input data transfer is now over */
/* Change the HASH state to ready */
hhash->State = HAL_HASH_STATE_READY;
/* Call Input data transfer complete call back */
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
hhash->InCpltCallback(hhash);
#else
HAL_HASH_InCpltCallback(hhash);
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
}
else
{
/* HMAC processing: depending on the current HMAC step and whether or
not multi-buffer processing is on-going, the next step is initiated
and MDMAT bit is set. */
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
{
/* This is the end of HMAC processing */
/* Change the HASH state to ready */
hhash->State = HAL_HASH_STATE_READY;
/* Call Input data transfer complete call back
(note that the last DMA transfer was that of the key
for the outer HASH operation). */
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
hhash->InCpltCallback(hhash);
#else
HAL_HASH_InCpltCallback(hhash);
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
return;
}
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
{
inputaddr = (uint32_t)hhash->pHashMsgBuffPtr; /* DMA transfer start address */
buffersize = hhash->HashBuffSize; /* DMA transfer size (in bytes) */
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */
/* In case of suspension request, save the new starting parameters */
hhash->HashInCount = hhash->HashBuffSize; /* Initial DMA transfer size (in bytes) */
hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr ; /* DMA transfer start address */
hhash->NbWordsAlreadyPushed = 0U; /* Reset number of words already pushed */
/* Check whether or not digest calculation must be disabled (in case of multi-buffer HMAC processing) */
if (hhash->DigestCalculationDisable != RESET)
{
/* Digest calculation is disabled: Step 2 must start with MDMAT bit set,
no digest calculation will be triggered at the end of the input buffer feeding to the Peripheral */
__HAL_HASH_SET_MDMAT();
}
}
else /*case (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)*/
{
if (hhash->DigestCalculationDisable != RESET)
{
/* No automatic move to Step 3 as a new message buffer will be fed to the Peripheral
(case of multi-buffer HMAC processing):
DCAL must not be set.
Phase remains in Step 2, MDMAT remains set at this point.
Change the HASH state to ready and call Input data transfer complete call back. */
hhash->State = HAL_HASH_STATE_READY;
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
hhash->InCpltCallback(hhash);
#else
HAL_HASH_InCpltCallback(hhash);
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
return ;
}
else
{
/* Digest calculation is not disabled (case of single buffer input or last buffer
of multi-buffer HMAC processing) */
inputaddr = (uint32_t)hhash->Init.pKey; /* DMA transfer start address */
buffersize = hhash->Init.KeySize; /* DMA transfer size (in bytes) */
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */
/* In case of suspension request, save the new starting parameters */
hhash->HashInCount = hhash->Init.KeySize; /* Initial size for second DMA transfer (input data) */
hhash->pHashInBuffPtr = hhash->Init.pKey ; /* address passed to DMA, now entering data message */
hhash->NbWordsAlreadyPushed = 0U; /* Reset number of words already pushed */
}
}
/* Configure the Number of valid bits in last word of the message */
__HAL_HASH_SET_NBVALIDBITS(buffersize);
/* Set the HASH DMA transfer completion call back */
hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
/* Enable the DMA In DMA stream */
status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
(((buffersize % 4U) != 0U) ? ((buffersize + (4U - (buffersize % 4U))) / 4U) : \
(buffersize / 4U)));
/* Enable DMA requests */
SET_BIT(HASH->CR, HASH_CR_DMAE);
/* Return function status */
if (status != HAL_OK)
{
/* Update HASH state machine to error */
hhash->State = HAL_HASH_STATE_ERROR;
}
else
{
/* Change HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
}
}
}
return;
}
/**
* @brief DMA HASH communication error callback.
* @param hdma DMA handle.
* @note HASH_DMAError() callback invokes HAL_HASH_ErrorCallback() that
* can contain user code to manage the error.
* @retval None
*/
static void HASH_DMAError(DMA_HandleTypeDef *hdma)
{
HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
{
hhash->ErrorCode |= HAL_HASH_ERROR_DMA;
/* Set HASH state to ready to prevent any blocking issue in user code
present in HAL_HASH_ErrorCallback() */
hhash->State = HAL_HASH_STATE_READY;
/* Set HASH handle status to error */
hhash->Status = HAL_ERROR;
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
hhash->ErrorCallback(hhash);
#else
HAL_HASH_ErrorCallback(hhash);
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
/* After error handling by code user, reset HASH handle HAL status */
hhash->Status = HAL_OK;
}
}
/**
* @brief Feed the input buffer to the HASH Peripheral.
* @param hhash HASH handle.
* @param pInBuffer pointer to input buffer.
* @param Size the size of input buffer in bytes.
* @note HASH_WriteData() regularly reads hhash->SuspendRequest to check whether
* or not the HASH processing must be suspended. If this is the case, the
* processing is suspended when possible and the Peripheral feeding point reached at
* suspension time is stored in the handle for resumption later on.
* @retval HAL status
*/
static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
{
uint32_t buffercounter;
__IO uint32_t inputaddr = (uint32_t) pInBuffer;
for (buffercounter = 0U; buffercounter < Size; buffercounter += 4U)
{
/* Write input data 4 bytes at a time */
HASH->DIN = *(uint32_t *)inputaddr;
inputaddr += 4U;
/* If the suspension flag has been raised and if the processing is not about
to end, suspend processing */
if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter + 4U) < Size))
{
/* wait for flag BUSY not set before Wait for DINIS = 1*/
if (buffercounter >= 64U)
{
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
{
return HAL_TIMEOUT;
}
}
/* Wait for DINIS = 1, which occurs when 16 32-bit locations are free
in the input buffer */
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
{
/* Reset SuspendRequest */
hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
/* Depending whether the key or the input data were fed to the Peripheral, the feeding point
reached at suspension time is not saved in the same handle fields */
if ((hhash->Phase == HAL_HASH_PHASE_PROCESS) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2))
{
/* Save current reading and writing locations of Input and Output buffers */
hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
/* Save the number of bytes that remain to be processed at this point */
hhash->HashInCount = Size - (buffercounter + 4U);
}
else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
{
/* Save current reading and writing locations of Input and Output buffers */
hhash->pHashKeyBuffPtr = (uint8_t *)inputaddr;
/* Save the number of bytes that remain to be processed at this point */
hhash->HashKeyCount = Size - (buffercounter + 4U);
}
else
{
/* Unexpected phase: unlock process and report error */
hhash->State = HAL_HASH_STATE_READY;
__HAL_UNLOCK(hhash);
return HAL_ERROR;
}
/* Set the HASH state to Suspended and exit to stop entering data */
hhash->State = HAL_HASH_STATE_SUSPENDED;
return HAL_OK;
} /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) */
} /* if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4) < Size)) */
} /* for(buffercounter = 0; buffercounter < Size; buffercounter+=4) */
/* At this point, all the data have been entered to the Peripheral: exit */
return HAL_OK;
}
/**
* @brief Retrieve the message digest.
* @param pMsgDigest pointer to the computed digest.
* @param Size message digest size in bytes.
* @retval None
*/
static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size)
{
uint32_t msgdigest = (uint32_t)pMsgDigest;
switch (Size)
{
/* Read the message digest */
case 16: /* MD5 */
*(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
break;
case 20: /* SHA1 */
*(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
break;
case 28: /* SHA224 */
*(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
break;
case 32: /* SHA256 */
*(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
msgdigest += 4U;
*(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[7]);
break;
default:
break;
}
}
/**
* @brief Handle HASH processing Timeout.
* @param hhash HASH handle.
* @param Flag specifies the HASH flag to check.
* @param Status the Flag status (SET or RESET).
* @param Timeout Timeout duration.
* @retval HAL status
*/
static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
/* Wait until flag is set */
if (Status == RESET)
{
while (__HAL_HASH_GET_FLAG(Flag) == RESET)
{
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
{
/* Set State to Ready to be able to restart later on */
hhash->State = HAL_HASH_STATE_READY;
/* Store time out issue in handle status */
hhash->Status = HAL_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hhash);
return HAL_TIMEOUT;
}
}
}
}
else
{
while (__HAL_HASH_GET_FLAG(Flag) != RESET)
{
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
{
/* Set State to Ready to be able to restart later on */
hhash->State = HAL_HASH_STATE_READY;
/* Store time out issue in handle status */
hhash->Status = HAL_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hhash);
return HAL_TIMEOUT;
}
}
}
}
return HAL_OK;
}
/**
* @brief HASH processing in interruption mode.
* @param hhash HASH handle.
* @note HASH_IT() regularly reads hhash->SuspendRequest to check whether
* or not the HASH processing must be suspended. If this is the case, the
* processing is suspended when possible and the Peripheral feeding point reached at
* suspension time is stored in the handle for resumption later on.
* @retval HAL status
*/
static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash)
{
if (hhash->State == HAL_HASH_STATE_BUSY)
{
/* ITCounter must not be equal to 0 at this point. Report an error if this is the case. */
if (hhash->HashITCounter == 0U)
{
/* Disable Interrupts */
__HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
/* HASH state set back to Ready to prevent any issue in user code
present in HAL_HASH_ErrorCallback() */
hhash->State = HAL_HASH_STATE_READY;
return HAL_ERROR;
}
else if (hhash->HashITCounter == 1U)
{
/* This is the first call to HASH_IT, the first input data are about to be
entered in the Peripheral. A specific processing is carried out at this point to
start-up the processing. */
hhash->HashITCounter = 2U;
}
else
{
/* Cruise speed reached, HashITCounter remains equal to 3 until the end of
the HASH processing or the end of the current step for HMAC processing. */
hhash->HashITCounter = 3U;
}
/* If digest is ready */
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS))
{
/* Read the digest */
HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
/* Disable Interrupts */
__HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_READY;
/* Reset HASH state machine */
hhash->Phase = HAL_HASH_PHASE_READY;
/* Call digest computation complete call back */
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
hhash->DgstCpltCallback(hhash);
#else
HAL_HASH_DgstCpltCallback(hhash);
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
return HAL_OK;
}
/* If Peripheral ready to accept new data */
if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
{
/* If the suspension flag has been raised and if the processing is not about
to end, suspend processing */
if ((hhash->HashInCount != 0U) && (hhash->SuspendRequest == HAL_HASH_SUSPEND))
{
/* Disable Interrupts */
__HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
/* Reset SuspendRequest */
hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_SUSPENDED;
return HAL_OK;
}
/* Enter input data in the Peripheral through HASH_Write_Block_Data() call and
check whether the digest calculation has been triggered */
if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED)
{
/* Call Input data transfer complete call back
(called at the end of each step for HMAC) */
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
hhash->InCpltCallback(hhash);
#else
HAL_HASH_InCpltCallback(hhash);
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
{
/* Wait until Peripheral is not busy anymore */
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
{
/* Disable Interrupts */
__HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
return HAL_TIMEOUT;
}
/* Initialization start for HMAC STEP 2 */
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */
__HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize); /* Set NBLW for the input message */
hhash->HashInCount = hhash->HashBuffSize; /* Set the input data size (in bytes) */
hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr; /* Set the input data address */
hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start
of a new phase */
__HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */
}
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
{
/* Wait until Peripheral is not busy anymore */
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
{
/* Disable Interrupts */
__HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
return HAL_TIMEOUT;
}
/* Initialization start for HMAC STEP 3 */
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); /* Set NBLW for the key */
hhash->HashInCount = hhash->Init.KeySize; /* Set the key size (in bytes) */
hhash->pHashInBuffPtr = hhash->Init.pKey; /* Set the key address */
hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start
of a new phase */
__HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */
}
else
{
/* Nothing to do */
}
} /* if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED) */
} /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))*/
/* Return function status */
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Write a block of data in HASH Peripheral in interruption mode.
* @param hhash HASH handle.
* @note HASH_Write_Block_Data() is called under interruption by HASH_IT().
* @retval HAL status
*/
static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash)
{
uint32_t inputaddr;
uint32_t buffercounter;
uint32_t inputcounter;
uint32_t ret = HASH_DIGEST_CALCULATION_NOT_STARTED;
/* If there are more than 64 bytes remaining to be entered */
if (hhash->HashInCount > 64U)
{
inputaddr = (uint32_t)hhash->pHashInBuffPtr;
/* Write the Input block in the Data IN register
(16 32-bit words, or 64 bytes are entered) */
for (buffercounter = 0U; buffercounter < 64U; buffercounter += 4U)
{
HASH->DIN = *(uint32_t *)inputaddr;
inputaddr += 4U;
}
/* If this is the start of input data entering, an additional word
must be entered to start up the HASH processing */
if (hhash->HashITCounter == 2U)
{
HASH->DIN = *(uint32_t *)inputaddr;
if (hhash->HashInCount >= 68U)
{
/* There are still data waiting to be entered in the Peripheral.
Decrement buffer counter and set pointer to the proper
memory location for the next data entering round. */
hhash->HashInCount -= 68U;
hhash->pHashInBuffPtr += 68U;
}
else
{
/* All the input buffer has been fed to the HW. */
hhash->HashInCount = 0U;
}
}
else
{
/* 64 bytes have been entered and there are still some remaining:
Decrement buffer counter and set pointer to the proper
memory location for the next data entering round.*/
hhash->HashInCount -= 64U;
hhash->pHashInBuffPtr += 64U;
}
}
else
{
/* 64 or less bytes remain to be entered. This is the last
data entering round. */
/* Get the buffer address */
inputaddr = (uint32_t)hhash->pHashInBuffPtr;
/* Get the buffer counter */
inputcounter = hhash->HashInCount;
/* Disable Interrupts */
__HAL_HASH_DISABLE_IT(HASH_IT_DINI);
/* Write the Input block in the Data IN register */
for (buffercounter = 0U; buffercounter < ((inputcounter + 3U) / 4U); buffercounter++)
{
HASH->DIN = *(uint32_t *)inputaddr;
inputaddr += 4U;
}
if (hhash->Accumulation == 1U)
{
/* Field accumulation is set, API only feeds data to the Peripheral and under interruption.
The digest computation will be started when the last buffer data are entered. */
/* Reset multi buffers accumulation flag */
hhash->Accumulation = 0U;
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_READY;
/* Call Input data transfer complete call back */
#if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
hhash->InCpltCallback(hhash);
#else
HAL_HASH_InCpltCallback(hhash);
#endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
}
else
{
/* Start the Digest calculation */
__HAL_HASH_START_DIGEST();
/* Return indication that digest calculation has started:
this return value triggers the call to Input data transfer
complete call back as well as the proper transition from
one step to another in HMAC mode. */
ret = HASH_DIGEST_CALCULATION_STARTED;
}
/* Reset buffer counter */
hhash->HashInCount = 0;
}
/* Return whether or digest calculation has started */
return ret;
}
/**
* @brief HMAC processing in polling mode.
* @param hhash HASH handle.
* @param Timeout Timeout value.
* @retval HAL status
*/
static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout)
{
/* Ensure first that Phase is correct */
if ((hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_1) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_2)
&& (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_3))
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_READY;
/* Process Unlock */
__HAL_UNLOCK(hhash);
/* Return function status */
return HAL_ERROR;
}
/* HMAC Step 1 processing */
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
{
/************************** STEP 1 ******************************************/
/* Configure the Number of valid bits in last word of the message */
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
/* Write input buffer in Data register */
hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
if (hhash->Status != HAL_OK)
{
return hhash->Status;
}
/* Check whether or not key entering process has been suspended */
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
{
/* Process Unlocked */
__HAL_UNLOCK(hhash);
/* Stop right there and return function status */
return HAL_OK;
}
/* No processing suspension at this point: set DCAL bit. */
__HAL_HASH_START_DIGEST();
/* Wait for BUSY flag to be cleared */
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Move from Step 1 to Step 2 */
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;
}
/* HMAC Step 2 processing.
After phase check, HMAC_Processing() may
- directly start up from this point in resumption case
if the same Step 2 processing was suspended previously
- or fall through from the Step 1 processing carried out hereabove */
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
{
/************************** STEP 2 ******************************************/
/* Configure the Number of valid bits in last word of the message */
__HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);
/* Write input buffer in Data register */
hhash->Status = HASH_WriteData(hhash, hhash->pHashInBuffPtr, hhash->HashInCount);
if (hhash->Status != HAL_OK)
{
return hhash->Status;
}
/* Check whether or not data entering process has been suspended */
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
{
/* Process Unlocked */
__HAL_UNLOCK(hhash);
/* Stop right there and return function status */
return HAL_OK;
}
/* No processing suspension at this point: set DCAL bit. */
__HAL_HASH_START_DIGEST();
/* Wait for BUSY flag to be cleared */
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Move from Step 2 to Step 3 */
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;
/* In case Step 1 phase was suspended then resumed,
set again Key input buffers and size before moving to
next step */
hhash->pHashKeyBuffPtr = hhash->Init.pKey;
hhash->HashKeyCount = hhash->Init.KeySize;
}
/* HMAC Step 3 processing.
After phase check, HMAC_Processing() may
- directly start up from this point in resumption case
if the same Step 3 processing was suspended previously
- or fall through from the Step 2 processing carried out hereabove */
if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
{
/************************** STEP 3 ******************************************/
/* Configure the Number of valid bits in last word of the message */
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
/* Write input buffer in Data register */
hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
if (hhash->Status != HAL_OK)
{
return hhash->Status;
}
/* Check whether or not key entering process has been suspended */
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
{
/* Process Unlocked */
__HAL_UNLOCK(hhash);
/* Stop right there and return function status */
return HAL_OK;
}
/* No processing suspension at this point: start the Digest calculation. */
__HAL_HASH_START_DIGEST();
/* Wait for DCIS flag to be set */
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Read the message digest */
HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
/* Reset HASH state machine */
hhash->Phase = HAL_HASH_PHASE_READY;
}
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_READY;
/* Process Unlock */
__HAL_UNLOCK(hhash);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initialize the HASH peripheral, next process pInBuffer then
* read the computed digest.
* @note Digest is available in pOutBuffer.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest.
* @param Timeout Timeout value.
* @param Algorithm HASH algorithm.
* @retval HAL status
*/
HAL_StatusTypeDef HASH_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
uint32_t Timeout, uint32_t Algorithm)
{
uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */
uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
HAL_HASH_StateTypeDef State_tmp = hhash->State;
/* Initiate HASH processing in case of start or resumption */
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
{
/* Check input parameters */
if ((pInBuffer == NULL) || (pOutBuffer == NULL))
{
hhash->State = HAL_HASH_STATE_READY;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hhash);
/* Check if initialization phase has not been already performed */
if (hhash->Phase == HAL_HASH_PHASE_READY)
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
/* Configure the number of valid bits in last word of the message */
__HAL_HASH_SET_NBVALIDBITS(Size);
/* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
input parameters of HASH_WriteData() */
pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */
Size_tmp = Size; /* Size_tmp contains the input data size in bytes */
/* Set the phase */
hhash->Phase = HAL_HASH_PHASE_PROCESS;
}
else if (hhash->Phase == HAL_HASH_PHASE_PROCESS)
{
/* if the Peripheral has already been initialized, two cases are possible */
/* Process resumption time ... */
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
{
/* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
to the API input parameters but to those saved beforehand by HASH_WriteData()
when the processing was suspended */
pInBuffer_tmp = hhash->pHashInBuffPtr;
Size_tmp = hhash->HashInCount;
}
/* ... or multi-buffer HASH processing end */
else
{
/* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
input parameters of HASH_WriteData() */
pInBuffer_tmp = pInBuffer;
Size_tmp = Size;
/* Configure the number of valid bits in last word of the message */
__HAL_HASH_SET_NBVALIDBITS(Size);
}
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
}
else
{
/* Phase error */
hhash->State = HAL_HASH_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hhash);
/* Return function status */
return HAL_ERROR;
}
/* Write input buffer in Data register */
hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
if (hhash->Status != HAL_OK)
{
return hhash->Status;
}
/* If the process has not been suspended, carry on to digest calculation */
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
{
/* Start the Digest calculation */
__HAL_HASH_START_DIGEST();
/* Wait for DCIS flag to be set */
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Read the message digest */
HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_READY;
/* Reset HASH state machine */
hhash->Phase = HAL_HASH_PHASE_READY;
}
/* Process Unlocked */
__HAL_UNLOCK(hhash);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief If not already done, initialize the HASH peripheral then
* processes pInBuffer.
* @note Field hhash->Phase of HASH handle is tested to check whether or not
* the Peripheral has already been initialized.
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
* HASH digest computation is corrupted.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes, must be a multiple of 4.
* @param Algorithm HASH algorithm.
* @retval HAL status
*/
HAL_StatusTypeDef HASH_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
{
uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */
uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
HAL_HASH_StateTypeDef State_tmp = hhash->State;
/* Make sure the input buffer size (in bytes) is a multiple of 4 */
if ((Size % 4U) != 0U)
{
return HAL_ERROR;
}
/* Initiate HASH processing in case of start or resumption */
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
{
/* Check input parameters */
if ((pInBuffer == NULL) || (Size == 0U))
{
hhash->State = HAL_HASH_STATE_READY;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hhash);
/* If resuming the HASH processing */
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
to the API input parameters but to those saved beforehand by HASH_WriteData()
when the processing was suspended */
pInBuffer_tmp = hhash->pHashInBuffPtr; /* pInBuffer_tmp is set to the input data address */
Size_tmp = hhash->HashInCount; /* Size_tmp contains the input data size in bytes */
}
else
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
input parameters of HASH_WriteData() */
pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */
Size_tmp = Size; /* Size_tmp contains the input data size in bytes */
/* Check if initialization phase has already be performed */
if (hhash->Phase == HAL_HASH_PHASE_READY)
{
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
}
/* Set the phase */
hhash->Phase = HAL_HASH_PHASE_PROCESS;
}
/* Write input buffer in Data register */
hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
if (hhash->Status != HAL_OK)
{
return hhash->Status;
}
/* If the process has not been suspended, move the state to Ready */
if (hhash->State != HAL_HASH_STATE_SUSPENDED)
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_READY;
}
/* Process Unlocked */
__HAL_UNLOCK(hhash);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief If not already done, initialize the HASH peripheral then
* processes pInBuffer in interruption mode.
* @note Field hhash->Phase of HASH handle is tested to check whether or not
* the Peripheral has already been initialized.
* @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
* HASH digest computation is corrupted.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes, must be a multiple of 4.
* @param Algorithm HASH algorithm.
* @retval HAL status
*/
HAL_StatusTypeDef HASH_Accumulate_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
{
HAL_HASH_StateTypeDef State_tmp = hhash->State;
__IO uint32_t inputaddr = (uint32_t) pInBuffer;
uint32_t SizeVar = Size;
/* Make sure the input buffer size (in bytes) is a multiple of 4 */
if ((Size % 4U) != 0U)
{
return HAL_ERROR;
}
/* Initiate HASH processing in case of start or resumption */
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
{
/* Check input parameters */
if ((pInBuffer == NULL) || (Size == 0U))
{
hhash->State = HAL_HASH_STATE_READY;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hhash);
/* If resuming the HASH processing */
if (hhash->State == HAL_HASH_STATE_SUSPENDED)
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
}
else
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Check if initialization phase has already be performed */
if (hhash->Phase == HAL_HASH_PHASE_READY)
{
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
hhash->HashITCounter = 1;
}
else
{
hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
}
/* Set the phase */
hhash->Phase = HAL_HASH_PHASE_PROCESS;
/* If DINIS is equal to 0 (for example if an incomplete block has been previously
fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
Therefore, first words are manually entered until DINIS raises, or until there
is not more data to enter. */
while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 0U))
{
/* Write input data 4 bytes at a time */
HASH->DIN = *(uint32_t *)inputaddr;
inputaddr += 4U;
SizeVar -= 4U;
}
/* If DINIS is still not set or if all the data have been fed, stop here */
if ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) || (SizeVar == 0U))
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_READY;
/* Process Unlock */
__HAL_UNLOCK(hhash);
/* Return function status */
return HAL_OK;
}
/* otherwise, carry on in interrupt-mode */
hhash->HashInCount = SizeVar; /* Counter used to keep track of number of data
to be fed to the Peripheral */
hhash->pHashInBuffPtr = (uint8_t *)inputaddr; /* Points at data which will be fed to the Peripheral at
the next interruption */
/* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
the information describing where the HASH process is stopped.
These variables are used later on to resume the HASH processing at the
correct location. */
}
/* Set multi buffers accumulation flag */
hhash->Accumulation = 1U;
/* Process Unlock */
__HAL_UNLOCK(hhash);
/* Enable Data Input interrupt */
__HAL_HASH_ENABLE_IT(HASH_IT_DINI);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Initialize the HASH peripheral, next process pInBuffer then
* read the computed digest in interruption mode.
* @note Digest is available in pOutBuffer.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest.
* @param Algorithm HASH algorithm.
* @retval HAL status
*/
HAL_StatusTypeDef HASH_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
uint32_t Algorithm)
{
HAL_HASH_StateTypeDef State_tmp = hhash->State;
__IO uint32_t inputaddr = (uint32_t) pInBuffer;
uint32_t polling_step = 0U;
uint32_t initialization_skipped = 0U;
uint32_t SizeVar = Size;
/* If State is ready or suspended, start or resume IT-based HASH processing */
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
{
/* Check input parameters */
if ((pInBuffer == NULL) || (Size == 0U) || (pOutBuffer == NULL))
{
hhash->State = HAL_HASH_STATE_READY;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hhash);
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Initialize IT counter */
hhash->HashITCounter = 1;
/* Check if initialization phase has already be performed */
if (hhash->Phase == HAL_HASH_PHASE_READY)
{
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
/* Configure the number of valid bits in last word of the message */
__HAL_HASH_SET_NBVALIDBITS(SizeVar);
hhash->HashInCount = SizeVar; /* Counter used to keep track of number of data
to be fed to the Peripheral */
hhash->pHashInBuffPtr = pInBuffer; /* Points at data which will be fed to the Peripheral at
the next interruption */
/* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
the information describing where the HASH process is stopped.
These variables are used later on to resume the HASH processing at the
correct location. */
hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
}
else
{
initialization_skipped = 1; /* info user later on in case of multi-buffer */
}
/* Set the phase */
hhash->Phase = HAL_HASH_PHASE_PROCESS;
/* If DINIS is equal to 0 (for example if an incomplete block has been previously
fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
Therefore, first words are manually entered until DINIS raises. */
while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 3U))
{
polling_step = 1U; /* note that some words are entered before enabling the interrupt */
/* Write input data 4 bytes at a time */
HASH->DIN = *(uint32_t *)inputaddr;
inputaddr += 4U;
SizeVar -= 4U;
}
if (polling_step == 1U)
{
if (SizeVar == 0U)
{
/* If all the data have been entered at this point, it only remains to
read the digest */
hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
/* Start the Digest calculation */
__HAL_HASH_START_DIGEST();
/* Process Unlock */
__HAL_UNLOCK(hhash);
/* Enable Interrupts */
__HAL_HASH_ENABLE_IT(HASH_IT_DCI);
/* Return function status */
return HAL_OK;
}
else if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
{
/* It remains data to enter and the Peripheral is ready to trigger DINIE,
carry on as usual.
Update HashInCount and pHashInBuffPtr accordingly. */
hhash->HashInCount = SizeVar;
hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
/* Update the configuration of the number of valid bits in last word of the message */
__HAL_HASH_SET_NBVALIDBITS(SizeVar);
hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
if (initialization_skipped == 1U)
{
hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
}
}
else
{
/* DINIS is not set but it remains a few data to enter (not enough for a full word).
Manually enter the last bytes before enabling DCIE. */
__HAL_HASH_SET_NBVALIDBITS(SizeVar);
HASH->DIN = *(uint32_t *)inputaddr;
/* Start the Digest calculation */
hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
__HAL_HASH_START_DIGEST();
/* Process Unlock */
__HAL_UNLOCK(hhash);
/* Enable Interrupts */
__HAL_HASH_ENABLE_IT(HASH_IT_DCI);
/* Return function status */
return HAL_OK;
}
} /* if (polling_step == 1) */
/* Process Unlock */
__HAL_UNLOCK(hhash);
/* Enable Interrupts */
__HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Initialize the HASH peripheral then initiate a DMA transfer
* to feed the input buffer to the Peripheral.
* @note If MDMAT bit is set before calling this function (multi-buffer
* HASH processing case), the input buffer size (in bytes) must be
* a multiple of 4 otherwise, the HASH digest computation is corrupted.
* For the processing of the last buffer of the thread, MDMAT bit must
* be reset and the buffer length (in bytes) doesn't have to be a
* multiple of 4.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param Algorithm HASH algorithm.
* @retval HAL status
*/
HAL_StatusTypeDef HASH_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
{
uint32_t inputaddr;
uint32_t inputSize;
HAL_StatusTypeDef status ;
HAL_HASH_StateTypeDef State_tmp = hhash->State;
/* Make sure the input buffer size (in bytes) is a multiple of 4 when MDMAT bit is set
(case of multi-buffer HASH processing) */
assert_param(IS_HASH_DMA_MULTIBUFFER_SIZE(Size));
/* If State is ready or suspended, start or resume polling-based HASH processing */
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
{
/* Check input parameters */
if ((pInBuffer == NULL) || (Size == 0U) ||
/* Check phase coherency. Phase must be
either READY (fresh start)
or PROCESS (multi-buffer HASH management) */
((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HASH_PROCESSING(hhash)))))
{
hhash->State = HAL_HASH_STATE_READY;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hhash);
/* If not a resumption case */
if (hhash->State == HAL_HASH_STATE_READY)
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Check if initialization phase has already been performed.
If Phase is already set to HAL_HASH_PHASE_PROCESS, this means the
API is processing a new input data message in case of multi-buffer HASH
computation. */
if (hhash->Phase == HAL_HASH_PHASE_READY)
{
/* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
/* Set the phase */
hhash->Phase = HAL_HASH_PHASE_PROCESS;
}
/* Configure the Number of valid bits in last word of the message */
__HAL_HASH_SET_NBVALIDBITS(Size);
inputaddr = (uint32_t)pInBuffer; /* DMA transfer start address */
inputSize = Size; /* DMA transfer size (in bytes) */
/* In case of suspension request, save the starting parameters */
hhash->pHashInBuffPtr = pInBuffer; /* DMA transfer start address */
hhash->HashInCount = Size; /* DMA transfer size (in bytes) */
}
/* If resumption case */
else
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Resumption case, inputaddr and inputSize are not set to the API input parameters
but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
processing was suspended */
inputaddr = (uint32_t)hhash->pHashInBuffPtr; /* DMA transfer start address */
inputSize = hhash->HashInCount; /* DMA transfer size (in bytes) */
}
/* Set the HASH DMA transfer complete callback */
hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
/* Set the DMA error callback */
hhash->hdmain->XferErrorCallback = HASH_DMAError;
/* Store number of words already pushed to manage proper DMA processing suspension */
hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
/* Enable the DMA In DMA stream */
status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
(((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) : \
(inputSize / 4U)));
/* Enable DMA requests */
SET_BIT(HASH->CR, HASH_CR_DMAE);
/* Process Unlock */
__HAL_UNLOCK(hhash);
/* Return function status */
if (status != HAL_OK)
{
/* Update HASH state machine to error */
hhash->State = HAL_HASH_STATE_ERROR;
}
return status;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Return the computed digest.
* @note The API waits for DCIS to be set then reads the computed digest.
* @param hhash HASH handle.
* @param pOutBuffer pointer to the computed digest.
* @param Timeout Timeout value.
* @retval HAL status
*/
HAL_StatusTypeDef HASH_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
{
if (hhash->State == HAL_HASH_STATE_READY)
{
/* Check parameter */
if (pOutBuffer == NULL)
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hhash);
/* Change the HASH state to busy */
hhash->State = HAL_HASH_STATE_BUSY;
/* Wait for DCIS flag to be set */
if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Read the message digest */
HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
/* Change the HASH state to ready */
hhash->State = HAL_HASH_STATE_READY;
/* Reset HASH state machine */
hhash->Phase = HAL_HASH_PHASE_READY;
/* Process UnLock */
__HAL_UNLOCK(hhash);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
* read the computed digest.
* @note Digest is available in pOutBuffer.
* @note Same key is used for the inner and the outer hash functions; pointer to key and
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest.
* @param Timeout Timeout value.
* @param Algorithm HASH algorithm.
* @retval HAL status
*/
HAL_StatusTypeDef HMAC_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
uint32_t Timeout, uint32_t Algorithm)
{
HAL_HASH_StateTypeDef State_tmp = hhash->State;
/* If State is ready or suspended, start or resume polling-based HASH processing */
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
{
/* Check input parameters */
if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
|| (pOutBuffer == NULL))
{
hhash->State = HAL_HASH_STATE_READY;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hhash);
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Check if initialization phase has already be performed */
if (hhash->Phase == HAL_HASH_PHASE_READY)
{
/* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
if (hhash->Init.KeySize > 64U)
{
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
}
else
{
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
}
/* Set the phase to Step 1 */
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
/* Resort to hhash internal fields to feed the Peripheral.
Parameters will be updated in case of suspension to contain the proper
information at resumption time. */
hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */
hhash->pHashInBuffPtr = pInBuffer; /* Input data address, HMAC_Processing input
parameter for Step 2 */
hhash->HashInCount = Size; /* Input data size, HMAC_Processing input
parameter for Step 2 */
hhash->HashBuffSize = Size; /* Store the input buffer size for the whole HMAC process*/
hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address, HMAC_Processing input parameter for Step
1 and Step 3 */
hhash->HashKeyCount = hhash->Init.KeySize; /* Key size, HMAC_Processing input parameter for Step 1
and Step 3 */
}
/* Carry out HMAC processing */
return HMAC_Processing(hhash, Timeout);
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
* read the computed digest in interruption mode.
* @note Digest is available in pOutBuffer.
* @note Same key is used for the inner and the outer hash functions; pointer to key and
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param pOutBuffer pointer to the computed digest.
* @param Algorithm HASH algorithm.
* @retval HAL status
*/
HAL_StatusTypeDef HMAC_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
uint32_t Algorithm)
{
HAL_HASH_StateTypeDef State_tmp = hhash->State;
/* If State is ready or suspended, start or resume IT-based HASH processing */
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
{
/* Check input parameters */
if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
|| (pOutBuffer == NULL))
{
hhash->State = HAL_HASH_STATE_READY;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hhash);
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Initialize IT counter */
hhash->HashITCounter = 1;
/* Check if initialization phase has already be performed */
if (hhash->Phase == HAL_HASH_PHASE_READY)
{
/* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
if (hhash->Init.KeySize > 64U)
{
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
}
else
{
MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
}
/* Resort to hhash internal fields hhash->pHashInBuffPtr and hhash->HashInCount
to feed the Peripheral whatever the HMAC step.
Lines below are set to start HMAC Step 1 processing where key is entered first. */
hhash->HashInCount = hhash->Init.KeySize; /* Key size */
hhash->pHashInBuffPtr = hhash->Init.pKey ; /* Key address */
/* Store input and output parameters in handle fields to manage steps transition
or possible HMAC suspension/resumption */
hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */
hhash->pHashMsgBuffPtr = pInBuffer; /* Input message address */
hhash->HashBuffSize = Size; /* Input message size (in bytes) */
hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */
/* Configure the number of valid bits in last word of the key */
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
/* Set the phase to Step 1 */
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
}
else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
{
/* Restart IT-based HASH processing after Step 1 or Step 3 suspension */
}
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
{
/* Restart IT-based HASH processing after Step 2 suspension */
}
else
{
/* Error report as phase incorrect */
/* Process Unlock */
__HAL_UNLOCK(hhash);
hhash->State = HAL_HASH_STATE_READY;
return HAL_ERROR;
}
/* Process Unlock */
__HAL_UNLOCK(hhash);
/* Enable Interrupts */
__HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
/* Return function status */
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Initialize the HASH peripheral in HMAC mode then initiate the required
* DMA transfers to feed the key and the input buffer to the Peripheral.
* @note Same key is used for the inner and the outer hash functions; pointer to key and
* key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
* @note In case of multi-buffer HMAC processing, the input buffer size (in bytes) must
* be a multiple of 4 otherwise, the HASH digest computation is corrupted.
* Only the length of the last buffer of the thread doesn't have to be a
* multiple of 4.
* @param hhash HASH handle.
* @param pInBuffer pointer to the input buffer (buffer to be hashed).
* @param Size length of the input buffer in bytes.
* @param Algorithm HASH algorithm.
* @retval HAL status
*/
HAL_StatusTypeDef HMAC_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
{
uint32_t inputaddr;
uint32_t inputSize;
HAL_StatusTypeDef status ;
HAL_HASH_StateTypeDef State_tmp = hhash->State;
/* Make sure the input buffer size (in bytes) is a multiple of 4 when digest calculation
is disabled (multi-buffer HMAC processing, MDMAT bit to be set) */
assert_param(IS_HMAC_DMA_MULTIBUFFER_SIZE(hhash, Size));
/* If State is ready or suspended, start or resume DMA-based HASH processing */
if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
{
/* Check input parameters */
if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U) ||
/* Check phase coherency. Phase must be
either READY (fresh start)
or one of HMAC PROCESS steps (multi-buffer HASH management) */
((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HMAC_PROCESSING(hhash)))))
{
hhash->State = HAL_HASH_STATE_READY;
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hhash);
/* If not a case of resumption after suspension */
if (hhash->State == HAL_HASH_STATE_READY)
{
/* Check whether or not initialization phase has already be performed */
if (hhash->Phase == HAL_HASH_PHASE_READY)
{
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits.
At the same time, ensure MDMAT bit is cleared. */
if (hhash->Init.KeySize > 64U)
{
MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
}
else
{
MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
}
/* Store input aparameters in handle fields to manage steps transition
or possible HMAC suspension/resumption */
hhash->HashInCount = hhash->Init.KeySize; /* Initial size for first DMA transfer (key size) */
hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */
hhash->pHashInBuffPtr = hhash->Init.pKey ; /* First address passed to DMA (key address at Step 1) */
hhash->pHashMsgBuffPtr = pInBuffer; /* Input data address */
hhash->HashBuffSize = Size; /* input data size (in bytes) */
/* Set DMA input parameters */
inputaddr = (uint32_t)(hhash->Init.pKey); /* Address passed to DMA (start by entering Key message) */
inputSize = hhash->Init.KeySize; /* Size for first DMA transfer (in bytes) */
/* Configure the number of valid bits in last word of the key */
__HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
/* Set the phase to Step 1 */
hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
}
else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
{
/* Process a new input data message in case of multi-buffer HMAC processing
(this is not a resumption case) */
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Save input parameters to be able to manage possible suspension/resumption */
hhash->HashInCount = Size; /* Input message address */
hhash->pHashInBuffPtr = pInBuffer; /* Input message size in bytes */
/* Set DMA input parameters */
inputaddr = (uint32_t)pInBuffer; /* Input message address */
inputSize = Size; /* Input message size in bytes */
if (hhash->DigestCalculationDisable == RESET)
{
/* This means this is the last buffer of the multi-buffer sequence: DCAL needs to be set. */
__HAL_HASH_RESET_MDMAT();
__HAL_HASH_SET_NBVALIDBITS(inputSize);
}
}
else
{
/* Phase not aligned with handle READY state */
__HAL_UNLOCK(hhash);
/* Return function status */
return HAL_ERROR;
}
}
else
{
/* Resumption case (phase may be Step 1, 2 or 3) */
/* Change the HASH state */
hhash->State = HAL_HASH_STATE_BUSY;
/* Set DMA input parameters at resumption location;
inputaddr and inputSize are not set to the API input parameters
but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
processing was suspended. */
inputaddr = (uint32_t)(hhash->pHashInBuffPtr); /* Input message address */
inputSize = hhash->HashInCount; /* Input message size in bytes */
}
/* Set the HASH DMA transfer complete callback */
hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
/* Set the DMA error callback */
hhash->hdmain->XferErrorCallback = HASH_DMAError;
/* Store number of words already pushed to manage proper DMA processing suspension */
hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
/* Enable the DMA In DMA stream */
status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
(((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) \
: (inputSize / 4U)));
/* Enable DMA requests */
SET_BIT(HASH->CR, HASH_CR_DMAE);
/* Process Unlocked */
__HAL_UNLOCK(hhash);
/* Return function status */
if (status != HAL_OK)
{
/* Update HASH state machine to error */
hhash->State = HAL_HASH_STATE_ERROR;
}
/* Return function status */
return status;
}
else
{
return HAL_BUSY;
}
}
/**
* @}
*/
#endif /* HAL_HASH_MODULE_ENABLED */
/**
* @}
*/
#endif /* HASH*/
/**
* @}
*/
|